organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o618-o619

Tri­benzyl­ammonium chloride

aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: diallo_waly@yahoo.fr, hcattey@u-bourgogne.fr

(Received 31 March 2014; accepted 24 April 2014; online 30 April 2014)

Single crystals of the title salt, C21H21NH+·Cl, were isolated as a side product from the reaction involving [(C6H5CH2)3NH]2[HPO4] and Sn(CH3)3Cl in ethanol. Both the cation and the anion are situated on a threefold rotation axis. The central N atom in the cation has a slightly distorted tetra­hedral environment, with angles ranging from 107.7 to 111.16 (10)°. In the crystal, the tri­benzyl­ammonium cations and chloride anions are linked through N—H⋯Cl and C—H⋯Cl hydrogen bonds, leading to the formation of infinite chains along [001]. The crystal studied was a merohedral twin.

Related literature

For related crystal structures containing the tri­benzyl­ammonium cation, see: Kozhomuratova et al. (2007[Kozhomuratova, Zh. S., Naumov, N. G., Naumov, D. Yu., Uskov, E. M. & Fedorov, V. E. (2007). Russ. J. Coord. Chem. 33, 222-230.]); Jarvinen et al. (1988[Jarvinen, G. D., Larson, E. M., Wasserman, H. J., Burns, C. J. & Ryan, R. R. (1988). Acta Cryst. C44, 1701-1703.]); Guo et al. (2010[Guo, F., Lu, N., Tong, J., Luan, Y.-B. & Guo, W.-S. (2010). J. Coord. Chem. 63, 809-818.]); Zeng et al. (1994[Zeng, G.-F., Qin, M., Lin, Y.-H. & Xi, S.-Q. (1994). Acta Cryst. C50, 200-202.]); Faza­eli et al. (2010[Fazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212.]); Guan et al. (2013[Guan, H.-Y., Shao, H.-D., Li, L., Jia, J.-M. & Guo, F. (2013). J. Chem. Crystallogr. 43, 471-477.]); Yousefi et al. (2007[Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2748-m2749.]); Gueye et al. (2012[Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854-m855.]); Traore et al. (2013[Traore, B., Boye, M. S., Sidibe, M., Diop, L. & Guionneau, P. (2013). Acta Cryst. E69, m42.]). For details of the treatment of intensity data from a twinned crystal, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N+·Cl

  • Mr = 323.85

  • Trigonal, R 3

  • a = 15.3833 (8) Å

  • c = 6.7051 (3) Å

  • V = 1374.15 (18) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 115 K

  • 0.47 × 0.27 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.923, Tmax = 0.963

  • 1884 measured reflections

  • 1047 independent reflections

  • 1045 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.052

  • S = 1.10

  • 1047 reflections

  • 71 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack parameter determined using 348 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2012[Parsons, S., Pattison, P. & Flack, H. D. (2012). Acta Cryst. A68, 736-749.])

  • Absolute structure parameter: 0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H⋯Cli 1.00 2.00 3.004 (2) 180
C1—H1B⋯Cl 0.99 2.70 3.5470 (18) 144
C3—H3⋯Cli 0.95 3.06 3.683 (2) 125
Symmetry code: (i) x, y, z-1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Tribenzylammonium cations are often used to stabilize metal complex-anions such as [(C6H5CH2)3NH·C6H5CH2NH2][CuCl4] (Zeng et al., 1994), (Bz3NH)3[Mo6OCl13] and (Bz3NH)2[Mo6Cl14]·2CH3CN (Bz is benzyl; Kozhomuratova et al., 2007), [(C6H5CH2)3NH][AuCl4] (Fazaeli et al., 2010), 2[C21H22N+]·[MCl6]2- (M = Se, Re, Te) (Guo et al., 2010), 2[C21H22N+]·[CoCl4]2- and 2[C21H22N+]·[CuCl4]2- (Guan et al., 2013). In the course of our ongoing studies on organotin(IV) chemistry, we serendipitously isolated the title salt, tribenzylammonium chloride C21H21NH+·Cl-, from the reaction of [(C6H5CH2)3NH]2[HPO4] with Sn(CH3)3Cl. Together with C21H21NH+·Cl-, we suggest the formation of the tin(IV) compound, [(C6H5CH2)3NH][HPO4SnMe3]. Howver, we were not successful to isolate single crystals of this compound so far.

The asymmetric unit of tribenzylammonium chloride consists of one third of a (C6H5CH2)3NH+ cation and an Cl- anion (Fig. 1). The cationic molecule is completed by the symmetry operation associated with a threefold rotation axis. The N—C bond length within the cation [N–C1 1.5145 (17)] is nearly identical to that observed in tris(tribenzylammonium) hexachloridoplatinate(IV) chloride (Yousefi et al., 2007), in tribenzylammonium l,l,l,l,2,2,2,3,3,3-decacarbonyl-2,3-m-hydrido-2,3-m-sulfonyl-triangulo-triosmium (Jarvinen et al., 1988), or in dibenzylazanium (oxalato-k2O,O')triphenylstannate(IV) (Gueye et al., 2012). The C–N–C angles [C1–N–C1ii 111.16 (10)°] indicate a slight angular distortion in the tetrahedral environment.

In the crystal, the chloride anion is linked to the tribenzylammonium cation via N—H···Cl hydrogen bonding (Table 1). In addition and from a supramolecular point of view, the chloride anions are also in intermolecular weak interaction with three methylinic protons of the benzyl groups of neighboring cations (Table 1). The observed distances are in the range of those reported in literature for such interactions, for example in [(C6H5CH2Ph3P]+[SnPh3Cl2]- (Traore et al., 2013). The combination of N—H···Cl and C—H···Cl hydrogen bonding interactions leads to the formation of infinite chains along [001] (Fig. 2).

Related literature top

For related crystal structures containing the tribenzylammonium cation, see: Kozhomuratova et al. (2007); Jarvinen et al. (1988); Guo et al. (2010); Zeng et al. (1994); Fazaeli et al. (2010); Guan et al. (2013); Yousefi et al. (2007); Gueye et al. (2012); Traore et al. (2013). For details of the treatment of intensity data from a twinned crystal, see: Spek (2009).

Experimental top

All chemicals were purchased from Sigma-Aldrich and were used without further purification. Crystals of the title compound were obtained by reacting [(C6H5CH2)3NH]2[HPO4] (0.300 g, 0.446 mmol), previously synthesized from phosphoric acid (98%wt) and tribenzylamine, with Sn(CH3)3Cl (0.088 g, 0.446 mmol) in 15 ml of ethanol (98% purity). The mixture was stirred for around two hours at room temperature. Colorless crystals were obtained after one week by slow solvent evaporation.

Refinement top

The H atoms,on carbon and nitrogen atoms were placed at calculated positions using a riding model with C—H = 0.95 Å (aromatic), or 0.99 Å (methylene) or N—H = 1.00 Å (amine) with Uiso(H) = 1.2Ueq(C or N). Intensity data revealed twinning by merohedry. The twin law was found by using TwinRotMat implemented in PLATON (Spek, 2009). The use of the twin law (-h-k, k, -l) and a refined twin component ratio of 0.93:0.07 reduced the reliability factor R (I>2σ(I)) from 0.042 to 0.021. The three reflections (-1 2 0; 1 1 0; -1 1 1) were affected by the beam stop and were omitted from the refinement.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labeling. Displacement ellipsoids are draw at the 30% probability level. [Symmetry codes: (i) -x + y+1, -x + 1, z; (ii) -y + 1, x-y, z.]
[Figure 2] Fig. 2. The crystal packing of the title compound showing a chain-like arrangement along [001] through N—H···Cl and C—H···Cl interactions (dashed orange lines; H atoms not involved in hydrogen bonding were omitted for clarity). Colour code: C dark grey, H light grey, N blue, Cl green.
Tribenzylazanium chloride top
Crystal data top
C21H22N+·ClDx = 1.174 Mg m3
Mr = 323.85Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 2745 reflections
Hall symbol: R 3θ = 1.0–27.5°
a = 15.3833 (8) ŵ = 0.21 mm1
c = 6.7051 (3) ÅT = 115 K
V = 1374.15 (18) Å3Prism, colourless
Z = 30.47 × 0.27 × 0.12 mm
F(000) = 516
Data collection top
Nonius KappaCCD
diffractometer
1047 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-1801045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 512 x 512 pixels mm-1θmax = 27.5°, θmin = 3.4°
ϕ and ω scansh = 1817
Absorption correction: multi-scan
(Blessing, 1995)
k = 1910
Tmin = 0.923, Tmax = 0.963l = 86
1884 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + 0.8302P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.12 e Å3
1047 reflectionsΔρmin = 0.11 e Å3
71 parametersAbsolute structure: Flack parameter determined using 348 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2012)
1 restraintAbsolute structure parameter: 0.01 (4)
Primary atom site location: iterative
Crystal data top
C21H22N+·ClZ = 3
Mr = 323.85Mo Kα radiation
Trigonal, R3µ = 0.21 mm1
a = 15.3833 (8) ÅT = 115 K
c = 6.7051 (3) Å0.47 × 0.27 × 0.12 mm
V = 1374.15 (18) Å3
Data collection top
Nonius KappaCCD
diffractometer
1047 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1045 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.963Rint = 0.016
1884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.12 e Å3
S = 1.10Δρmin = 0.11 e Å3
1047 reflectionsAbsolute structure: Flack parameter determined using 348 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2012)
71 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.66670.33330.80013 (9)0.02215 (17)
N0.66670.33330.2481 (3)0.0146 (5)
H0.66670.33330.09900.018*
C10.56631 (12)0.31837 (13)0.3169 (3)0.0168 (3)
H1A0.51220.25740.25200.020*
H1B0.56040.30640.46260.020*
C20.55016 (13)0.40504 (12)0.2725 (3)0.0176 (4)
C30.51543 (14)0.41462 (15)0.0861 (3)0.0231 (4)
H30.50430.36760.01650.028*
C40.49715 (17)0.49308 (17)0.0510 (3)0.0313 (5)
H40.47310.49910.07570.038*
C50.51373 (16)0.56246 (15)0.1988 (4)0.0332 (5)
H50.50110.61590.17380.040*
C60.54881 (15)0.55355 (16)0.3832 (4)0.0313 (5)
H60.56130.60160.48440.038*
C70.56583 (14)0.47482 (14)0.4207 (3)0.0234 (4)
H70.58840.46830.54870.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0273 (2)0.0273 (2)0.0118 (3)0.01366 (12)0.0000.000
N0.0156 (6)0.0156 (6)0.0128 (13)0.0078 (3)0.0000.000
C10.0151 (7)0.0189 (8)0.0162 (8)0.0084 (7)0.0009 (7)0.0013 (7)
C20.0139 (8)0.0187 (8)0.0202 (9)0.0080 (7)0.0013 (6)0.0002 (7)
C30.0240 (9)0.0268 (9)0.0220 (10)0.0155 (8)0.0003 (7)0.0000 (7)
C40.0317 (11)0.0362 (11)0.0349 (10)0.0237 (9)0.0028 (9)0.0099 (10)
C50.0268 (10)0.0240 (10)0.0558 (15)0.0178 (8)0.0105 (10)0.0066 (10)
C60.0227 (9)0.0242 (9)0.0478 (14)0.0123 (8)0.0087 (9)0.0072 (9)
C70.0186 (9)0.0258 (10)0.0254 (10)0.0108 (8)0.0014 (7)0.0053 (8)
Geometric parameters (Å, º) top
N—H1.0000C3—H30.9500
N—C1i1.5145 (17)C3—C41.389 (3)
N—C1ii1.5145 (17)C4—H40.9500
N—C11.5145 (17)C4—C51.384 (3)
C1—H1A0.9900C5—H50.9500
C1—H1B0.9900C5—C61.383 (3)
C1—C21.503 (2)C6—H60.9500
C2—C31.396 (3)C6—C71.384 (3)
C2—C71.392 (2)C7—H70.9500
C1ii—N—H107.7C2—C3—H3120.1
C1i—N—H107.7C4—C3—C2119.86 (19)
C1—N—H107.7C4—C3—H3120.1
C1ii—N—C1i111.16 (10)C3—C4—H4119.7
C1i—N—C1111.16 (10)C5—C4—C3120.6 (2)
C1ii—N—C1111.16 (10)C5—C4—H4119.7
N—C1—H1A108.7C4—C5—H5120.2
N—C1—H1B108.7C6—C5—C4119.63 (19)
H1A—C1—H1B107.6C6—C5—H5120.2
C2—C1—N114.39 (13)C5—C6—H6119.9
C2—C1—H1A108.7C5—C6—C7120.2 (2)
C2—C1—H1B108.7C7—C6—H6119.9
C3—C2—C1120.83 (16)C2—C7—H7119.7
C7—C2—C1120.07 (16)C6—C7—C2120.62 (19)
C7—C2—C3119.04 (17)C6—C7—H7119.7
N—C1—C2—C383.7 (2)C2—C3—C4—C50.5 (3)
N—C1—C2—C799.0 (2)C3—C2—C7—C61.0 (3)
C1ii—N—C1—C2174.09 (11)C3—C4—C5—C60.0 (3)
C1i—N—C1—C249.7 (2)C4—C5—C6—C71.0 (3)
C1—C2—C3—C4177.39 (18)C5—C6—C7—C21.5 (3)
C1—C2—C7—C6178.38 (17)C7—C2—C3—C40.1 (3)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···Cliii1.002.003.004 (2)180
C1—H1B···Cl0.992.703.5470 (18)144
C3—H3···Cliii0.953.063.683 (2)125
Symmetry code: (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···Cli1.002.003.004 (2)180.0
C1—H1B···Cl0.992.703.5470 (18)143.8
C3—H3···Cli0.953.063.683 (2)124.8
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuan, H.-Y., Shao, H.-D., Li, L., Jia, J.-M. & Guo, F. (2013). J. Chem. Crystallogr. 43, 471–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationGueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854–m855.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGuo, F., Lu, N., Tong, J., Luan, Y.-B. & Guo, W.-S. (2010). J. Coord. Chem. 63, 809–818.  Web of Science CSD CrossRef CAS Google Scholar
First citationJarvinen, G. D., Larson, E. M., Wasserman, H. J., Burns, C. J. & Ryan, R. R. (1988). Acta Cryst. C44, 1701–1703.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKozhomuratova, Zh. S., Naumov, N. G., Naumov, D. Yu., Uskov, E. M. & Fedorov, V. E. (2007). Russ. J. Coord. Chem. 33, 222–230.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParsons, S., Pattison, P. & Flack, H. D. (2012). Acta Cryst. A68, 736–749.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTraore, B., Boye, M. S., Sidibe, M., Diop, L. & Guionneau, P. (2013). Acta Cryst. E69, m42.  CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2748–m2749.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, G.-F., Qin, M., Lin, Y.-H. & Xi, S.-Q. (1994). Acta Cryst. C50, 200–202.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o618-o619
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds