metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-1,3-bis­­(1H-imidazol-1-yl)propane-κ2N3:N3′]bis­­(di­chlorido­zinc) dihydrate

aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wangxj@zjnu.cn

(Received 24 March 2014; accepted 11 April 2014; online 16 April 2014)

The title hydrated complex, [Zn2Cl4(C9H12N4)2]·2H2O, is a discrete dinuclear zinc complex with 1,3-bis­(1H-imidazol-1-yl)propane as the bridging ligand. The complex mol­ecule lies about a crystallographic inversion centre. The ZnII atom exhibits a distorted tetra­hedral coordination geometry defined by two imidazole N atoms and two Cl atoms. O—H⋯Cl hydrogen bonding between the lattice water mol­ecules and the terminal Cl atoms of the mol­ecule lead to a two-dimensional structure extending parallel to (100).

Related literature

For related structures containing the 1,3-bis­(imidazol)propane ligand, see: Ma et al. (2012[Ma, L. F., Han, M. L., Qin, J. H., Wang, L. Y. & Du, M. (2012). Inorg. Chem. 51, 9431-9442.]); Kan et al. (2012[Kan, W. Q., Ma, J. F., Liu, Y. Y. & Yang, J. (2012). CrystEngComm, 14, 2316-2326.]); Jiang et al. (2011[Jiang, K., Ma, L. F., Sun, X. Y. & Wang, L. Y. (2011). CrystEngComm, 13, 330-338.]); Shen & Lin (2012[Shen, Q.-L. & Lin, H. (2012). Acta Cryst. E68, m776.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2Cl4(C9H12N4)2]·2H2O

  • Mr = 661.02

  • Monoclinic, P 21 /c

  • a = 10.1378 (4) Å

  • b = 9.7173 (4) Å

  • c = 13.8801 (6) Å

  • β = 93.704 (2)°

  • V = 1364.50 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 296 K

  • 0.25 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.631, Tmax = 0.770

  • 21184 measured reflections

  • 3162 independent reflections

  • 2473 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.087

  • S = 1.04

  • 3162 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Cl1 0.85 2.47 3.282 (3) 160
O1W—H1WB⋯Cl2i 0.85 2.76 3.473 (4) 143
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the past few years, complexes based on the 1,3-bis(imidazol)propane (1,3-bip) ligand have been reported, such as [Mn4(tbip)4(1,3-bip)]n.2nH2O (H2tbip = (5-tert-butyl isophthalic acid) (Ma et al., 2012), [Cd(HL)(1,3-bip)]n.5nH2O (H3L = 5-(2-carboxybenzyloxy)isophthalic acid) (Kan et al., 2012), [Zn(L)(1,3-bip)]n (H2L = 5-methylisophthalic acid) (Jiang et al., 2011), [Cd(1,3-bip)Cl2]n (Shen et al., 2012). In order to extend our knowledge in this field, we report here the syntheses and structure of a new complex, [ZnCl2(C9H12N4]2.2H2O, (I).

The asymmetric unit of (I) consists of one Zn2+ ion, one 1,3-bip ligand, two Cl- ions, and one lattice water molecules. A perspective view of the molecular entities of complex (I) is presented in Fig. 1. The complex contains centrosymmetric dimers with bridging 1,3-bip ligands. The Zn(II) atom is four-coordinated in a distorted tetrahedral coordination. O—H···Cl hydrogen bonds between the lattice water molecules and Cl atoms lead to a layered structure extending parallel to (100) (Fig. 2).

Related literature top

For related structures containing the 1,3-bis(imidazol)propane ligand, see: Ma et al. (2012); Kan et al. (2012); Jiang et al. (2011); Shen & Lin (2012).

Experimental top

A mixture of 1,3-bis(imidazol)propane (0.088 g, 0.5 mmol), ZnCl2 (0.204 g, 1.5 mmol), and Na2CO3 (0.060 g, 0.5 mmol) in H2O (16 ml)/C2H5OH (2 ml) was placed in a 25 ml Teflon-lined stainless steel vessel and heated at 433 K for 72 h, then cooled to room temperature over a period of 24 h. Colourless crystals suitable for X-ray analysis were obtained.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [aromatic C—H 0.93 Å and aliphatic C—H 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The oxygen-bound H-atoms were located in a difference Fourier map and were refined with the O—H distance restraint of 0.85 Å [Uiso(H) = 1.2Ueq(O)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular entities of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x + 1,-y + 1,-z + 1.]
[Figure 2] Fig. 2. The layer structure of (I) viewed along [100]. Dashed lines indicate O—H···Cl hydrogen bonds.
Bis[µ-1,3-bis(1H-imidazol-1-yl)propane-κ2N3:N3']bis(dichloridozinc) dihydrate top
Crystal data top
[Zn2Cl4(C9H12N4)2]·2H2OF(000) = 672
Mr = 661.02Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6173 reflections
a = 10.1378 (4) Åθ = 2.0–27.6°
b = 9.7173 (4) ŵ = 2.18 mm1
c = 13.8801 (6) ÅT = 296 K
β = 93.704 (2)°Block, colourless
V = 1364.50 (10) Å30.25 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3162 independent reflections
Radiation source: fine-focus sealed tube2473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ–scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1313
Tmin = 0.631, Tmax = 0.770k = 1112
21184 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.5084P]
where P = (Fo2 + 2Fc2)/3
3162 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
[Zn2Cl4(C9H12N4)2]·2H2OV = 1364.50 (10) Å3
Mr = 661.02Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.1378 (4) ŵ = 2.18 mm1
b = 9.7173 (4) ÅT = 296 K
c = 13.8801 (6) Å0.25 × 0.18 × 0.12 mm
β = 93.704 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3162 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2473 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.770Rint = 0.033
21184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.55 e Å3
3162 reflectionsΔρmin = 0.23 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.34226 (3)0.80572 (3)0.74784 (2)0.04641 (11)
Cl10.39773 (7)0.82340 (8)0.90676 (5)0.0634 (2)
Cl20.19959 (7)0.97104 (7)0.69087 (6)0.0684 (2)
O1W0.1166 (3)0.7064 (4)0.9784 (2)0.1265 (12)
H1WA0.17880.73550.94560.152*
H1WB0.14290.70431.03770.152*
N10.25814 (18)0.6260 (2)0.70857 (13)0.0443 (4)
N20.21115 (19)0.43655 (19)0.62798 (13)0.0430 (4)
N30.29331 (19)0.1944 (2)0.37271 (14)0.0452 (4)
N40.49316 (19)0.1728 (2)0.32351 (14)0.0458 (5)
C10.1371 (2)0.5783 (3)0.73318 (17)0.0474 (6)
H1A0.08410.61990.77710.057*
C20.2989 (2)0.5376 (2)0.64438 (16)0.0449 (5)
H2A0.37820.54490.61460.054*
C30.1072 (2)0.4622 (3)0.68377 (17)0.0481 (6)
H3A0.03100.40960.68690.058*
C40.2215 (3)0.3244 (2)0.55803 (18)0.0505 (6)
H4A0.17460.24430.57970.061*
H4B0.31370.29930.55420.061*
C50.1646 (2)0.3666 (3)0.45951 (16)0.0489 (5)
H5A0.21650.44200.43630.059*
H5B0.07520.39990.46510.059*
C60.1616 (2)0.2514 (3)0.3861 (2)0.0555 (6)
H6A0.10460.17850.40680.067*
H6B0.12410.28580.32470.067*
C70.3435 (3)0.0752 (3)0.41050 (19)0.0571 (6)
H7A0.30110.01410.44980.069*
C80.3855 (2)0.2498 (3)0.32038 (17)0.0489 (6)
H8A0.37530.33180.28620.059*
C90.4668 (3)0.0622 (3)0.38023 (18)0.0533 (6)
H9A0.52450.01010.39550.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04298 (17)0.04543 (18)0.05161 (18)0.00076 (12)0.00928 (12)0.00741 (12)
Cl10.0657 (4)0.0750 (5)0.0500 (4)0.0032 (3)0.0081 (3)0.0131 (3)
Cl20.0546 (4)0.0569 (4)0.0943 (5)0.0137 (3)0.0087 (4)0.0021 (4)
O1W0.0764 (17)0.190 (4)0.116 (2)0.0006 (18)0.0274 (16)0.022 (2)
N10.0451 (10)0.0451 (11)0.0431 (10)0.0013 (9)0.0051 (8)0.0024 (8)
N20.0450 (10)0.0398 (10)0.0437 (10)0.0030 (8)0.0000 (8)0.0004 (8)
N30.0391 (10)0.0488 (12)0.0480 (11)0.0025 (8)0.0062 (8)0.0095 (9)
N40.0453 (11)0.0478 (12)0.0451 (11)0.0026 (9)0.0088 (8)0.0006 (8)
C10.0415 (12)0.0553 (15)0.0462 (12)0.0047 (11)0.0082 (10)0.0008 (10)
C20.0439 (12)0.0435 (13)0.0477 (12)0.0006 (10)0.0070 (10)0.0029 (10)
C30.0403 (12)0.0522 (15)0.0518 (13)0.0034 (10)0.0029 (10)0.0065 (11)
C40.0585 (15)0.0388 (13)0.0536 (14)0.0029 (11)0.0008 (11)0.0051 (10)
C50.0466 (13)0.0520 (14)0.0486 (13)0.0060 (11)0.0062 (10)0.0028 (11)
C60.0366 (12)0.0696 (17)0.0604 (15)0.0003 (12)0.0040 (11)0.0170 (13)
C70.0603 (16)0.0513 (15)0.0614 (15)0.0057 (12)0.0171 (12)0.0044 (12)
C80.0467 (13)0.0493 (14)0.0514 (14)0.0031 (11)0.0094 (11)0.0013 (11)
C90.0574 (15)0.0461 (14)0.0570 (14)0.0063 (11)0.0088 (12)0.0011 (11)
Geometric parameters (Å, º) top
Zn1—N12.0038 (19)C1—C31.345 (3)
Zn1—N4i2.0053 (19)C1—H1A0.9300
Zn1—Cl12.2476 (7)C2—H2A0.9300
Zn1—Cl22.2694 (7)C3—H3A0.9300
O1W—H1WA0.8500C4—C51.507 (3)
O1W—H1WB0.8500C4—H4A0.9700
N1—C21.323 (3)C4—H4B0.9700
N1—C11.375 (3)C5—C61.513 (3)
N2—C21.334 (3)C5—H5A0.9700
N2—C31.370 (3)C5—H5B0.9700
N2—C41.468 (3)C6—H6A0.9700
N3—C81.333 (3)C6—H6B0.9700
N3—C71.357 (3)C7—C91.350 (4)
N3—C61.468 (3)C7—H7A0.9300
N4—C81.322 (3)C8—H8A0.9300
N4—C91.369 (3)C9—H9A0.9300
N4—Zn1i2.0053 (19)
N1—Zn1—N4i108.03 (8)N2—C4—C5111.01 (19)
N1—Zn1—Cl1114.12 (6)N2—C4—H4A109.4
N4i—Zn1—Cl1108.26 (6)C5—C4—H4A109.4
N1—Zn1—Cl2105.77 (6)N2—C4—H4B109.4
N4i—Zn1—Cl2106.63 (6)C5—C4—H4B109.4
Cl1—Zn1—Cl2113.66 (3)H4A—C4—H4B108.0
H1WA—O1W—H1WB109.3C4—C5—C6113.6 (2)
C2—N1—C1105.7 (2)C4—C5—H5A108.8
C2—N1—Zn1127.09 (16)C6—C5—H5A108.8
C1—N1—Zn1126.64 (16)C4—C5—H5B108.8
C2—N2—C3107.35 (19)C6—C5—H5B108.8
C2—N2—C4125.7 (2)H5A—C5—H5B107.7
C3—N2—C4126.8 (2)N3—C6—C5112.65 (19)
C8—N3—C7107.2 (2)N3—C6—H6A109.1
C8—N3—C6126.3 (2)C5—C6—H6A109.1
C7—N3—C6126.5 (2)N3—C6—H6B109.1
C8—N4—C9105.8 (2)C5—C6—H6B109.1
C8—N4—Zn1i129.55 (17)H6A—C6—H6B107.8
C9—N4—Zn1i124.41 (16)C9—C7—N3106.9 (2)
C3—C1—N1109.3 (2)C9—C7—H7A126.5
C3—C1—H1A125.3N3—C7—H7A126.5
N1—C1—H1A125.3N4—C8—N3111.1 (2)
N1—C2—N2111.0 (2)N4—C8—H8A124.4
N1—C2—H2A124.5N3—C8—H8A124.4
N2—C2—H2A124.5C7—C9—N4108.9 (2)
C1—C3—N2106.6 (2)C7—C9—H9A125.5
C1—C3—H3A126.7N4—C9—H9A125.5
N2—C3—H3A126.7
N4i—Zn1—N1—C22.4 (2)C2—N2—C4—C586.8 (3)
Cl1—Zn1—N1—C2122.86 (18)C3—N2—C4—C588.8 (3)
Cl2—Zn1—N1—C2111.46 (19)N2—C4—C5—C6175.0 (2)
N4i—Zn1—N1—C1172.98 (18)C8—N3—C6—C578.9 (3)
Cl1—Zn1—N1—C166.57 (19)C7—N3—C6—C5101.8 (3)
Cl2—Zn1—N1—C159.12 (19)C4—C5—C6—N358.6 (3)
C2—N1—C1—C30.2 (3)C8—N3—C7—C90.5 (3)
Zn1—N1—C1—C3172.38 (16)C6—N3—C7—C9180.0 (2)
C1—N1—C2—N20.6 (3)C9—N4—C8—N30.6 (3)
Zn1—N1—C2—N2172.77 (14)Zn1i—N4—C8—N3174.77 (15)
C3—N2—C2—N10.8 (3)C7—N3—C8—N40.7 (3)
C4—N2—C2—N1177.2 (2)C6—N3—C8—N4179.8 (2)
N1—C1—C3—N20.3 (3)N3—C7—C9—N40.2 (3)
C2—N2—C3—C10.7 (2)C8—N4—C9—C70.2 (3)
C4—N2—C3—C1177.0 (2)Zn1i—N4—C9—C7174.79 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl10.852.473.282 (3)160
O1W—H1WB···Cl2ii0.852.763.473 (4)143
Symmetry code: (ii) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl10.852.473.282 (3)160.1
O1W—H1WB···Cl2i0.852.763.473 (4)143.1
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Youth Foundation of Zhejiang Normal University (No. KYJ06Y12144).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, K., Ma, L. F., Sun, X. Y. & Wang, L. Y. (2011). CrystEngComm, 13, 330–338.  Web of Science CSD CrossRef CAS Google Scholar
First citationKan, W. Q., Ma, J. F., Liu, Y. Y. & Yang, J. (2012). CrystEngComm, 14, 2316–2326.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, L. F., Han, M. L., Qin, J. H., Wang, L. Y. & Du, M. (2012). Inorg. Chem. 51, 9431–9442.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Q.-L. & Lin, H. (2012). Acta Cryst. E68, m776.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds