organic compounds
Tribenzylammonium chloride
aLaboratoire de Chimie Minérale et Analytique (LACHIMIA), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France
*Correspondence e-mail: diallo_waly@yahoo.fr, hcattey@u-bourgogne.fr
Single crystals of the title salt, C21H21NH+·Cl−, were isolated as a side product from the reaction involving [(C6H5CH2)3NH]2[HPO4] and Sn(CH3)3Cl in ethanol. Both the cation and the anion are situated on a threefold rotation axis. The central N atom in the cation has a slightly distorted tetrahedral environment, with angles ranging from 107.7 to 111.16 (10)°. In the crystal, the tribenzylammonium cations and chloride anions are linked through N—H⋯Cl and C—H⋯Cl hydrogen bonds, leading to the formation of infinite chains along [001]. The crystal studied was a twin.
CCDC reference: 999186
Related literature
For related crystal structures containing the tribenzylammonium cation, see: Kozhomuratova et al. (2007); Jarvinen et al. (1988); Guo et al. (2010); Zeng et al. (1994); Fazaeli et al. (2010); Guan et al. (2013); Yousefi et al. (2007); Gueye et al. (2012); Traore et al. (2013). For details of the treatment of intensity data from a twinned crystal, see: Spek (2009).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 1998); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 999186
10.1107/S1600536814009246/wm5019sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814009246/wm5019Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814009246/wm5019Isup3.cml
All chemicals were purchased from Sigma-Aldrich and were used without further purification. Crystals of the title compound were obtained by reacting [(C6H5CH2)3NH]2[HPO4] (0.300 g, 0.446 mmol), previously synthesized from phosphoric acid (98%wt) and tribenzylamine, with Sn(CH3)3Cl (0.088 g, 0.446 mmol) in 15 ml of ethanol (98% purity). The mixture was stirred for around two hours at room temperature. Colorless crystals were obtained after one week by slow solvent evaporation.
The H atoms,on carbon and nitrogen atoms were placed at calculated positions using a riding model with C—H = 0.95 Å (aromatic), or 0.99 Å (methylene) or N—H = 1.00 Å (amine) with Uiso(H) = 1.2Ueq(C or N). Intensity data revealed σ(I)) from 0.042 to 0.021. The three reflections (-1 2 0; 1 1 0; -1 1 1) were affected by the beam stop and were omitted from the refinement.
The was found by using TwinRotMat implemented in PLATON (Spek, 2009). The use of the (-h-k, k, -l) and a refined twin component ratio of 0.93:0.07 reduced the reliability factor R (I>2Data collection: COLLECT (Nonius, 1998); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).C21H22N+·Cl− | Dx = 1.174 Mg m−3 |
Mr = 323.85 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 2745 reflections |
Hall symbol: R 3 | θ = 1.0–27.5° |
a = 15.3833 (8) Å | µ = 0.21 mm−1 |
c = 6.7051 (3) Å | T = 115 K |
V = 1374.15 (18) Å3 | Prism, colourless |
Z = 3 | 0.47 × 0.27 × 0.12 mm |
F(000) = 516 |
Nonius KappaCCD diffractometer | 1047 independent reflections |
Radiation source: X-ray tube, Siemens KFF Mo 2K-180 | 1045 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
Detector resolution: 512 x 512 pixels mm-1 | θmax = 27.5°, θmin = 3.4° |
ϕ and ω scans | h = −18→17 |
Absorption correction: multi-scan (Blessing, 1995) | k = −19→10 |
Tmin = 0.923, Tmax = 0.963 | l = −8→6 |
1884 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.021 | w = 1/[σ2(Fo2) + 0.8302P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.052 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.12 e Å−3 |
1047 reflections | Δρmin = −0.11 e Å−3 |
71 parameters | Absolute structure: Flack parameter determined using 348 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2012) |
1 restraint | Absolute structure parameter: 0.01 (4) |
Primary atom site location: iterative |
C21H22N+·Cl− | Z = 3 |
Mr = 323.85 | Mo Kα radiation |
Trigonal, R3 | µ = 0.21 mm−1 |
a = 15.3833 (8) Å | T = 115 K |
c = 6.7051 (3) Å | 0.47 × 0.27 × 0.12 mm |
V = 1374.15 (18) Å3 |
Nonius KappaCCD diffractometer | 1047 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 1045 reflections with I > 2σ(I) |
Tmin = 0.923, Tmax = 0.963 | Rint = 0.016 |
1884 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.052 | Δρmax = 0.12 e Å−3 |
S = 1.10 | Δρmin = −0.11 e Å−3 |
1047 reflections | Absolute structure: Flack parameter determined using 348 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2012) |
71 parameters | Absolute structure parameter: 0.01 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Cl | 0.6667 | 0.3333 | 0.80013 (9) | 0.02215 (17) | |
N | 0.6667 | 0.3333 | 0.2481 (3) | 0.0146 (5) | |
H | 0.6667 | 0.3333 | 0.0990 | 0.018* | |
C1 | 0.56631 (12) | 0.31837 (13) | 0.3169 (3) | 0.0168 (3) | |
H1A | 0.5122 | 0.2574 | 0.2520 | 0.020* | |
H1B | 0.5604 | 0.3064 | 0.4626 | 0.020* | |
C2 | 0.55016 (13) | 0.40504 (12) | 0.2725 (3) | 0.0176 (4) | |
C3 | 0.51543 (14) | 0.41462 (15) | 0.0861 (3) | 0.0231 (4) | |
H3 | 0.5043 | 0.3676 | −0.0165 | 0.028* | |
C4 | 0.49715 (17) | 0.49308 (17) | 0.0510 (3) | 0.0313 (5) | |
H4 | 0.4731 | 0.4991 | −0.0757 | 0.038* | |
C5 | 0.51373 (16) | 0.56246 (15) | 0.1988 (4) | 0.0332 (5) | |
H5 | 0.5011 | 0.6159 | 0.1738 | 0.040* | |
C6 | 0.54881 (15) | 0.55355 (16) | 0.3832 (4) | 0.0313 (5) | |
H6 | 0.5613 | 0.6016 | 0.4844 | 0.038* | |
C7 | 0.56583 (14) | 0.47482 (14) | 0.4207 (3) | 0.0234 (4) | |
H7 | 0.5884 | 0.4683 | 0.5487 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0273 (2) | 0.0273 (2) | 0.0118 (3) | 0.01366 (12) | 0.000 | 0.000 |
N | 0.0156 (6) | 0.0156 (6) | 0.0128 (13) | 0.0078 (3) | 0.000 | 0.000 |
C1 | 0.0151 (7) | 0.0189 (8) | 0.0162 (8) | 0.0084 (7) | 0.0009 (7) | 0.0013 (7) |
C2 | 0.0139 (8) | 0.0187 (8) | 0.0202 (9) | 0.0080 (7) | 0.0013 (6) | −0.0002 (7) |
C3 | 0.0240 (9) | 0.0268 (9) | 0.0220 (10) | 0.0155 (8) | −0.0003 (7) | 0.0000 (7) |
C4 | 0.0317 (11) | 0.0362 (11) | 0.0349 (10) | 0.0237 (9) | 0.0028 (9) | 0.0099 (10) |
C5 | 0.0268 (10) | 0.0240 (10) | 0.0558 (15) | 0.0178 (8) | 0.0105 (10) | 0.0066 (10) |
C6 | 0.0227 (9) | 0.0242 (9) | 0.0478 (14) | 0.0123 (8) | 0.0087 (9) | −0.0072 (9) |
C7 | 0.0186 (9) | 0.0258 (10) | 0.0254 (10) | 0.0108 (8) | 0.0014 (7) | −0.0053 (8) |
N—H | 1.0000 | C3—H3 | 0.9500 |
N—C1i | 1.5145 (17) | C3—C4 | 1.389 (3) |
N—C1ii | 1.5145 (17) | C4—H4 | 0.9500 |
N—C1 | 1.5145 (17) | C4—C5 | 1.384 (3) |
C1—H1A | 0.9900 | C5—H5 | 0.9500 |
C1—H1B | 0.9900 | C5—C6 | 1.383 (3) |
C1—C2 | 1.503 (2) | C6—H6 | 0.9500 |
C2—C3 | 1.396 (3) | C6—C7 | 1.384 (3) |
C2—C7 | 1.392 (2) | C7—H7 | 0.9500 |
C1ii—N—H | 107.7 | C2—C3—H3 | 120.1 |
C1i—N—H | 107.7 | C4—C3—C2 | 119.86 (19) |
C1—N—H | 107.7 | C4—C3—H3 | 120.1 |
C1ii—N—C1i | 111.16 (10) | C3—C4—H4 | 119.7 |
C1i—N—C1 | 111.16 (10) | C5—C4—C3 | 120.6 (2) |
C1ii—N—C1 | 111.16 (10) | C5—C4—H4 | 119.7 |
N—C1—H1A | 108.7 | C4—C5—H5 | 120.2 |
N—C1—H1B | 108.7 | C6—C5—C4 | 119.63 (19) |
H1A—C1—H1B | 107.6 | C6—C5—H5 | 120.2 |
C2—C1—N | 114.39 (13) | C5—C6—H6 | 119.9 |
C2—C1—H1A | 108.7 | C5—C6—C7 | 120.2 (2) |
C2—C1—H1B | 108.7 | C7—C6—H6 | 119.9 |
C3—C2—C1 | 120.83 (16) | C2—C7—H7 | 119.7 |
C7—C2—C1 | 120.07 (16) | C6—C7—C2 | 120.62 (19) |
C7—C2—C3 | 119.04 (17) | C6—C7—H7 | 119.7 |
N—C1—C2—C3 | 83.7 (2) | C2—C3—C4—C5 | 0.5 (3) |
N—C1—C2—C7 | −99.0 (2) | C3—C2—C7—C6 | −1.0 (3) |
C1ii—N—C1—C2 | 174.09 (11) | C3—C4—C5—C6 | 0.0 (3) |
C1i—N—C1—C2 | 49.7 (2) | C4—C5—C6—C7 | −1.0 (3) |
C1—C2—C3—C4 | 177.39 (18) | C5—C6—C7—C2 | 1.5 (3) |
C1—C2—C7—C6 | −178.38 (17) | C7—C2—C3—C4 | 0.1 (3) |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) −y+1, x−y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H···Cliii | 1.00 | 2.00 | 3.004 (2) | 180 |
C1—H1B···Cl | 0.99 | 2.70 | 3.5470 (18) | 144 |
C3—H3···Cliii | 0.95 | 3.06 | 3.683 (2) | 125 |
Symmetry code: (iii) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H···Cli | 1.00 | 2.00 | 3.004 (2) | 180.0 |
C1—H1B···Cl | 0.99 | 2.70 | 3.5470 (18) | 143.8 |
C3—H3···Cli | 0.95 | 3.06 | 3.683 (2) | 124.8 |
Symmetry code: (i) x, y, z−1. |
Acknowledgements
The authors gratefully acknowledge the Cheikh Anta Diop University of Dakar (Senegal), the Centre National de la Recherche Scientifique (CNRS, France) and the University of Burgundy (Dijon, France).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fazaeli, Y., Amani, V., Amini, M. M. & Khavasi, H. R. (2010). Acta Cryst. E66, m212. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guan, H.-Y., Shao, H.-D., Li, L., Jia, J.-M. & Guo, F. (2013). J. Chem. Crystallogr. 43, 471–477. Web of Science CSD CrossRef CAS Google Scholar
Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854–m855. CSD CrossRef CAS IUCr Journals Google Scholar
Guo, F., Lu, N., Tong, J., Luan, Y.-B. & Guo, W.-S. (2010). J. Coord. Chem. 63, 809–818. Web of Science CSD CrossRef CAS Google Scholar
Jarvinen, G. D., Larson, E. M., Wasserman, H. J., Burns, C. J. & Ryan, R. R. (1988). Acta Cryst. C44, 1701–1703. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kozhomuratova, Zh. S., Naumov, N. G., Naumov, D. Yu., Uskov, E. M. & Fedorov, V. E. (2007). Russ. J. Coord. Chem. 33, 222–230. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Parsons, S., Pattison, P. & Flack, H. D. (2012). Acta Cryst. A68, 736–749. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Traore, B., Boye, M. S., Sidibe, M., Diop, L. & Guionneau, P. (2013). Acta Cryst. E69, m42. CSD CrossRef IUCr Journals Google Scholar
Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2748–m2749. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zeng, G.-F., Qin, M., Lin, Y.-H. & Xi, S.-Q. (1994). Acta Cryst. C50, 200–202. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tribenzylammonium cations are often used to stabilize metal complex-anions such as [(C6H5CH2)3NH·C6H5CH2NH2][CuCl4] (Zeng et al., 1994), (Bz3NH)3[Mo6OCl13] and (Bz3NH)2[Mo6Cl14]·2CH3CN (Bz is benzyl; Kozhomuratova et al., 2007), [(C6H5CH2)3NH][AuCl4] (Fazaeli et al., 2010), 2[C21H22N+]·[MCl6]2- (M = Se, Re, Te) (Guo et al., 2010), 2[C21H22N+]·[CoCl4]2- and 2[C21H22N+]·[CuCl4]2- (Guan et al., 2013). In the course of our ongoing studies on organotin(IV) chemistry, we serendipitously isolated the title salt, tribenzylammonium chloride C21H21NH+·Cl-, from the reaction of [(C6H5CH2)3NH]2[HPO4] with Sn(CH3)3Cl. Together with C21H21NH+·Cl-, we suggest the formation of the tin(IV) compound, [(C6H5CH2)3NH][HPO4SnMe3]. Howver, we were not successful to isolate single crystals of this compound so far.
The asymmetric unit of tribenzylammonium chloride consists of one third of a (C6H5CH2)3NH+ cation and an Cl- anion (Fig. 1). The cationic molecule is completed by the symmetry operation associated with a threefold rotation axis. The N—C bond length within the cation [N–C1 1.5145 (17)] is nearly identical to that observed in tris(tribenzylammonium) hexachloridoplatinate(IV) chloride (Yousefi et al., 2007), in tribenzylammonium l,l,l,l,2,2,2,3,3,3-decacarbonyl-2,3-m-hydrido-2,3-m-sulfonyl-triangulo-triosmium (Jarvinen et al., 1988), or in dibenzylazanium (oxalato-k2O,O')triphenylstannate(IV) (Gueye et al., 2012). The C–N–C angles [C1–N–C1ii 111.16 (10)°] indicate a slight angular distortion in the tetrahedral environment.
In the crystal, the chloride anion is linked to the tribenzylammonium cation via N—H···Cl hydrogen bonding (Table 1). In addition and from a supramolecular point of view, the chloride anions are also in intermolecular weak interaction with three methylinic protons of the benzyl groups of neighboring cations (Table 1). The observed distances are in the range of those reported in literature for such interactions, for example in [(C6H5CH2Ph3P]+[SnPh3Cl2]- (Traore et al., 2013). The combination of N—H···Cl and C—H···Cl hydrogen bonding interactions leads to the formation of infinite chains along [001] (Fig. 2).