organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,8,15,18,21,24,31,37,44,47,50,53-Dodeca­oxahepta­cyclo­[52.4.0.04,35.06,33.09,14.025,30.038,43]octa­penta­conta-1(54),4,6(33),9(14),10,12,25(30),26,28,34,38(43),39,41,55,57-penta­deca­ene di­chloro­methane disolvate

aDepartment of Chemistry, Konyang University, Nonsan 320-711, Republic of Korea
*Correspondence e-mail: jylee@konyang.ac.kr, jylee@konyang.ac.kr

(Received 31 March 2014; accepted 10 April 2014; online 16 April 2014)

In the title compound, C46H50O12·2CH2Cl2, each dual 20-crown-6 unit crystallizes with two di­chloro­methane solvent mol­ecules. The crown unit mol­ecule lies about an inversion centre located at the central benzene ring. The two crown ring groups adopt an anti conformation, stabilized by weak intra­molecular C—H⋯O inter­actions. In the crystal, the crown unit mol­ecules and the solvent mol­ecules are linked by C—H⋯O inter­actions into a three-dimensional network.

Related literature

For the preparation and crystal structures of related compounds, see: Lee et al. (2009[Lee, J. Y., Lee, J.-E., Sim, W. & Park, K.-M. (2009). Acta Cryst. E65, o2369-o2370.]); Beack et al. (2012[Beack, H. J., Yoo, S. M., Kim, J. E., Sim, W. & Lee, J. Y. (2012). Acta Cryst. E68, o720.]). For background to dual crown ethers and their inclusion behavior, see: Lee et al. (1992[Lee, W. Y., Sim, W. & Park, O. S. (1992). Synlett, pp. 157-159.], 1997[Lee, Y.-I., Kim, D.-W., Choi, K.-Y., Yoo, M., Kim, J. S., Yoo, Y.-J. & Sim, W. (1997). Bull. Korean Chem. Soc. 18, 1311-1313.]).

[Scheme 1]

Experimental

Crystal data
  • C46H50O12·2CH2Cl2

  • Mr = 964.71

  • Orthorhombic, P c c n

  • a = 23.0916 (11) Å

  • b = 23.9520 (11) Å

  • c = 8.6426 (4) Å

  • V = 4780.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 200 K

  • 0.25 × 0.24 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.947

  • 26165 measured reflections

  • 4211 independent reflections

  • 2588 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.136

  • S = 1.02

  • 4211 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O6i 0.95 2.47 2.828 (3) 103
C3—H3B⋯O4ii 0.99 2.59 3.457 (4) 146
C22—H22A⋯O1ii 0.99 2.32 3.252 (3) 156
C22—H22B⋯O1 0.99 2.53 2.909 (3) 103
C24—H24A⋯O6 0.99 2.51 3.455 (4) 160
C24—H24B⋯O3 0.99 2.36 3.331 (5) 168
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Chemical context top

In a previous article we reported the synthesis and complexation behavior of common-nuclear bis-crown ethers (Lee et al., 1992, 1997). Within this context we also reported the precursor of the common-nuclear bis­crown ether, bearing three aromatic subunits (Lee et al., 2009; Beack et al., 2012). The reaction of 1,2,4,5-tetra­kis(bromo­methyl)­benzene and bis­phenol in the presence of sodium hydride afforded the title compound, C46H50O12, that crystallizes with two molecules of di­chloro­methane.

Structural commentary top

In the title molecule (Fig. 1), in the A-to-B ring and A-to-C ring connectivities, the torsion angles C2–C3–O1–C4 and C23–C22–O6–C21 are -72.7 (3) ° and 99.0 (3)°, respectively. This indicates that the A ring is situated gauche to the B ring, also situated gauche to the C ring, with dihedral angles of 81.64 (14)° between A and B and 81.16 (14)° between A and C. The dihedral angle between the B and C ring is 1.92 (15)°. All C–C–O–C torsion angles in the tri­ethyl­ene glycol group are related to trans conformations. Weak intra­molecular C—H···O hydrogen bonds (C22—H22B···O1; C1—H1A···O6) stabilize the conformation of the crown unit molecule (Fig. 1, Table 1).

Supra­molecular features top

In the crystal, the crown unit molecules and the solvent molecules are linked by C—H···O inter­actions (Figs. 1, 2; Table 1). The C atom of the di­chloro­methane molecule (C24) is shifted by 2.383 Å outwards to the crown ring cavity (least squares plane defined by atoms O1–O6), and forms two C—H···O hydrogen bonds with two O atoms (O3 and O6) in the crown ring (Fig. 1, Table 1).

Synthesis and crystallization top

To a refluxing suspension of sodium hydride (10.6 mmol) in THF under nitro­gen was added dropwise a solution of 1,2,4,5-tetra­kis(bromo­methyl)­benzene (2.20 mmol) and 1,8-bis­(2-hy­droxy­phen­oxy)-3,6-dioxao­ctane (4.40 mmol) in THF over a period of 3 h. The mixture was then refluxed for additional 3 days. After cooling to room temperature, 10%wt aqueous hydro­chloric acid was added. The solvent was removed under reduced pressure and the residual mixture was extracted with di­chloro­methane. The organic layer was washed with water, dried over anhydrous magnesium sulfate, and evaporated in vacuo. The crude product was chromatographed on a silica-gel column using a mixed solvent of ethyl acetate and n-hexane (1:1) as eluent. Recrystallization from di­chloro­methane/n-hexane (1:20, v/v) resulted in 53% yield (m.p. 423 K). IR (KBr pellet): 2927, 1599, 1505, 1459, 1255, 1122, 1003, and 738 cm-1. 1H NMR (CDCl3): d 7.69 (s, 2 H, OCH2Ar), 6.92~6.80 (m, 16 H, OArO), 5.29 (s, 8 H, OCH2Ar), 4.12 (t, 8 H, ArOCH2CH2), 3.81 (t, 8 H, ArOCH2CH2) and 3.66 (t, 8 H, ArOCH2CH2OCH2).

Refinement details top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H)=0.95 Å, Uiso=1.2Ueq(C) for aromatic and 0.99 Å, Uiso=1.2Ueq(C) for CH2 atoms. Reflection (110) was affected by the beamstop and was omitted from the refinement.

Related literature top

For the preparation and crystal structures of related compounds, see: Lee et al. (2009); Beack et al. (2012). For background to dual crown ethers and their inclusion behavior, see: Lee et al. (1992, 1997).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular entities of the title compound with the atom numbering scheme and C—H···O interactions (dotted lines). Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry code A): -x + 1, -y + 1, -z + 1].
[Figure 2] Fig. 2. Crystal packing of the title compound with intra- and intermolecular C—H···O hydrogen bonds shown as dashed lines. [Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z.]
2,8,15,18,21,24,31,37,44,47,50,53-Dodecaoxaheptacyclo[52.4.0.04,35.06,33.09,14.025,30.038,43]octapentaconta-1(54),4,6(33),9(14),10,12,25 (30),26,28,34,38 (43),39,41,55,57-pentadecaene dichloromethane disolvate top
Crystal data top
C46H50O12·2CH2Cl2F(000) = 2024
Mr = 964.71Dx = 1.340 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 4261 reflections
a = 23.0916 (11) Åθ = 2.5–22.2°
b = 23.9520 (11) ŵ = 0.31 mm1
c = 8.6426 (4) ÅT = 200 K
V = 4780.1 (4) Å3Block, colorless
Z = 40.25 × 0.24 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
4211 independent reflections
Radiation source: fine-focus sealed tube2588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2722
Tmin = 0.927, Tmax = 0.947k = 2827
26165 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0524P)2 + 2.3252P]
where P = (Fo2 + 2Fc2)/3
4211 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C46H50O12·2CH2Cl2V = 4780.1 (4) Å3
Mr = 964.71Z = 4
Orthorhombic, PccnMo Kα radiation
a = 23.0916 (11) ŵ = 0.31 mm1
b = 23.9520 (11) ÅT = 200 K
c = 8.6426 (4) Å0.25 × 0.24 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
4211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2588 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.947Rint = 0.077
26165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
4211 reflectionsΔρmin = 0.41 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54545 (8)0.54550 (8)0.1042 (2)0.0372 (5)
O20.63386 (9)0.52751 (8)0.0718 (2)0.0451 (5)
O30.65434 (10)0.42923 (8)0.2639 (2)0.0527 (6)
O40.58731 (10)0.32856 (8)0.2708 (2)0.0542 (6)
O50.51826 (10)0.31134 (8)0.0013 (2)0.0492 (6)
O60.52007 (9)0.37487 (7)0.2487 (2)0.0405 (5)
C10.48858 (12)0.55573 (11)0.4876 (3)0.0315 (7)
H1A0.48060.59450.47900.038*
C20.49824 (11)0.52536 (11)0.3538 (3)0.0300 (6)
C30.49439 (12)0.55343 (12)0.1976 (3)0.0353 (7)
H3A0.46040.53850.14130.042*
H3B0.48810.59390.21310.042*
C40.59462 (13)0.57372 (11)0.1441 (3)0.0353 (7)
C50.59937 (14)0.61083 (12)0.2657 (3)0.0434 (8)
H5A0.56670.61840.32900.052*
C60.65181 (16)0.63729 (13)0.2960 (4)0.0532 (9)
H6A0.65480.66280.37990.064*
C70.69873 (15)0.62667 (13)0.2057 (4)0.0567 (9)
H7A0.73450.64460.22750.068*
C80.69505 (14)0.58999 (13)0.0822 (4)0.0515 (9)
H8A0.72810.58300.01980.062*
C90.64311 (13)0.56349 (11)0.0498 (3)0.0398 (7)
C100.68141 (14)0.52010 (13)0.1761 (4)0.0494 (8)
H10A0.71390.50150.12190.059*
H10B0.69510.55690.21330.059*
C110.66245 (15)0.48529 (13)0.3103 (4)0.0530 (9)
H11A0.62570.50030.35250.064*
H11B0.69210.48700.39290.064*
C120.65282 (15)0.39212 (13)0.3923 (4)0.0527 (9)
H12A0.68980.39440.45020.063*
H12B0.62100.40280.46310.063*
C130.64360 (15)0.33379 (14)0.3356 (4)0.0572 (9)
H13A0.64800.30720.42260.069*
H13B0.67310.32460.25630.069*
C140.57832 (16)0.27550 (12)0.2012 (4)0.0555 (9)
H14A0.60800.26900.12050.067*
H14B0.58200.24580.28020.067*
C150.51951 (16)0.27369 (13)0.1309 (4)0.0539 (9)
H15A0.49010.28490.20830.065*
H15B0.51060.23530.09610.065*
C160.46768 (14)0.31477 (12)0.0792 (3)0.0408 (7)
C170.41664 (16)0.28668 (12)0.0421 (4)0.0525 (9)
H17A0.41570.26230.04460.063*
C180.36749 (16)0.29396 (13)0.1303 (4)0.0557 (9)
H18A0.33280.27510.10320.067*
C190.36849 (15)0.32842 (14)0.2573 (4)0.0554 (9)
H19A0.33470.33310.31850.066*
C200.41895 (14)0.35637 (13)0.2958 (4)0.0494 (8)
H20A0.41950.38050.38310.059*
C210.46838 (13)0.34958 (11)0.2089 (3)0.0381 (7)
C220.52138 (13)0.43413 (11)0.2221 (3)0.0384 (7)
H22A0.49190.44370.14310.046*
H22B0.55980.44440.18010.046*
C230.50998 (12)0.46813 (11)0.3662 (3)0.0309 (7)
C240.65709 (16)0.37292 (13)0.0881 (4)0.0657 (10)
H24A0.61800.36350.12710.079*
H24B0.65320.38460.02130.079*
Cl10.68538 (5)0.42883 (4)0.19717 (12)0.0760 (3)
Cl20.70129 (5)0.31375 (4)0.09828 (17)0.1023 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0369 (12)0.0466 (12)0.0280 (10)0.0047 (9)0.0004 (9)0.0016 (9)
O20.0423 (13)0.0467 (12)0.0462 (12)0.0017 (10)0.0089 (10)0.0019 (10)
O30.0675 (16)0.0459 (13)0.0448 (13)0.0044 (11)0.0116 (11)0.0022 (10)
O40.0609 (16)0.0430 (13)0.0586 (14)0.0097 (11)0.0076 (12)0.0021 (11)
O50.0646 (16)0.0397 (12)0.0433 (13)0.0064 (11)0.0002 (11)0.0150 (10)
O60.0478 (13)0.0330 (11)0.0407 (12)0.0052 (9)0.0076 (10)0.0096 (9)
C10.0347 (17)0.0285 (14)0.0314 (16)0.0019 (12)0.0023 (13)0.0001 (12)
C20.0309 (16)0.0350 (15)0.0242 (15)0.0015 (12)0.0018 (12)0.0008 (12)
C30.0363 (18)0.0404 (16)0.0293 (15)0.0018 (13)0.0005 (13)0.0006 (13)
C40.0412 (18)0.0330 (15)0.0318 (16)0.0015 (13)0.0045 (14)0.0070 (13)
C50.049 (2)0.0461 (18)0.0356 (17)0.0046 (15)0.0006 (15)0.0023 (14)
C60.062 (2)0.0460 (19)0.052 (2)0.0118 (17)0.0069 (18)0.0019 (16)
C70.046 (2)0.053 (2)0.070 (2)0.0133 (17)0.0107 (19)0.0001 (19)
C80.041 (2)0.0488 (19)0.064 (2)0.0030 (16)0.0037 (17)0.0056 (17)
C90.046 (2)0.0339 (16)0.0397 (17)0.0005 (14)0.0002 (15)0.0047 (14)
C100.046 (2)0.0490 (19)0.054 (2)0.0010 (16)0.0166 (16)0.0026 (17)
C110.056 (2)0.049 (2)0.053 (2)0.0049 (17)0.0181 (17)0.0034 (17)
C120.054 (2)0.060 (2)0.0443 (19)0.0097 (17)0.0051 (16)0.0080 (17)
C130.058 (2)0.054 (2)0.060 (2)0.0160 (17)0.0065 (19)0.0147 (18)
C140.077 (3)0.0380 (18)0.051 (2)0.0061 (17)0.0004 (19)0.0140 (16)
C150.077 (3)0.0376 (17)0.0471 (19)0.0057 (17)0.0002 (19)0.0130 (15)
C160.051 (2)0.0325 (16)0.0385 (17)0.0021 (15)0.0043 (16)0.0021 (14)
C170.071 (3)0.0365 (18)0.050 (2)0.0106 (17)0.0112 (19)0.0001 (15)
C180.052 (2)0.047 (2)0.068 (2)0.0098 (17)0.014 (2)0.0106 (19)
C190.049 (2)0.058 (2)0.059 (2)0.0033 (17)0.0062 (18)0.0075 (19)
C200.052 (2)0.0482 (19)0.047 (2)0.0087 (17)0.0097 (17)0.0010 (16)
C210.046 (2)0.0294 (15)0.0389 (17)0.0039 (14)0.0078 (15)0.0012 (14)
C220.0486 (19)0.0345 (16)0.0322 (16)0.0012 (14)0.0008 (14)0.0061 (13)
C230.0330 (17)0.0345 (15)0.0253 (15)0.0006 (12)0.0013 (12)0.0034 (12)
C240.065 (3)0.061 (2)0.071 (2)0.0013 (19)0.010 (2)0.0017 (19)
Cl10.0777 (7)0.0795 (7)0.0707 (7)0.0151 (5)0.0071 (5)0.0053 (5)
Cl20.0663 (7)0.0586 (6)0.1820 (13)0.0014 (5)0.0233 (8)0.0133 (7)
Geometric parameters (Å, º) top
O1—C41.366 (3)C10—H10B0.9900
O1—C31.441 (3)C11—H11A0.9900
O2—C91.376 (3)C11—H11B0.9900
O2—C101.432 (3)C12—C131.496 (4)
O3—C111.414 (3)C12—H12A0.9900
O3—C121.423 (3)C12—H12B0.9900
O4—C131.421 (4)C13—H13A0.9900
O4—C141.421 (4)C13—H13B0.9900
O5—C161.362 (4)C14—C151.488 (5)
O5—C151.438 (3)C14—H14A0.9900
O6—C211.382 (3)C14—H14B0.9900
O6—C221.438 (3)C15—H15A0.9900
C1—C21.384 (4)C15—H15B0.9900
C1—C23i1.387 (4)C16—C171.394 (4)
C1—H1A0.9500C16—C211.397 (4)
C2—C231.402 (3)C17—C181.378 (5)
C2—C31.510 (4)C17—H17A0.9500
C3—H3A0.9900C18—C191.373 (5)
C3—H3B0.9900C18—H18A0.9500
C4—C51.381 (4)C19—C201.384 (4)
C4—C91.407 (4)C19—H19A0.9500
C5—C61.392 (4)C20—C211.376 (4)
C5—H5A0.9500C20—H20A0.9500
C6—C71.360 (5)C22—C231.511 (4)
C6—H6A0.9500C22—H22A0.9900
C7—C81.385 (4)C22—H22B0.9900
C7—H7A0.9500C23—C1i1.387 (4)
C8—C91.386 (4)C24—Cl21.749 (4)
C8—H8A0.9500C24—Cl11.763 (3)
C10—C111.494 (4)C24—H24A0.9900
C10—H10A0.9900C24—H24B0.9900
C4—O1—C3118.3 (2)H12A—C12—H12B108.3
C9—O2—C10116.1 (2)O4—C13—C12110.0 (3)
C11—O3—C12112.0 (2)O4—C13—H13A109.7
C13—O4—C14112.3 (2)C12—C13—H13A109.7
C16—O5—C15116.9 (2)O4—C13—H13B109.7
C21—O6—C22114.3 (2)C12—C13—H13B109.7
C2—C1—C23i122.7 (2)H13A—C13—H13B108.2
C2—C1—H1A118.6O4—C14—C15109.4 (3)
C23i—C1—H1A118.6O4—C14—H14A109.8
C1—C2—C23118.7 (2)C15—C14—H14A109.8
C1—C2—C3120.2 (2)O4—C14—H14B109.8
C23—C2—C3121.0 (2)C15—C14—H14B109.8
O1—C3—C2113.2 (2)H14A—C14—H14B108.2
O1—C3—H3A108.9O5—C15—C14108.5 (3)
C2—C3—H3A108.9O5—C15—H15A110.0
O1—C3—H3B108.9C14—C15—H15A110.0
C2—C3—H3B108.9O5—C15—H15B110.0
H3A—C3—H3B107.8C14—C15—H15B110.0
O1—C4—C5125.2 (3)H15A—C15—H15B108.4
O1—C4—C9115.4 (2)O5—C16—C17125.4 (3)
C5—C4—C9119.3 (3)O5—C16—C21115.8 (3)
C4—C5—C6120.4 (3)C17—C16—C21118.8 (3)
C4—C5—H5A119.8C18—C17—C16120.5 (3)
C6—C5—H5A119.8C18—C17—H17A119.7
C7—C6—C5120.0 (3)C16—C17—H17A119.7
C7—C6—H6A120.0C19—C18—C17120.3 (3)
C5—C6—H6A120.0C19—C18—H18A119.9
C6—C7—C8120.8 (3)C17—C18—H18A119.9
C6—C7—H7A119.6C18—C19—C20119.8 (3)
C8—C7—H7A119.6C18—C19—H19A120.1
C7—C8—C9120.0 (3)C20—C19—H19A120.1
C7—C8—H8A120.0C21—C20—C19120.6 (3)
C9—C8—H8A120.0C21—C20—H20A119.7
O2—C9—C8125.2 (3)C19—C20—H20A119.7
O2—C9—C4115.4 (3)C20—C21—O6121.9 (3)
C8—C9—C4119.5 (3)C20—C21—C16119.9 (3)
O2—C10—C11109.5 (3)O6—C21—C16118.1 (3)
O2—C10—H10A109.8O6—C22—C23113.4 (2)
C11—C10—H10A109.8O6—C22—H22A108.9
O2—C10—H10B109.8C23—C22—H22A108.9
C11—C10—H10B109.8O6—C22—H22B108.9
H10A—C10—H10B108.2C23—C22—H22B108.9
O3—C11—C10110.4 (3)H22A—C22—H22B107.7
O3—C11—H11A109.6C1i—C23—C2118.5 (2)
C10—C11—H11A109.6C1i—C23—C22121.6 (2)
O3—C11—H11B109.6C2—C23—C22119.8 (2)
C10—C11—H11B109.6Cl2—C24—Cl1111.9 (2)
H11A—C11—H11B108.1Cl2—C24—H24A109.2
O3—C12—C13109.3 (3)Cl1—C24—H24A109.2
O3—C12—H12A109.8Cl2—C24—H24B109.2
C13—C12—H12A109.8Cl1—C24—H24B109.2
O3—C12—H12B109.8H24A—C24—H24B107.9
C13—C12—H12B109.8
C23i—C1—C2—C230.0 (4)C16—O5—C15—C14179.3 (3)
C23i—C1—C2—C3178.2 (3)O4—C14—C15—O568.1 (3)
C4—O1—C3—C272.7 (3)C15—O5—C16—C172.9 (4)
C1—C2—C3—O1126.4 (3)C15—O5—C16—C21177.1 (2)
C23—C2—C3—O155.4 (3)O5—C16—C17—C18178.9 (3)
C3—O1—C4—C51.8 (4)C21—C16—C17—C181.2 (4)
C3—O1—C4—C9179.1 (2)C16—C17—C18—C191.0 (5)
O1—C4—C5—C6179.9 (3)C17—C18—C19—C200.6 (5)
C9—C4—C5—C60.9 (4)C18—C19—C20—C210.6 (5)
C4—C5—C6—C70.0 (5)C19—C20—C21—O6176.9 (3)
C5—C6—C7—C80.5 (5)C19—C20—C21—C160.9 (4)
C6—C7—C8—C90.2 (5)C22—O6—C21—C2072.7 (3)
C10—O2—C9—C83.7 (4)C22—O6—C21—C16109.4 (3)
C10—O2—C9—C4175.2 (2)O5—C16—C21—C20178.9 (3)
C7—C8—C9—O2178.1 (3)C17—C16—C21—C201.1 (4)
C7—C8—C9—C40.7 (4)O5—C16—C21—O63.2 (4)
O1—C4—C9—O21.5 (3)C17—C16—C21—O6176.7 (2)
C5—C4—C9—O2177.7 (2)C21—O6—C22—C2398.8 (3)
O1—C4—C9—C8179.5 (2)C1—C2—C23—C1i0.0 (4)
C5—C4—C9—C81.2 (4)C3—C2—C23—C1i178.2 (3)
C9—O2—C10—C11173.6 (2)C1—C2—C23—C22179.3 (3)
C12—O3—C11—C10163.0 (3)C3—C2—C23—C222.5 (4)
O2—C10—C11—O371.6 (3)O6—C22—C23—C1i13.6 (4)
C11—O3—C12—C13179.5 (3)O6—C22—C23—C2167.1 (2)
C14—O4—C13—C12174.2 (3)C2—C3—O1—C472.7 (3)
O3—C12—C13—O467.2 (3)C23—C22—O6—C2198.8 (3)
C13—O4—C14—C15177.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O6i0.952.472.828 (3)103
C3—H3B···O4ii0.992.593.457 (4)146
C22—H22A···O1ii0.992.323.252 (3)156
C22—H22B···O10.992.532.909 (3)103
C24—H24A···O60.992.513.455 (4)160
C24—H24B···O30.992.363.331 (5)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O6i0.952.472.828 (3)103
C3—H3B···O4ii0.992.593.457 (4)146
C22—H22A···O1ii0.992.323.252 (3)156
C22—H22B···O10.992.532.909 (3)103
C24—H24A···O60.992.513.455 (4)160
C24—H24B···O30.992.363.331 (5)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Korea Foundation for the Advancement of Science & Creativity (KOFAC), and funded by Korean Government (MOE), and also by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2011–0007756). The authors gratefully acknowledge the use of the single crystal X-ray diffractometer in Korea Basic Science Institute (Jeonju Center).

References

First citationBeack, H. J., Yoo, S. M., Kim, J. E., Sim, W. & Lee, J. Y. (2012). Acta Cryst. E68, o720.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, Y.-I., Kim, D.-W., Choi, K.-Y., Yoo, M., Kim, J. S., Yoo, Y.-J. & Sim, W. (1997). Bull. Korean Chem. Soc. 18, 1311–1313.  CAS Google Scholar
First citationLee, J. Y., Lee, J.-E., Sim, W. & Park, K.-M. (2009). Acta Cryst. E65, o2369–o2370.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, W. Y., Sim, W. & Park, O. S. (1992). Synlett, pp. 157–159.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds