metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1:1 Co-crystal of 4,4′-(ethene-1,2-di­yl)dipyridin-1-ium sulfate and hexa­aqua­iron(II) sulfate monohydrate

aSchool of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: aihua.yuan@just.edu.cn

(Received 27 March 2014; accepted 30 March 2014; online 5 April 2014)

In the title hydrated double salt, 4,4′-(ethene-1,2-di­yl)dipyridin-1-ium hexa­aqua­iron(II) bis­(sulfate) monohydrate, (C12H12N2)[Fe(H2O)6](SO4)2·H2O, the FeII cation is coordin­ated by six water mol­ecules in a slightly distorted octa­hedral geometry; the two pyridine rings of the 4,4′-(ethene-1,2-di­yl)dipyridin-1-ium cation are twisted to each other by a dihedral angle of 11.84 (10)°. In the crystal, the cations, sulfate anions and water mol­ecules of crystallization are linked by O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For a related structure, see: Prakash et al. (2012[Prakash, M. J., Oliver, A. G. & Sevov, S. C. (2012). Cryst. Growth Des. 12, 2684-2690.]). For the synthesis, see: Bok et al. (1975[Bok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81-83.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H12N2)[Fe(H2O)6](SO4)2·H2O

  • Mr = 558.32

  • Triclinic, [P \overline 1]

  • a = 6.772 (1) Å

  • b = 12.5006 (18) Å

  • c = 14.187 (2) Å

  • α = 68.991 (2)°

  • β = 81.829 (2)°

  • γ = 87.925 (2)°

  • V = 1109.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 173 K

  • 0.26 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.79, Tmax = 0.93

  • 8479 measured reflections

  • 4117 independent reflections

  • 3601 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.04

  • 4117 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1X⋯O13 0.89 1.74 2.622 (2) 173
N2—H2X⋯O10i 0.89 1.75 2.631 (2) 170
O1—H1WB⋯O7 0.85 1.89 2.733 (2) 175
O1—H1WA⋯O9ii 0.85 1.90 2.741 (2) 170
O2—H2WA⋯O8 0.85 1.90 2.719 (2) 161
O2—H2WB⋯O12 0.85 1.86 2.711 (2) 175
O3—H3WA⋯O8ii 0.85 1.91 2.751 (2) 169
O3—H3WB⋯O11 0.85 1.88 2.726 (2) 174
O4—H4WA⋯O11iii 0.85 1.85 2.696 (2) 171
O4—H4WB⋯O12iv 0.85 1.86 2.710 (2) 175
O5—H5WA⋯O15 0.85 1.90 2.742 (2) 169
O5—H5WB⋯O14iii 0.85 1.90 2.750 (2) 175
O6—H6WA⋯O15v 0.85 1.93 2.763 (2) 165
O6—H6WB⋯O14iv 0.85 1.89 2.739 (2) 180
O15—H15A⋯O9ii 0.85 1.97 2.780 (2) 159
O15—H15B⋯O7vi 0.85 1.92 2.7628 (19) 174
C1—H1⋯O8vii 0.95 2.48 3.339 (3) 150
C1—H1⋯O10vii 0.95 2.31 3.172 (2) 150
C11—H11⋯O13viii 0.95 2.34 3.189 (2) 149
C11—H11⋯O14viii 0.95 2.43 3.291 (3) 151
Symmetry codes: (i) -x, -y, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1; (v) x-1, y, z; (vi) -x+1, -y+1, -z; (vii) -x, -y, -z+1; (viii) x, y, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal ImpactGbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In this paper, we used [Mo(CN)8]3- as building block to react with transition metal Fe2+ ions and 1,2-di(pyridin-4-yl)ethylene ligand (dpe), in order to obtain octacyanometalate-based bimetallic compound. Unfortunately, the title ion-type compound was obtained. The asymmetric unit of the title compound contains one 1,2-bis-(4-pyridyl)ethylene cation, [H2dpe]2+, two sulfate anions, one hexaaqua-iron(II) cation, and one crystallized water molecule (Fig. 1). In the structure, the Fe atom adopts a distorted slightly octahedral geometry, in which the average distance of Fe—O bonds is about 2.118 Å. The [Fe(H2O)6]2+ cations, sulfate anions, and guest water molecules are linked by O—H···O hydrogen bonds, forming a two-dimensional (2-D) layered structure. The N—H···O hydrogen bonds between adjacent layers generate a 3-D supramolecular network (Fig. 2). The structure of the title compound is comparable to that observed in related compound (Prakash et al., 2012).

Related literature top

For a related structure, see: Prakash et al. (2012). For the synthesis, see: Bok et al. (1975).

Experimental top

The title compound was prepared at room temperature by slow diffusion between a CH3CH2OH/H2O (V/V = 2:1) solution containing FeSO4.7H2O (0.05 mmol) and dpe ligand (0.10 mmol), and a CH3CH2OH/H2O (V:V = 2:1) solution of [HN(n-C4H9)3]3[Mo(CN)8].4H2O (0.025 mmol) (Bok et al., 1975). After two weeks, brown plate crystals were obtained.

Refinement top

All non-H atoms were refined anisotropically. The (C)H atoms of dpe were calculated at idealized positions and included in the refinement in a riding mode. The (N)H of dpe and (O)H atoms of water molecules were located from a difference Fourier map and refined as riding [N—H = 0.89 Å, U(H) = 1.2Ueq(N); O—H = 0.85 Å, U(H) = 1.5Ueq(O)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with thermal ellipsoids at the 30% probability level. All H atoms were omitted for clarity.
[Figure 2] Fig. 2. The three-dimensional supramolecular network of the title compound.
4,4'-(Ethene-1,2-diyl)dipyridin-1-ium hexaaquairon(II) bis(sulfate) monohydrate top
Crystal data top
(C12H12N2)[Fe(H2O)6](SO4)2·H2OZ = 2
Mr = 558.32F(000) = 580
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.772 (1) ÅCell parameters from 4117 reflections
b = 12.5006 (18) Åθ = 3.0–25.6°
c = 14.187 (2) ŵ = 0.94 mm1
α = 68.991 (2)°T = 173 K
β = 81.829 (2)°Plate, brown
γ = 87.925 (2)°0.26 × 0.23 × 0.08 mm
V = 1109.6 (3) Å3
Data collection top
Bruker SMART APEXII
diffractometer
4117 independent reflections
Radiation source: fine-focus sealed tube3601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
phi and ω scansθmax = 25.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.79, Tmax = 0.93k = 1515
8479 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.3901P]
where P = (Fo2 + 2Fc2)/3
4117 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
(C12H12N2)[Fe(H2O)6](SO4)2·H2Oγ = 87.925 (2)°
Mr = 558.32V = 1109.6 (3) Å3
Triclinic, P1Z = 2
a = 6.772 (1) ÅMo Kα radiation
b = 12.5006 (18) ŵ = 0.94 mm1
c = 14.187 (2) ÅT = 173 K
α = 68.991 (2)°0.26 × 0.23 × 0.08 mm
β = 81.829 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
4117 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3601 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.93Rint = 0.014
8479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
4117 reflectionsΔρmin = 0.42 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.30537 (4)0.51818 (2)0.268630 (19)0.02402 (9)
S10.15024 (7)0.27787 (4)0.19605 (3)0.02389 (11)
S20.25179 (7)0.26222 (4)0.62987 (3)0.02462 (11)
N10.2643 (2)0.05496 (15)0.51392 (12)0.0323 (4)
H1X0.27050.07720.56640.039*
N20.2490 (2)0.07642 (15)0.08553 (12)0.0319 (4)
H2X0.24300.09670.13920.038*
O10.3515 (2)0.42427 (13)0.17016 (12)0.0423 (4)
H1WA0.46250.40220.14780.063*
H1WB0.26600.38180.16140.063*
O20.0864 (2)0.40216 (14)0.36832 (11)0.0489 (4)
H2WA0.00350.36150.35550.073*
H2WB0.08200.37400.43270.073*
O30.5165 (2)0.42177 (14)0.35920 (11)0.0455 (4)
H3WA0.61080.38120.34460.068*
H3WB0.49200.39390.42390.068*
O40.2662 (2)0.63014 (14)0.35026 (12)0.0444 (4)
H4WA0.35410.64130.38310.067*
H4WB0.15790.64940.37780.067*
O50.53157 (19)0.63820 (11)0.17344 (10)0.0319 (3)
H5WA0.61620.61940.13210.048*
H5WB0.60230.66160.20730.048*
O60.0777 (2)0.61071 (12)0.18625 (10)0.0333 (3)
H6WA0.02360.59540.14190.050*
H6WB0.01440.64200.21410.050*
O70.0587 (2)0.29477 (12)0.14664 (10)0.0339 (3)
O80.1730 (2)0.31232 (12)0.28575 (10)0.0355 (3)
O90.2785 (2)0.34627 (13)0.12172 (11)0.0378 (3)
O100.2059 (2)0.15596 (11)0.22994 (10)0.0388 (4)
O110.4357 (2)0.31751 (15)0.56561 (11)0.0457 (4)
O120.0825 (2)0.29986 (14)0.57251 (10)0.0400 (4)
O130.2703 (3)0.13740 (12)0.65942 (11)0.0481 (4)
O140.2198 (2)0.28888 (12)0.72368 (10)0.0325 (3)
O150.8392 (2)0.57495 (12)0.05726 (10)0.0363 (3)
H15A0.81000.50790.06080.054*
H15B0.87540.61090.00590.054*
C10.2380 (3)0.05528 (18)0.52884 (14)0.0326 (4)
H10.21820.11020.59620.039*
C20.2395 (3)0.08957 (17)0.44725 (14)0.0312 (4)
H20.22300.16840.45810.037*
C30.2651 (3)0.00942 (16)0.34859 (13)0.0255 (4)
C40.2926 (3)0.10517 (17)0.33679 (15)0.0340 (5)
H40.31170.16240.27050.041*
C50.2919 (3)0.13460 (18)0.42025 (16)0.0364 (5)
H50.31120.21250.41190.044*
C60.2634 (3)0.04685 (16)0.26238 (14)0.0303 (4)
H60.27300.12670.27500.036*
C70.2494 (3)0.02256 (16)0.16764 (14)0.0273 (4)
H70.23790.10220.15540.033*
C80.2502 (3)0.01417 (15)0.08059 (13)0.0249 (4)
C90.2601 (3)0.12954 (16)0.08962 (14)0.0297 (4)
H90.26730.18780.15420.036*
C100.2595 (3)0.15785 (17)0.00524 (15)0.0326 (4)
H100.26660.23600.01120.039*
C110.2405 (3)0.03440 (17)0.09822 (14)0.0321 (4)
H110.23400.09020.16400.038*
C120.2412 (3)0.06773 (16)0.01616 (14)0.0290 (4)
H120.23560.14680.02520.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02364 (15)0.02605 (15)0.02441 (15)0.00119 (11)0.00470 (11)0.01102 (11)
S10.0272 (2)0.0257 (2)0.0205 (2)0.00155 (18)0.00298 (18)0.01036 (18)
S20.0258 (2)0.0328 (2)0.0187 (2)0.00145 (19)0.00384 (17)0.01322 (19)
N10.0343 (9)0.0449 (10)0.0267 (9)0.0050 (8)0.0070 (7)0.0228 (8)
N20.0331 (9)0.0448 (10)0.0233 (8)0.0038 (8)0.0019 (7)0.0191 (7)
O10.0308 (8)0.0552 (9)0.0579 (10)0.0007 (7)0.0048 (7)0.0413 (8)
O20.0513 (10)0.0627 (10)0.0264 (8)0.0277 (8)0.0064 (7)0.0051 (7)
O30.0424 (9)0.0622 (10)0.0300 (8)0.0226 (8)0.0101 (7)0.0144 (7)
O40.0270 (8)0.0698 (11)0.0579 (10)0.0054 (7)0.0072 (7)0.0486 (9)
O50.0273 (7)0.0379 (8)0.0338 (7)0.0032 (6)0.0007 (6)0.0177 (6)
O60.0294 (7)0.0426 (8)0.0345 (8)0.0093 (6)0.0119 (6)0.0198 (6)
O70.0279 (7)0.0415 (8)0.0301 (7)0.0005 (6)0.0014 (6)0.0111 (6)
O80.0384 (8)0.0436 (8)0.0344 (8)0.0005 (6)0.0042 (6)0.0263 (7)
O90.0337 (8)0.0450 (9)0.0342 (8)0.0066 (6)0.0112 (6)0.0118 (7)
O100.0636 (10)0.0299 (7)0.0232 (7)0.0138 (7)0.0015 (7)0.0104 (6)
O110.0299 (8)0.0764 (12)0.0274 (8)0.0122 (8)0.0002 (6)0.0150 (8)
O120.0278 (8)0.0661 (10)0.0281 (7)0.0064 (7)0.0081 (6)0.0181 (7)
O130.0878 (13)0.0342 (8)0.0298 (8)0.0099 (8)0.0152 (8)0.0185 (7)
O140.0366 (8)0.0414 (8)0.0274 (7)0.0038 (6)0.0050 (6)0.0218 (6)
O150.0439 (9)0.0407 (8)0.0249 (7)0.0010 (7)0.0013 (6)0.0137 (6)
C10.0354 (11)0.0403 (11)0.0201 (9)0.0005 (9)0.0024 (8)0.0088 (8)
C20.0416 (12)0.0284 (10)0.0250 (10)0.0002 (9)0.0062 (8)0.0105 (8)
C30.0270 (10)0.0288 (10)0.0227 (9)0.0022 (8)0.0042 (7)0.0114 (8)
C40.0509 (13)0.0268 (10)0.0251 (10)0.0001 (9)0.0075 (9)0.0093 (8)
C50.0487 (13)0.0309 (11)0.0361 (11)0.0030 (9)0.0109 (10)0.0182 (9)
C60.0434 (12)0.0269 (10)0.0242 (10)0.0004 (8)0.0047 (8)0.0134 (8)
C70.0336 (11)0.0266 (9)0.0260 (10)0.0036 (8)0.0072 (8)0.0139 (8)
C80.0255 (10)0.0285 (9)0.0218 (9)0.0008 (8)0.0043 (7)0.0101 (8)
C90.0413 (12)0.0267 (10)0.0223 (9)0.0018 (8)0.0075 (8)0.0091 (8)
C100.0404 (12)0.0314 (10)0.0302 (10)0.0005 (9)0.0045 (9)0.0163 (9)
C110.0355 (11)0.0372 (11)0.0195 (9)0.0052 (9)0.0039 (8)0.0046 (8)
C120.0337 (11)0.0281 (10)0.0246 (9)0.0025 (8)0.0054 (8)0.0079 (8)
Geometric parameters (Å, º) top
Fe1—O22.0954 (14)O5—H5WA0.8500
Fe1—O42.1019 (14)O5—H5WB0.8500
Fe1—O32.1059 (14)O6—H6WA0.8502
Fe1—O12.1101 (14)O6—H6WB0.8498
Fe1—O62.1199 (13)O15—H15A0.8499
Fe1—O52.1323 (13)O15—H15B0.8498
S1—O91.4690 (14)C1—C21.370 (3)
S1—O101.4698 (14)C1—H10.9500
S1—O81.4700 (13)C2—C31.390 (3)
S1—O71.4738 (14)C2—H20.9500
S2—O111.4656 (15)C3—C41.397 (3)
S2—O121.4663 (14)C3—C61.459 (2)
S2—O131.4690 (15)C4—C51.359 (3)
S2—O141.4696 (13)C4—H40.9500
N1—C11.332 (3)C5—H50.9500
N1—C51.336 (3)C6—C71.328 (3)
N1—H1X0.8902C6—H60.9500
N2—C111.332 (3)C7—C81.463 (2)
N2—C101.334 (3)C7—H70.9500
N2—H2X0.8901C8—C121.396 (3)
O1—H1WA0.8500C8—C91.401 (3)
O1—H1WB0.8500C9—C101.365 (2)
O2—H2WA0.8499C9—H90.9500
O2—H2WB0.8499C10—H100.9500
O3—H3WA0.8499C11—C121.371 (3)
O3—H3WB0.8506C11—H110.9500
O4—H4WA0.8500C12—H120.9500
O4—H4WB0.8500
O2—Fe1—O493.26 (6)H4WA—O4—H4WB104.0
O2—Fe1—O387.76 (6)Fe1—O5—H5WA119.6
O4—Fe1—O392.10 (6)Fe1—O5—H5WB112.5
O2—Fe1—O192.61 (6)H5WA—O5—H5WB104.2
O4—Fe1—O1172.85 (6)Fe1—O6—H6WA127.3
O3—Fe1—O192.22 (6)Fe1—O6—H6WB120.8
O2—Fe1—O688.65 (6)H6WA—O6—H6WB104.1
O4—Fe1—O686.54 (6)H15A—O15—H15B104.2
O3—Fe1—O6176.09 (5)N1—C1—C2120.11 (18)
O1—Fe1—O689.51 (6)N1—C1—H1119.9
O2—Fe1—O5177.16 (5)C2—C1—H1119.9
O4—Fe1—O584.35 (6)C1—C2—C3120.25 (18)
O3—Fe1—O590.80 (6)C1—C2—H2119.9
O1—Fe1—O589.89 (6)C3—C2—H2119.9
O6—Fe1—O592.72 (5)C2—C3—C4117.53 (16)
O9—S1—O10109.65 (9)C2—C3—C6119.71 (16)
O9—S1—O8110.74 (9)C4—C3—C6122.76 (17)
O10—S1—O8108.44 (8)C5—C4—C3119.92 (18)
O9—S1—O7108.66 (8)C5—C4—H4120.0
O10—S1—O7109.39 (9)C3—C4—H4120.0
O8—S1—O7109.95 (8)N1—C5—C4120.65 (18)
O11—S2—O12109.56 (9)N1—C5—H5119.7
O11—S2—O13108.96 (10)C4—C5—H5119.7
O12—S2—O13109.22 (9)C7—C6—C3124.73 (17)
O11—S2—O14110.64 (8)C7—C6—H6117.6
O12—S2—O14110.64 (8)C3—C6—H6117.6
O13—S2—O14107.78 (8)C6—C7—C8125.04 (17)
C1—N1—C5121.54 (16)C6—C7—H7117.5
C1—N1—H1X120.5C8—C7—H7117.5
C5—N1—H1X117.9C12—C8—C9117.67 (16)
C11—N2—C10122.22 (16)C12—C8—C7119.59 (16)
C11—N2—H2X118.6C9—C8—C7122.74 (16)
C10—N2—H2X119.1C10—C9—C8119.68 (18)
Fe1—O1—H1WA126.9C10—C9—H9120.2
Fe1—O1—H1WB126.3C8—C9—H9120.2
H1WA—O1—H1WB103.8N2—C10—C9120.40 (18)
Fe1—O2—H2WA129.5N2—C10—H10119.8
Fe1—O2—H2WB124.8C9—C10—H10119.8
H2WA—O2—H2WB104.3N2—C11—C12119.85 (17)
Fe1—O3—H3WA129.3N2—C11—H11120.1
Fe1—O3—H3WB122.0C12—C11—H11120.1
H3WA—O3—H3WB104.3C11—C12—C8120.17 (18)
Fe1—O4—H4WA123.2C11—C12—H12119.9
Fe1—O4—H4WB128.2C8—C12—H12119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1X···O130.891.742.622 (2)173
N2—H2X···O10i0.891.752.631 (2)170
O1—H1WB···O70.851.892.733 (2)175
O1—H1WA···O9ii0.851.902.741 (2)170
O2—H2WA···O80.851.902.719 (2)161
O2—H2WB···O120.851.862.711 (2)175
O3—H3WA···O8ii0.851.912.751 (2)169
O3—H3WB···O110.851.882.726 (2)174
O4—H4WA···O11iii0.851.852.696 (2)171
O4—H4WB···O12iv0.851.862.710 (2)175
O5—H5WA···O150.851.902.742 (2)169
O5—H5WB···O14iii0.851.902.750 (2)175
O6—H6WA···O15v0.851.932.763 (2)165
O6—H6WB···O14iv0.851.892.739 (2)180
O15—H15A···O9ii0.851.972.780 (2)159
O15—H15B···O7vi0.851.922.7628 (19)174
C1—H1···O8vii0.952.483.339 (3)150
C1—H1···O10vii0.952.313.172 (2)150
C11—H11···O13viii0.952.343.189 (2)149
C11—H11···O14viii0.952.433.291 (3)151
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x, y, z+1; (viii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1X···O130.891.742.622 (2)173
N2—H2X···O10i0.891.752.631 (2)170
O1—H1WB···O70.851.892.733 (2)175
O1—H1WA···O9ii0.851.902.741 (2)170
O2—H2WA···O80.851.902.719 (2)161
O2—H2WB···O120.851.862.711 (2)175
O3—H3WA···O8ii0.851.912.751 (2)169
O3—H3WB···O110.851.882.726 (2)174
O4—H4WA···O11iii0.851.852.696 (2)171
O4—H4WB···O12iv0.851.862.710 (2)175
O5—H5WA···O150.851.902.742 (2)169
O5—H5WB···O14iii0.851.902.750 (2)175
O6—H6WA···O15v0.851.932.763 (2)165
O6—H6WB···O14iv0.851.892.739 (2)180
O15—H15A···O9ii0.851.972.780 (2)159
O15—H15B···O7vi0.851.922.7628 (19)174
C1—H1···O8vii0.952.483.339 (3)150
C1—H1···O10vii0.952.313.172 (2)150
C11—H11···O13viii0.952.343.189 (2)149
C11—H11···O14viii0.952.433.291 (3)151
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x1, y, z; (vi) x+1, y+1, z; (vii) x, y, z+1; (viii) x, y, z1.
 

References

First citationBok, L. D. C., Leipoldt, J. G. & Basson, S. S. (1975). Z. Anorg. Allg. Chem. 415, 81–83.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal ImpactGbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPrakash, M. J., Oliver, A. G. & Sevov, S. C. (2012). Cryst. Growth Des. 12, 2684–2690.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds