metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m192-m193

Poly[bis­­(μ-2-amino-4-nitro­benzoato)di-μ-aqua-dirubidium]

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 2 April 2014; accepted 18 April 2014; online 30 April 2014)

In the structure of the title salt, [Rb2(C7H5N2O4)2(H2O)2]n, the asymmetric unit comprises two independent and different seven-coordinate Rb+ cations, one forming an RbO7 polyhedron, the other a RbO6N polyhedron, each of which is considerably distorted. The RbO7 polyhedron comprises bridging O-atom donors from two water mol­ecules, three carboxyl­ate groups, and two nitro groups. The RbO6N polyhedron comprises the two bridging water mol­ecules, one monodentate amine N-atom donor, one carboxyl O-atom donor and three O-atom donors from nitro groups (one from the chelate bridge). The extension of the dinuclear unit gives a three-dimensional polymeric structure which is stabilized by both intra- and inter­molecular amine N—H⋯O and water O—H⋯O hydrogen bonds to carboxyl and water O-atom acceptors, as well as a number of inter-ring ππ inter­actions [minimum centroid–centroid separation = 3.364 (2) Å]. The title salt is isostructural with the analogous caesium salt.

Related literature

For the structures of some rubidium salts of substituted benzoic acids, see: Wiesbrock & Schmidbaur (2003[Wiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283-7289.]); Dinnebier et al. (2002[Dinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363-368.]); Hu et al. (2005[Hu, M., Geng, C., Li, S., Du, Y., Jiang, Y. & Liu, Z. (2005). J. Organomet. Chem. 690, 3118-3124.]); Miao et al. (2011[Miao, Y., Zhang, X. & Liu, C. (2011). Acta Cryst. E67, m1002.]). For the structures of caesium 4-nitro­anthranilate and caesium 3,5-di­nitro­salicylate, see: Smith & Wermuth (2011[Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1047-m1048.]) and Meng (2011[Meng, Y. (2011). Acta Cryst. E67, m454.]), respectively. For the structures of the sodium and potassium 4-nitro­anthranilates, see: Smith (2013[Smith, G. (2013). Acta Cryst. C69, 1472-1477.]).

[Scheme 1]

Experimental

Crystal data
  • [Rb2(C7H5N2O4)2(H2O)2]

  • Mr = 569.23

  • Monoclinic, P 21 /n

  • a = 15.2938 (9) Å

  • b = 6.8601 (3) Å

  • c = 17.8075 (10) Å

  • β = 99.996 (5)°

  • V = 1839.95 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.39 mm−1

  • T = 200 K

  • 0.30 × 0.18 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini-S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.691, Tmax = 0.980

  • 6954 measured reflections

  • 3634 independent reflections

  • 2708 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.075

  • S = 1.03

  • 3634 reflections

  • 295 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Rb1—O1W 3.041 (3)
Rb1—O2W 3.006 (3)
Rb1—O42A 3.064 (3)
Rb1—O42Ai 3.092 (3)
Rb1—O12Aii 3.074 (3)
Rb1—O11Biii 3.059 (3)
Rb1—O12Aiv 2.998 (3)
Rb2—O1W 2.994 (3)
Rb2—O2W 2.897 (3)
Rb2—O41A 2.992 (3)
Rb2—N2B 3.177 (4)
Rb2—O42Bv 2.984 (3)
Rb2—O12Bvi 2.947 (3)
Rb2—O42Biv 3.069 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x+2, -y, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H21A⋯O12A 0.91 (2) 1.97 (3) 2.686 (5) 134 (3)
N2A—H21A⋯O1Wvii 0.91 (2) 2.58 (4) 3.149 (5) 122 (3)
N2A—H22A⋯O11Bv 0.94 (3) 2.46 (3) 3.206 (5) 136 (3)
N2B—H21B⋯O11Aviii 0.90 (3) 2.01 (3) 2.831 (5) 151 (3)
N2B—H22B⋯O12B 0.90 (3) 1.88 (3) 2.644 (6) 142 (4)
O1W—H11W⋯O11Bvi 0.88 (3) 1.92 (4) 2.783 (4) 167 (4)
O1W—H12W⋯O12Aviii 0.89 (3) 1.96 (4) 2.847 (4) 176 (2)
O2W—H21W⋯O11Aii 0.89 (4) 1.93 (4) 2.823 (4) 178 (7)
O2W—H22W⋯O12Biii 0.88 (4) 1.95 (5) 2.812 (5) 166 (5)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) -x+2, -y, -z+1; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) -x+2, -y+1, -z+1; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The structures of alkali metal salts derived from aromatic carboxylic acids are of interest (Smith, 2013), particularly with the heavier metals Rb and Cs, because of the expanded metals' coordination spheres and their ability to form coordination polymers. With 4-nitroanthranilic acid (4-NAA), a three-dimensional coordination polymeric structure [Cs2(C7H5N2O4)2(H2O)2] was described (Smith & Wermuth, 2011) and from the reaction of rubidium carbonate with 4-NAA, orange-red crystals of the title compound [Rb2(C7H5N2O4)2(H2O)2], were obtained, the structure of which is reported herein.

The Rb salt has the same formula as the Cs salt and has similar crystal data [comparative 200 K unit cell data for the Cs complex: a = 15.3615 (3), b = 6.9573 (2), c = 18.3714 (4) Å, β = 97.903 (2)°, V = 1944.79 (8) Å3, Z = 4, space group P21/n]. The X-ray analysis reported here confirms that the Rb and Cs analogues are isotypic.

In the structure of the Rb salt, the dinuclear asymmetric unit contains two independent and different seven-coordinate Rb+ cations, with both having irregular coordination environments (Fig. 1). The RbO7 polyhedron about Rb1 comprises bridging oxygen donors from two water molecules, three carboxylate groups, and a nitro group, with one O atom doubly bridging [Rb—O range 2.998 (3)–3.092 (3) Å]. The RbO6N polyhedron about Rb2 comprises the two bridging water atoms, one monodentate amine N donor, one carboxyl O donor and three O donors from nitro groups (one doubly bridging) [Rb—O range 2.897 (3)–3.069 (3) Å] (Table 1). The Rb1···Rb2 separation in this dinuclear unit is 4.1208 (7) Å. Extension of this unit gives an overall three-dimensional polymeric structure (Fig. 2) which is stabilized by both intra- and intermolecular amine N—H···O and water O—H···O hydrogen bonds to both carboxyl and water O-atom acceptors (Table 2). Also, there are several inter-ring π···π interactions involving both ring 1 (C1A–C6A) and ring 2 (C1B–C6B) with a minimum ring centroid separation 1···1viii of 3.364 (2) Å and a maximum ring centroid separation: 2···2ix of 3.556 (2) Å [for symmetry code (viii), see Table 1; for symmetry code (ix) -x + 3/2, y + 1/2, -z + 1/2].

The minor difference between the two isotypic Rb and Cs salt structures is that in the description of the Cs salt, the coordination about Cs1 includes two longer Cs—O bonds to O41Biv [3.326 (2) Å] (see Fig. 1) and to O1W1i [3.414 (3) Å]. In the title Rb salt, the equivalent values [3.342 (3) and 3.495 (3) Å] preclude these as Rb—O bonds.

These structural features, including expanded metal coordination spheres and multiple bridging with polymeric extensions, are similar to those found in other Rb salts with substituted benzoic acids, e.g. rubidium 3,5-dinitrobenzoate (8-coordinate) (Miao et al., 2011), rubidium anthranilate (7-coordinate) (Wiesbrock & Schmidbaur, 2003), rubidium salicylate (8-coordinate) (Dinnebier et al., 2002) and rubidium 3,5-dinitosalicylate (10-coordinate) (Meng, 2011), this last Rb complex being isotypic with its Cs analogue (Hu et al., 2005).

Related literature top

For the structures of some rubidium salts of substituted benzoic acids, see: Wiesbrock & Schmidbaur (2003); Dinnebier et al. (2002); Hu et al. (2005); Miao et al. (2011). For the structures of caesium 4-nitroanthranilate and caesium 3,5-dinitrosalicylate, see: Smith & Wermuth (2011) and Meng (2011), respectively. For the structures of the sodium and potassium 4-nitroanthranilates, see: Smith (2013).

Experimental top

The title compound was synthesized by heating together for 5 minutes, 0.1 mmol of rubidium carbonate and 0.2 mmol of 4-nitroanthranilic acid in 10 ml of 1:8 (v/v) ethanol–water. Partial room temperature evaporation of the solution gave orange-red flat prisms of the title complex from which a suitable specimen was cleaved for the X-ray analysis.

Refinement top

The probability of isotypism with the Cs 4-nitroanthranilate monohydrate structure being recognized from the comparative cell data (Smith & Wermuth, 2011), the structure of the title complex was successfully phased in by inserting the non-H atoms from the Cs structure in the refinement. The same atom numbering scheme has been used for both structures. The amine and water H atoms were located in a difference-Fourier map and their positional and isotropic displacement parameters were allowed to ride with distance restraints on the N—H and O—H bond lengths of 0.91 (3)Å and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other hydrogen atoms were included in the refinement in calculated positions with C—H = 0.95 Å and allowed to ride, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the dinuclear repeat unit of the title complex, with non-H atoms drawn as 30% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines. For symmetry codes, see Table 1.
[Figure 2] Fig. 2. The polymeric structure in the unit cell viewed down b. Non-associative H atoms are omitted and hydrogen bonds are shown as dashed lines.
Poly[bis(µ-2-amino-4-nitrobenzoato)di-µ-aqua-dirubidium] top
Crystal data top
[Rb2(C7H5N2O4)2(H2O)2]F(000) = 1120
Mr = 569.23Dx = 2.055 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1131 reflections
a = 15.2938 (9) Åθ = 3.4–26.4°
b = 6.8601 (3) ŵ = 5.39 mm1
c = 17.8075 (10) ÅT = 200 K
β = 99.996 (5)°Plate, orange red
V = 1839.95 (17) Å30.30 × 0.18 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
3634 independent reflections
Radiation source: Enhance (Mo) X-ray source2708 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 1518
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 78
Tmin = 0.691, Tmax = 0.980l = 1521
6954 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0163P)2]
where P = (Fo2 + 2Fc2)/3
3634 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.61 e Å3
8 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Rb2(C7H5N2O4)2(H2O)2]V = 1839.95 (17) Å3
Mr = 569.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.2938 (9) ŵ = 5.39 mm1
b = 6.8601 (3) ÅT = 200 K
c = 17.8075 (10) Å0.30 × 0.18 × 0.08 mm
β = 99.996 (5)°
Data collection top
Oxford Diffraction Gemini-S CCD
diffractometer
3634 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
2708 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.980Rint = 0.046
6954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0468 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.61 e Å3
3634 reflectionsΔρmin = 0.51 e Å3
295 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.84018 (3)0.11232 (6)0.71945 (2)0.0291 (2)
Rb20.90021 (3)0.21443 (7)0.54097 (3)0.0333 (2)
O1W0.8411 (2)0.3229 (4)0.68713 (19)0.0313 (11)
O2W0.8861 (2)0.2009 (5)0.5656 (2)0.0395 (12)
O11A0.26528 (19)0.4400 (4)0.47291 (17)0.0316 (11)
O11B1.01609 (19)0.4261 (4)0.26964 (17)0.0324 (11)
O12A0.29906 (19)0.4056 (4)0.35752 (16)0.0312 (11)
O12B0.9810 (2)0.4779 (5)0.38434 (17)0.0349 (11)
O41A0.7146 (2)0.0750 (5)0.5397 (2)0.0404 (11)
O41B0.5388 (2)0.4326 (5)0.20204 (19)0.0459 (13)
O42A0.6701 (2)0.1017 (5)0.64817 (19)0.0394 (12)
O42B0.5826 (2)0.4724 (5)0.09497 (19)0.0463 (14)
N2A0.4616 (3)0.2771 (6)0.3444 (2)0.0345 (14)
N2B0.8117 (3)0.4663 (6)0.3981 (2)0.0350 (14)
N4A0.6588 (2)0.1193 (5)0.5785 (2)0.0293 (14)
N4B0.5972 (2)0.4538 (5)0.1643 (2)0.0295 (12)
C1A0.4092 (3)0.3222 (6)0.4651 (2)0.0174 (12)
C1B0.8639 (3)0.4516 (6)0.2769 (2)0.0198 (12)
C2A0.4746 (3)0.2689 (6)0.4225 (2)0.0219 (12)
C2B0.7949 (3)0.4594 (6)0.3196 (2)0.0232 (14)
C3A0.5580 (3)0.2062 (6)0.4619 (2)0.0234 (14)
C3B0.7072 (3)0.4573 (6)0.2809 (2)0.0233 (14)
C4A0.5716 (3)0.1917 (6)0.5395 (2)0.0206 (14)
C4B0.6909 (3)0.4514 (6)0.2033 (2)0.0212 (14)
C5A0.5086 (3)0.2394 (6)0.5834 (3)0.0233 (14)
C5B0.7571 (3)0.4458 (6)0.1594 (2)0.0240 (14)
C6A0.4284 (3)0.3055 (6)0.5442 (2)0.0206 (12)
C6B0.8427 (3)0.4444 (6)0.1980 (2)0.0235 (14)
C11A0.3177 (3)0.3931 (6)0.4292 (3)0.0213 (14)
C11B0.9617 (3)0.4523 (6)0.3130 (3)0.0252 (16)
H3A0.604300.174400.434600.0280*
H5A0.519900.227400.637400.0280*
H3B0.659300.459800.308600.0280*
H5B0.743900.443000.105200.0290*
H6A0.383800.341600.572600.0250*
H6B0.889600.438300.169400.0280*
H11W0.882 (2)0.414 (5)0.695 (3)0.0470*
H12W0.796 (2)0.404 (5)0.671 (3)0.0470*
H21A0.4027 (14)0.282 (6)0.325 (2)0.0420*
H21B0.771 (2)0.503 (6)0.426 (2)0.0420*
H21W0.839 (2)0.278 (6)0.553 (3)0.0590*
H22A0.500 (2)0.195 (5)0.323 (2)0.0420*
H22B0.8686 (15)0.503 (6)0.412 (3)0.0420*
H22W0.927 (3)0.292 (6)0.573 (3)0.0590*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0343 (3)0.0294 (3)0.0220 (2)0.0052 (2)0.0004 (2)0.0010 (2)
Rb20.0369 (3)0.0340 (3)0.0255 (3)0.0029 (2)0.0039 (2)0.0018 (2)
O1W0.0256 (18)0.0285 (19)0.036 (2)0.0001 (15)0.0055 (15)0.0014 (16)
O2W0.032 (2)0.039 (2)0.044 (2)0.0029 (17)0.0035 (17)0.0010 (19)
O11A0.0209 (17)0.050 (2)0.0235 (18)0.0042 (16)0.0029 (14)0.0060 (16)
O11B0.0211 (17)0.042 (2)0.033 (2)0.0003 (16)0.0017 (14)0.0054 (17)
O12A0.0328 (18)0.045 (2)0.0138 (17)0.0093 (16)0.0012 (13)0.0057 (15)
O12B0.0358 (19)0.045 (2)0.0197 (18)0.0043 (17)0.0065 (14)0.0050 (16)
O41A0.0231 (18)0.043 (2)0.054 (2)0.0041 (17)0.0035 (17)0.0052 (19)
O41B0.0234 (18)0.074 (3)0.042 (2)0.0015 (19)0.0106 (16)0.003 (2)
O42A0.038 (2)0.041 (2)0.033 (2)0.0045 (18)0.0113 (16)0.0062 (17)
O42B0.0323 (19)0.075 (3)0.029 (2)0.0023 (19)0.0023 (16)0.0082 (19)
N2A0.033 (2)0.045 (3)0.026 (2)0.006 (2)0.0067 (19)0.005 (2)
N2B0.033 (2)0.051 (3)0.022 (2)0.006 (2)0.0075 (19)0.000 (2)
N4A0.025 (2)0.018 (2)0.042 (3)0.0049 (19)0.0024 (19)0.001 (2)
N4B0.028 (2)0.031 (2)0.029 (2)0.001 (2)0.0032 (18)0.0013 (19)
C1A0.023 (2)0.013 (2)0.016 (2)0.0031 (19)0.0027 (18)0.0016 (18)
C1B0.023 (2)0.015 (2)0.021 (2)0.003 (2)0.0029 (19)0.0017 (19)
C2A0.026 (2)0.021 (2)0.018 (2)0.003 (2)0.0017 (19)0.001 (2)
C2B0.034 (3)0.015 (2)0.020 (2)0.003 (2)0.003 (2)0.0008 (19)
C3A0.021 (2)0.019 (2)0.031 (3)0.003 (2)0.007 (2)0.005 (2)
C3B0.023 (2)0.021 (2)0.028 (3)0.000 (2)0.010 (2)0.001 (2)
C4A0.017 (2)0.014 (2)0.028 (3)0.002 (2)0.0042 (19)0.001 (2)
C4B0.020 (2)0.014 (2)0.028 (3)0.003 (2)0.000 (2)0.003 (2)
C5A0.026 (2)0.021 (3)0.021 (2)0.000 (2)0.0015 (19)0.001 (2)
C5B0.028 (2)0.025 (3)0.018 (2)0.003 (2)0.0014 (19)0.001 (2)
C6A0.024 (2)0.017 (2)0.020 (2)0.003 (2)0.0020 (19)0.0019 (19)
C6B0.025 (2)0.021 (2)0.026 (3)0.004 (2)0.009 (2)0.002 (2)
C11A0.019 (2)0.018 (2)0.026 (3)0.002 (2)0.0015 (19)0.001 (2)
C11B0.029 (3)0.018 (2)0.028 (3)0.003 (2)0.003 (2)0.001 (2)
Geometric parameters (Å, º) top
Rb1—O1W3.041 (3)N2B—C2B1.378 (5)
Rb1—O2W3.006 (3)N4A—C4A1.479 (5)
Rb1—O42A3.064 (3)N4B—C4B1.480 (5)
Rb1—O42Ai3.092 (3)N2A—H21A0.91 (2)
Rb1—O12Aii3.074 (3)N2A—H22A0.94 (3)
Rb1—O11Biii3.059 (3)N2B—H21B0.90 (3)
Rb1—O12Aiv2.998 (3)N2B—H22B0.90 (3)
Rb2—O1W2.994 (3)C1A—C2A1.405 (6)
Rb2—O2W2.897 (3)C1A—C6A1.393 (5)
Rb2—O41A2.992 (3)C1A—C11A1.514 (6)
Rb2—N2B3.177 (4)C1B—C2B1.405 (6)
Rb2—O42Bv2.984 (3)C1B—C6B1.387 (5)
Rb2—O12Bvi2.947 (3)C1B—C11B1.522 (7)
Rb2—O42Biv3.069 (3)C2A—C3A1.412 (6)
O11A—C11A1.253 (6)C2B—C3B1.398 (6)
O11B—C11B1.242 (6)C3A—C4A1.365 (5)
O12A—C11A1.262 (6)C3B—C4B1.362 (5)
O12B—C11B1.266 (6)C4A—C5A1.381 (6)
O41A—N4A1.226 (5)C4B—C5B1.383 (6)
O41B—N4B1.216 (5)C5A—C6A1.378 (6)
O42A—N4A1.229 (5)C5B—C6B1.369 (6)
O42B—N4B1.223 (5)C3A—H3A0.9500
O1W—H11W0.88 (3)C3B—H3B0.9500
O1W—H12W0.89 (3)C5A—H5A0.9500
O2W—H21W0.89 (4)C5B—H5B0.9500
O2W—H22W0.88 (4)C6A—H6A0.9500
N2A—C2A1.372 (5)C6B—H6B0.9500
O1W—Rb1—O2W90.95 (9)Rb1—O2W—H22W106 (3)
O1W—Rb1—O42A58.84 (9)H21W—O2W—H22W98 (4)
O1W—Rb1—O42Ai140.33 (9)Rb2—O2W—H22W131 (3)
O1W—Rb1—O12Aii125.72 (8)Rb2—O2W—H21W129 (3)
O1W—Rb1—O11Biii132.54 (8)Rb2—N2B—C2B140.6 (3)
O1W—Rb1—O12Aiv72.50 (8)O41A—N4A—C4A118.6 (3)
O2W—Rb1—O42A92.01 (9)O41A—N4A—O42A123.7 (3)
O2W—Rb1—O42Ai128.13 (9)O42A—N4A—C4A117.7 (3)
O2W—Rb1—O12Aii73.42 (8)O41B—N4B—O42B123.2 (3)
O2W—Rb1—O11Biii68.69 (9)O41B—N4B—C4B118.9 (3)
O2W—Rb1—O12Aiv163.43 (9)O42B—N4B—C4B117.9 (3)
O42A—Rb1—O42Ai117.91 (9)C2A—N2A—H22A113 (2)
O12Aii—Rb1—O42A69.90 (8)H21A—N2A—H22A121 (3)
O11Biii—Rb1—O42A155.88 (8)C2A—N2A—H21A110 (2)
O12Aiv—Rb1—O42A80.17 (8)Rb2—N2B—H22B71 (3)
O12Aii—Rb1—O42Ai78.56 (8)C2B—N2B—H21B123 (2)
O11Biii—Rb1—O42Ai68.66 (8)Rb2—N2B—H21B87 (2)
O12Aiv—Rb1—O42Ai68.24 (8)H21B—N2B—H22B120 (4)
O11Biii—Rb1—O12Aii90.13 (8)C2B—N2B—H22B107 (3)
O12Aii—Rb1—O12Aiv116.59 (8)C6A—C1A—C11A118.1 (4)
O11Biii—Rb1—O12Aiv122.11 (8)C2A—C1A—C11A123.2 (3)
O1W—Rb2—O2W94.08 (9)C2A—C1A—C6A118.7 (4)
O1W—Rb2—O41A69.92 (9)C2B—C1B—C6B119.0 (4)
O1W—Rb2—N2B114.21 (10)C2B—C1B—C11B123.1 (3)
O1W—Rb2—O42Bv157.81 (9)C6B—C1B—C11B117.9 (4)
O1W—Rb2—O12Bvi71.65 (8)N2A—C2A—C1A123.1 (4)
O1W—Rb2—O42Biv103.10 (9)C1A—C2A—C3A118.5 (3)
O2W—Rb2—O41A65.87 (9)N2A—C2A—C3A118.4 (4)
O2W—Rb2—N2B128.58 (10)N2B—C2B—C3B119.7 (4)
O2W—Rb2—O42Bv66.11 (10)N2B—C2B—C1B121.7 (4)
O2W—Rb2—O12Bvi133.82 (9)C1B—C2B—C3B118.7 (3)
O2W—Rb2—O42Biv68.24 (9)C2A—C3A—C4A119.4 (4)
O41A—Rb2—N2B84.03 (11)C2B—C3B—C4B119.5 (4)
O41A—Rb2—O42Bv91.89 (9)C3A—C4A—C4A123.9 (4)
O12Bvi—Rb2—O41A137.91 (9)N4A—C4A—C5A118.3 (3)
O41A—Rb2—O42Biv132.73 (9)N4A—C4A—C3A117.8 (4)
O42Bv—Rb2—N2B74.83 (10)C3B—C4B—C5B123.5 (4)
O12Bvi—Rb2—N2B96.63 (10)N4B—C4B—C5B118.6 (3)
O42Biv—Rb2—N2B135.71 (10)N4B—C4B—C3B117.9 (4)
O12Bvi—Rb2—O42Bv129.07 (9)C4A—C5A—C6A116.0 (4)
O42Bv—Rb2—O42Biv79.55 (9)C4B—C5B—C6B116.5 (3)
O12Bvi—Rb2—O42Biv72.67 (9)C1A—C6A—C5A123.5 (4)
Rb1—O1W—Rb286.13 (8)C1B—C6B—C5B122.9 (4)
Rb1—O2W—Rb288.54 (9)O12A—C11A—C1A118.6 (4)
Rb1iii—O11B—C11B127.9 (3)O11A—C11A—O12A123.7 (4)
Rb1ii—O12A—C11A115.1 (3)O11A—C11A—C1A117.7 (4)
Rb1vii—O12A—C11A145.0 (3)O11B—C11B—O12B125.4 (4)
Rb1ii—O12A—Rb1vii99.88 (8)O11B—C11B—C1B116.9 (4)
Rb2vi—O12B—C11B124.8 (3)O12B—C11B—C1B117.7 (4)
Rb2—O41A—N4A132.0 (3)C2A—C3A—H3A120.00
Rb1—O42A—N4A115.2 (2)C4A—C3A—H3A120.00
Rb1—O42A—Rb1viii98.05 (9)C2B—C3B—H3B120.00
Rb1viii—O42A—N4A133.7 (3)C4B—C3B—H3B120.00
Rb2ix—O42B—N4B148.3 (3)C4A—C5A—H5A122.00
Rb2vii—O42B—N4B105.6 (2)C6A—C5A—H5A122.00
Rb2ix—O42B—Rb2vii100.45 (10)C4B—C5B—H5B122.00
Rb1—O1W—H12W130 (2)C6B—C5B—H5B122.00
Rb2—O1W—H11W90 (3)C1A—C6A—H6A118.00
Rb2—O1W—H12W102 (3)C5A—C6A—H6A118.00
H11W—O1W—H12W96 (3)C1B—C6B—H6B119.00
Rb1—O1W—H11W134 (2)C5B—C6B—H6B118.00
Rb1—O2W—H21W93 (3)
O2W—Rb1—O1W—Rb24.05 (8)O1W—Rb2—O12Bvi—C11Bvi30.1 (3)
O42A—Rb1—O1W—Rb295.84 (10)O2W—Rb2—O12Bvi—C11Bvi47.5 (4)
O42Ai—Rb1—O1W—Rb2166.82 (10)O41A—Rb2—O12Bvi—C11Bvi55.0 (4)
O12Aii—Rb1—O1W—Rb274.20 (10)N2B—Rb2—O12Bvi—C11Bvi143.4 (3)
O11Biii—Rb1—O1W—Rb257.38 (13)O1W—Rb2—O42Biv—Rb2iii157.48 (9)
O12Aiv—Rb1—O1W—Rb2175.23 (10)O1W—Rb2—O42Biv—N4Biv4.3 (3)
O1W—Rb1—O2W—Rb24.18 (9)O2W—Rb2—O42Biv—Rb2iii68.29 (10)
O42A—Rb1—O2W—Rb263.04 (9)O2W—Rb2—O42Biv—N4Biv93.5 (3)
O42Ai—Rb1—O2W—Rb2168.43 (8)O41A—Rb2—O42Biv—Rb2iii82.84 (14)
O12Aii—Rb1—O2W—Rb2131.36 (9)O41A—Rb2—O42Biv—N4Biv79.0 (3)
O11Biii—Rb1—O2W—Rb2131.82 (10)N2B—Rb2—O42Biv—Rb2iii55.24 (16)
O1W—Rb1—O42A—N4A85.4 (3)N2B—Rb2—O42Biv—N4Biv142.9 (2)
O1W—Rb1—O42A—Rb1viii61.55 (10)Rb1iii—O11B—C11B—O12B55.8 (6)
O2W—Rb1—O42A—N4A4.5 (3)Rb1iii—O11B—C11B—C1B123.6 (3)
O2W—Rb1—O42A—Rb1viii151.44 (9)Rb1ii—O12A—C11A—O11A69.9 (5)
O42Ai—Rb1—O42A—N4A140.4 (3)Rb1ii—O12A—C11A—C1A111.6 (3)
O42Ai—Rb1—O42A—Rb1viii72.69 (11)Rb1vii—O12A—C11A—O11A112.4 (5)
O12Aii—Rb1—O42A—N4A76.1 (3)Rb1vii—O12A—C11A—C1A66.1 (6)
O12Aii—Rb1—O42A—Rb1viii137.04 (10)Rb2vi—O12B—C11B—O11B56.1 (5)
O11Biii—Rb1—O42A—N4A40.3 (4)Rb2vi—O12B—C11B—C1B124.4 (3)
O11Biii—Rb1—O42A—Rb1viii172.79 (15)Rb2—O41A—N4A—O42A59.4 (5)
O12Aiv—Rb1—O42A—N4A160.8 (3)Rb2—O41A—N4A—C4A122.8 (3)
O12Aiv—Rb1—O42A—Rb1viii13.87 (8)Rb1—O42A—N4A—O41A7.6 (5)
O1W—Rb1—O42Ai—Rb1i119.97 (12)Rb1—O42A—N4A—C4A170.2 (3)
O1W—Rb1—O42Ai—N4Ai16.9 (4)Rb1viii—O42A—N4A—O41A124.0 (4)
O2W—Rb1—O42Ai—Rb1i71.66 (12)Rb1viii—O42A—N4A—C4A58.2 (5)
O2W—Rb1—O42Ai—N4Ai151.4 (3)Rb2ix—O42B—N4B—O41B120.8 (5)
O42A—Rb1—O42Ai—Rb1i46.14 (12)Rb2ix—O42B—N4B—C4B61.0 (6)
O42A—Rb1—O42Ai—N4Ai90.8 (3)Rb2vii—O42B—N4B—O41B23.4 (4)
O1W—Rb1—O12Aii—Rb1i131.30 (9)Rb2vii—O42B—N4B—C4B154.7 (3)
O1W—Rb1—O12Aii—C11Aii47.4 (3)Rb2—N2B—C2B—C1B62.6 (6)
O2W—Rb1—O12Aii—Rb1i149.82 (10)Rb2—N2B—C2B—C3B116.5 (5)
O2W—Rb1—O12Aii—C11Aii31.5 (3)O41A—N4A—C4A—C3A0.3 (6)
O42A—Rb1—O12Aii—Rb1i111.67 (10)O41A—N4A—C4A—C5A179.3 (4)
O42A—Rb1—O12Aii—C11Aii67.0 (3)O42A—N4A—C4A—C3A178.2 (4)
O1W—Rb1—O11Biii—C11Biii44.3 (4)O42A—N4A—C4A—C5A1.4 (6)
O2W—Rb1—O11Biii—C11Biii26.2 (3)O41B—N4B—C4B—C3B10.5 (6)
O42A—Rb1—O11Biii—C11Biii65.0 (4)O41B—N4B—C4B—C5B170.3 (4)
O1W—Rb1—O12Aiv—Rb1viii46.25 (8)O42B—N4B—C4B—C3B171.3 (4)
O1W—Rb1—O12Aiv—C11Aiv131.6 (5)O42B—N4B—C4B—C5B7.9 (6)
O42A—Rb1—O12Aiv—Rb1viii14.02 (8)C6A—C1A—C2A—N2A178.9 (4)
O42A—Rb1—O12Aiv—C11Aiv168.1 (5)C6A—C1A—C2A—C3A1.9 (6)
O2W—Rb2—O1W—Rb14.22 (9)C11A—C1A—C2A—N2A0.3 (7)
O41A—Rb2—O1W—Rb166.67 (9)C11A—C1A—C2A—C3A179.5 (4)
N2B—Rb2—O1W—Rb1140.07 (10)C2A—C1A—C6A—C5A0.1 (6)
O42Bv—Rb2—O1W—Rb130.1 (3)C11A—C1A—C6A—C5A178.8 (4)
O12Bvi—Rb2—O1W—Rb1130.83 (10)C2A—C1A—C11A—O11A178.7 (4)
O42Biv—Rb2—O1W—Rb164.38 (9)C2A—C1A—C11A—O12A0.2 (6)
O1W—Rb2—O2W—Rb14.26 (9)C6A—C1A—C11A—O11A2.7 (6)
O41A—Rb2—O2W—Rb170.11 (9)C6A—C1A—C11A—O12A178.8 (4)
N2B—Rb2—O2W—Rb1129.90 (12)C6B—C1B—C2B—N2B179.8 (4)
O42Bv—Rb2—O2W—Rb1173.89 (11)C6B—C1B—C2B—C3B0.7 (6)
O12Bvi—Rb2—O2W—Rb164.09 (13)C11B—C1B—C2B—N2B0.7 (6)
O42Biv—Rb2—O2W—Rb198.23 (10)C11B—C1B—C2B—C3B179.8 (4)
O1W—Rb2—O41A—N4A17.2 (3)C2B—C1B—C6B—C5B0.4 (6)
O2W—Rb2—O41A—N4A121.5 (4)C11B—C1B—C6B—C5B179.1 (4)
N2B—Rb2—O41A—N4A101.3 (4)C2B—C1B—C11B—O11B173.3 (4)
O42Bv—Rb2—O41A—N4A175.8 (4)C2B—C1B—C11B—O12B6.2 (6)
O12Bvi—Rb2—O41A—N4A8.0 (4)C6B—C1B—C11B—O11B7.2 (6)
O42Biv—Rb2—O41A—N4A106.7 (4)C6B—C1B—C11B—O12B173.3 (4)
O1W—Rb2—N2B—C2B159.6 (5)N2A—C2A—C3A—C4A178.2 (4)
O2W—Rb2—N2B—C2B42.3 (5)C1A—C2A—C3A—C4A2.6 (6)
O41A—Rb2—N2B—C2B94.7 (5)N2B—C2B—C3B—C4B179.7 (4)
O42Bv—Rb2—N2B—C2B1.1 (5)C1B—C2B—C3B—C4B1.2 (6)
O12Bvi—Rb2—N2B—C2B127.6 (5)C2A—C3A—C4A—N4A178.0 (4)
O42Biv—Rb2—N2B—C2B55.7 (5)C2A—C3A—C4A—C5A1.6 (7)
O1W—Rb2—O42Bv—N4Bv115.8 (5)C2B—C3B—C4B—N4B178.7 (4)
O1W—Rb2—O42Bv—Rb2iii99.1 (2)C2B—C3B—C4B—C5B0.5 (6)
O2W—Rb2—O42Bv—N4Bv144.2 (5)N4A—C4A—C5A—C6A179.8 (4)
O2W—Rb2—O42Bv—Rb2iii70.70 (10)C3A—C4A—C5A—C6A0.2 (6)
O41A—Rb2—O42Bv—N4Bv81.7 (5)N4B—C4B—C5B—C6B179.8 (4)
O41A—Rb2—O42Bv—Rb2iii133.17 (10)C3B—C4B—C5B—C6B0.7 (6)
N2B—Rb2—O42Bv—N4Bv1.6 (5)C4A—C5A—C6A—C1A1.0 (6)
N2B—Rb2—O42Bv—Rb2iii143.53 (12)C4B—C5B—C6B—C1B1.1 (6)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+2, y+1, z+1; (vii) x1/2, y+1/2, z1/2; (viii) x+3/2, y+1/2, z+3/2; (ix) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H21A···O12A0.91 (2)1.97 (3)2.686 (5)134 (3)
N2A—H21A···O1Wvii0.91 (2)2.58 (4)3.149 (5)122 (3)
N2A—H22A···O11Bv0.94 (3)2.46 (3)3.206 (5)136 (3)
N2B—H21B···O11Ax0.90 (3)2.01 (3)2.831 (5)151 (3)
N2B—H22B···O12B0.90 (3)1.88 (3)2.644 (6)142 (4)
O1W—H11W···O11Bvi0.88 (3)1.92 (4)2.783 (4)167 (4)
O1W—H12W···O12Ax0.89 (3)1.96 (4)2.847 (4)176 (2)
O2W—H21W···O11Aii0.89 (4)1.93 (4)2.823 (4)178 (7)
O2W—H22W···O12Biii0.88 (4)1.95 (5)2.812 (5)166 (5)
C5A—H5A···O11Bxi0.952.593.488 (6)158
C6A—H6A···O11A0.952.402.755 (5)101
C6B—H6B···O11B0.952.402.739 (5)101
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y, z+1; (v) x+3/2, y1/2, z+1/2; (vi) x+2, y+1, z+1; (vii) x1/2, y+1/2, z1/2; (x) x+1, y+1, z+1; (xi) x1/2, y+1/2, z+1/2.
Selected bond lengths (Å) top
Rb1—O1W3.041 (3)Rb2—O1W2.994 (3)
Rb1—O2W3.006 (3)Rb2—O2W2.897 (3)
Rb1—O42A3.064 (3)Rb2—O41A2.992 (3)
Rb1—O42Ai3.092 (3)Rb2—N2B3.177 (4)
Rb1—O12Aii3.074 (3)Rb2—O42Bv2.984 (3)
Rb1—O11Biii3.059 (3)Rb2—O12Bvi2.947 (3)
Rb1—O12Aiv2.998 (3)Rb2—O42Biv3.069 (3)
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z+1; (iii) x+2, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H21A···O12A0.91 (2)1.97 (3)2.686 (5)134 (3)
N2A—H21A···O1Wvii0.91 (2)2.58 (4)3.149 (5)122 (3)
N2A—H22A···O11Bv0.94 (3)2.46 (3)3.206 (5)136 (3)
N2B—H21B···O11Aviii0.90 (3)2.01 (3)2.831 (5)151 (3)
N2B—H22B···O12B0.90 (3)1.88 (3)2.644 (6)142 (4)
O1W—H11W···O11Bvi0.88 (3)1.92 (4)2.783 (4)167 (4)
O1W—H12W···O12Aviii0.89 (3)1.96 (4)2.847 (4)176 (2)
O2W—H21W···O11Aii0.89 (4)1.93 (4)2.823 (4)178 (7)
O2W—H22W···O12Biii0.88 (4)1.95 (5)2.812 (5)166 (5)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+2, y, z+1; (v) x+3/2, y1/2, z+1/2; (vi) x+2, y+1, z+1; (vii) x1/2, y+1/2, z1/2; (viii) x+1, y+1, z+1.
 

Acknowledgements

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationDinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363–368.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, M., Geng, C., Li, S., Du, Y., Jiang, Y. & Liu, Z. (2005). J. Organomet. Chem. 690, 3118–3124.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeng, Y. (2011). Acta Cryst. E67, m454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiao, Y., Zhang, X. & Liu, C. (2011). Acta Cryst. E67, m1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. (2013). Acta Cryst. C69, 1472–1477.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1047–m1048.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283–7289.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages m192-m193
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds