organic compounds
1,10-Phenanthroline-5,6-dione ethanol monosolvate
aInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan, and bDepartment of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: sato@cm.kyushu-u.ac.jp
In the title compound, C12H6N2O2·C2H5OH, the molecule of the 1,10-phenanthroline-5,6-dione is approximately planar, with a maximum deviation of 0.051 (1) Å. In the crystal, molecules are linked by O—H⋯N and weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along [110]. π–π stacking interactions are observed between the pyridine rings of neighbouring chains, the centroid–centroid separations being 3.6226 (11) and 3.7543 (11) Å.
CCDC reference: 996896
Related literature
For background to and applications of 1,10-phenanthroline-5,6-dione, see: Smith & Cagle (1947); Ma et al. (2010); Goss & Abruna (1985); Murphy et al. (2011); Wu et al. (1996); Pinczewska et al. (2012); Poteet & MacDonnell (2013); Wu et al. (2002); Poteet et al. 2013); Paw et al. (1998). For the synthesis, see: Paw & Eisenberg (1997). For a related structure, see: Calderazzo et al. (1999).
Experimental
Crystal data
|
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 996896
10.1107/S1600536814008241/xu5783sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814008241/xu5783Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814008241/xu5783Isup3.cml
The title compound was prepared according to literature method (Paw & Eisenberg, 1997). An ice-cold mixture of concentrated H2SO4 (40 mL) and HNO3 (20 mL) was added to 4 g of 1,10-phenanthroline (0.02 mol) and 4 g of KBr (0.03 mol). The mixture was heated at 90 oC for 3 h. The hot yellow solution was poured over 200 mL of ice and neutralized carefully with sodium hydroxide until neutral to slightly acidic pH. Extraction with CH2Cl2 (4*100 mL) followed by drying with Na2SO4 and removal of solvent gave 2.8 g (yield = 67%) of 1,10-phenanthroline-5,6-dione. This product was purified further by crystallization from ethanol.
Crystal data, data collection and structure
details are summarized in Table 1. Carbon-bound H-atoms were placed in calculated positions and were included in the in the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. The hydroxy H atom was located in a difference Fourier map, and was refined with distance restraints of O—H = 0.84±0.01, Uiso(H) = 1.2Ueq(O).1,10-Phenanthroline-5,6-dione has been known for many years (Smith & Cagle, 1947), and its chelating ability as either a diimine or a catecholate was important in coordination chemistry (Ma et al., 2010, Goss & Abruna, 1985, Murphy et al., 2011), analytical chemistry (Wu et al., 1996, Pinczewska et al., 2012) and biophysical chemistry (Poteet & MacDonnell, 2013, Wu et al., 2002, Poteet et al., 2013). Moreover, it can become as the bridging ligand, which has shown very interesting function in multinuclear complexes (Paw et al., 1998, Paw & Eisenberg, 1997, Calderazzo et al., 1999).
According to the structural analysis, the bond lengths and angles of the title compound are generally within normal ranges. The π···π stacking interactions between adjacent chains are also observed [centroid– centroid separations being 3.6226 (11) and 3.7543 (11) Å].
of the title compound consists of one 1,10-phenanthroline-5,6-dione molecule and one ethanol molecule. Between molecules, O—H···N and C—H···O hydrogen bonds can be found that further form one-dimensional chain. The weakData collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C12H6N2O2·C2H6O | Z = 2 |
Mr = 256.26 | F(000) = 268 |
Triclinic, P1 | Dx = 1.456 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.3064 (15) Å | Cell parameters from 2355 reflections |
b = 9.1055 (18) Å | θ = 3.1–30.2° |
c = 9.7291 (19) Å | µ = 0.10 mm−1 |
α = 96.47 (3)° | T = 123 K |
β = 101.68 (3)° | Block, yellow |
γ = 109.83 (3)° | 0.20 × 0.20 × 0.20 mm |
V = 584.6 (2) Å3 |
Rigaku Saturn724+ diffractometer | 2074 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.020 |
Confocal monochromator | θmax = 26.0°, θmin = 3.1° |
Detector resolution: 28.5714 pixels mm-1 | h = −9→9 |
ω scans | k = −11→11 |
5059 measured reflections | l = −11→11 |
2252 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0709P)2 + 0.118P] where P = (Fo2 + 2Fc2)/3 |
2252 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.24 e Å−3 |
1 restraint | Δρmin = −0.17 e Å−3 |
C12H6N2O2·C2H6O | γ = 109.83 (3)° |
Mr = 256.26 | V = 584.6 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.3064 (15) Å | Mo Kα radiation |
b = 9.1055 (18) Å | µ = 0.10 mm−1 |
c = 9.7291 (19) Å | T = 123 K |
α = 96.47 (3)° | 0.20 × 0.20 × 0.20 mm |
β = 101.68 (3)° |
Rigaku Saturn724+ diffractometer | 2074 reflections with I > 2σ(I) |
5059 measured reflections | Rint = 0.020 |
2252 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 1 restraint |
wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.24 e Å−3 |
2252 reflections | Δρmin = −0.17 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C4 | 0.66468 (17) | 0.96363 (14) | 0.27101 (12) | 0.0211 (3) | |
C11 | 0.69855 (17) | 0.93910 (13) | 0.52865 (12) | 0.0196 (3) | |
C5 | 0.50156 (18) | 0.80403 (14) | 0.22423 (12) | 0.0237 (3) | |
C7 | 0.54977 (17) | 0.78514 (14) | 0.49173 (12) | 0.0211 (3) | |
C6 | 0.43997 (17) | 0.70995 (13) | 0.34035 (13) | 0.0239 (3) | |
C12 | 0.75757 (16) | 1.02974 (13) | 0.41609 (12) | 0.0200 (3) | |
C8 | 0.50365 (18) | 0.70329 (14) | 0.60099 (13) | 0.0250 (3) | |
H8 | 0.4042 | 0.5987 | 0.5794 | 0.030* | |
C9 | 0.60544 (18) | 0.77748 (15) | 0.74108 (13) | 0.0270 (3) | |
H9 | 0.5787 | 0.7248 | 0.8179 | 0.032* | |
C3 | 0.72616 (18) | 1.05260 (15) | 0.16952 (13) | 0.0252 (3) | |
H3 | 0.6651 | 1.0108 | 0.0704 | 0.030* | |
C1 | 0.95979 (18) | 1.25750 (14) | 0.36088 (14) | 0.0262 (3) | |
H1 | 1.0632 | 1.3603 | 0.3919 | 0.031* | |
C10 | 0.74812 (18) | 0.93131 (15) | 0.76688 (13) | 0.0261 (3) | |
H10 | 0.8166 | 0.9818 | 0.8636 | 0.031* | |
C2 | 0.87625 (19) | 1.20164 (15) | 0.21448 (14) | 0.0272 (3) | |
H2 | 0.9213 | 1.2644 | 0.1475 | 0.033* | |
O1 | 0.41332 (14) | 0.74720 (11) | 0.09901 (9) | 0.0331 (3) | |
O2 | 0.30275 (14) | 0.58111 (10) | 0.30567 (10) | 0.0333 (3) | |
N2 | 0.79532 (15) | 1.01274 (12) | 0.66490 (10) | 0.0237 (2) | |
N1 | 0.90359 (15) | 1.17542 (12) | 0.46054 (11) | 0.0233 (2) | |
C15 | 0.8686 (2) | 0.65765 (16) | 0.07549 (14) | 0.0336 (3) | |
H15A | 0.8325 | 0.7503 | 0.0621 | 0.050* | |
H15B | 0.8372 | 0.5885 | −0.0177 | 0.050* | |
H15C | 1.0130 | 0.6934 | 0.1211 | 0.050* | |
C14 | 0.7508 (2) | 0.56671 (15) | 0.16901 (14) | 0.0312 (3) | |
O3 | 0.76490 (13) | 0.66129 (10) | 0.30034 (9) | 0.0291 (2) | |
H14A | 0.598 (3) | 0.5214 (19) | 0.1167 (17) | 0.042 (4)* | |
H14B | 0.797 (3) | 0.479 (2) | 0.1910 (18) | 0.048 (5)* | |
H3O | 0.8864 (17) | 0.719 (2) | 0.3431 (19) | 0.058 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C4 | 0.0190 (6) | 0.0245 (6) | 0.0236 (6) | 0.0108 (5) | 0.0073 (4) | 0.0073 (5) |
C11 | 0.0173 (5) | 0.0214 (6) | 0.0226 (6) | 0.0091 (4) | 0.0069 (4) | 0.0051 (4) |
C5 | 0.0215 (6) | 0.0259 (6) | 0.0238 (6) | 0.0102 (5) | 0.0044 (5) | 0.0036 (5) |
C7 | 0.0188 (6) | 0.0219 (6) | 0.0252 (6) | 0.0091 (5) | 0.0077 (4) | 0.0064 (4) |
C6 | 0.0205 (6) | 0.0222 (6) | 0.0291 (6) | 0.0078 (5) | 0.0068 (5) | 0.0043 (5) |
C12 | 0.0168 (5) | 0.0216 (6) | 0.0238 (6) | 0.0086 (4) | 0.0070 (4) | 0.0053 (4) |
C8 | 0.0217 (6) | 0.0231 (6) | 0.0330 (7) | 0.0085 (5) | 0.0107 (5) | 0.0100 (5) |
C9 | 0.0266 (6) | 0.0333 (7) | 0.0277 (6) | 0.0138 (5) | 0.0118 (5) | 0.0145 (5) |
C3 | 0.0242 (6) | 0.0326 (7) | 0.0240 (6) | 0.0143 (5) | 0.0085 (5) | 0.0095 (5) |
C1 | 0.0215 (6) | 0.0234 (6) | 0.0355 (7) | 0.0065 (5) | 0.0113 (5) | 0.0107 (5) |
C10 | 0.0260 (6) | 0.0332 (7) | 0.0215 (6) | 0.0124 (5) | 0.0077 (5) | 0.0069 (5) |
C2 | 0.0268 (6) | 0.0324 (7) | 0.0318 (7) | 0.0150 (5) | 0.0157 (5) | 0.0163 (5) |
O1 | 0.0338 (5) | 0.0333 (5) | 0.0238 (5) | 0.0072 (4) | 0.0005 (4) | 0.0019 (4) |
O2 | 0.0290 (5) | 0.0249 (5) | 0.0346 (5) | −0.0012 (4) | 0.0051 (4) | 0.0027 (4) |
N2 | 0.0234 (5) | 0.0257 (5) | 0.0222 (5) | 0.0088 (4) | 0.0070 (4) | 0.0044 (4) |
N1 | 0.0200 (5) | 0.0223 (5) | 0.0276 (5) | 0.0068 (4) | 0.0076 (4) | 0.0060 (4) |
C15 | 0.0321 (7) | 0.0332 (7) | 0.0282 (7) | 0.0040 (5) | 0.0083 (5) | 0.0019 (5) |
C14 | 0.0388 (8) | 0.0250 (6) | 0.0296 (7) | 0.0104 (5) | 0.0116 (6) | 0.0043 (5) |
O3 | 0.0255 (5) | 0.0329 (5) | 0.0261 (5) | 0.0092 (4) | 0.0059 (4) | 0.0007 (4) |
C4—C3 | 1.3950 (17) | C3—C2 | 1.3776 (19) |
C4—C12 | 1.3995 (17) | C3—H3 | 0.9500 |
C4—C5 | 1.4818 (18) | C1—N1 | 1.3355 (16) |
C11—N2 | 1.3436 (16) | C1—C2 | 1.3907 (18) |
C11—C7 | 1.4037 (17) | C1—H1 | 0.9500 |
C11—C12 | 1.4899 (16) | C10—N2 | 1.3357 (16) |
C5—O1 | 1.2171 (15) | C10—H10 | 0.9500 |
C5—C6 | 1.5411 (17) | C2—H2 | 0.9500 |
C7—C8 | 1.3972 (17) | C15—C14 | 1.5026 (18) |
C7—C6 | 1.4843 (18) | C15—H15A | 0.9800 |
C6—O2 | 1.2128 (16) | C15—H15B | 0.9800 |
C12—N1 | 1.3448 (16) | C15—H15C | 0.9800 |
C8—C9 | 1.3813 (18) | C14—O3 | 1.4225 (15) |
C8—H8 | 0.9500 | C14—H14A | 1.040 (18) |
C9—C10 | 1.3914 (19) | C14—H14B | 0.995 (18) |
C9—H9 | 0.9500 | O3—H3O | 0.850 (10) |
C3—C4—C12 | 118.58 (11) | C4—C3—H3 | 120.3 |
C3—C4—C5 | 119.93 (11) | N1—C1—C2 | 124.01 (11) |
C12—C4—C5 | 121.48 (11) | N1—C1—H1 | 118.0 |
N2—C11—C7 | 122.79 (11) | C2—C1—H1 | 118.0 |
N2—C11—C12 | 116.36 (10) | N2—C10—C9 | 124.42 (12) |
C7—C11—C12 | 120.85 (11) | N2—C10—H10 | 117.8 |
O1—C5—C4 | 122.47 (12) | C9—C10—H10 | 117.8 |
O1—C5—C6 | 119.54 (11) | C3—C2—C1 | 117.99 (11) |
C4—C5—C6 | 117.97 (10) | C3—C2—H2 | 121.0 |
C8—C7—C11 | 118.69 (11) | C1—C2—H2 | 121.0 |
C8—C7—C6 | 119.96 (11) | C10—N2—C11 | 117.08 (11) |
C11—C7—C6 | 121.35 (11) | C1—N1—C12 | 117.77 (11) |
O2—C6—C7 | 122.90 (12) | C14—C15—H15A | 109.5 |
O2—C6—C5 | 119.48 (11) | C14—C15—H15B | 109.5 |
C7—C6—C5 | 117.60 (10) | H15A—C15—H15B | 109.5 |
N1—C12—C4 | 122.28 (11) | C14—C15—H15C | 109.5 |
N1—C12—C11 | 117.04 (10) | H15A—C15—H15C | 109.5 |
C4—C12—C11 | 120.68 (11) | H15B—C15—H15C | 109.5 |
C9—C8—C7 | 118.69 (11) | O3—C14—C15 | 114.19 (11) |
C9—C8—H8 | 120.7 | O3—C14—H14A | 104.6 (9) |
C7—C8—H8 | 120.7 | C15—C14—H14A | 109.3 (9) |
C8—C9—C10 | 118.31 (11) | O3—C14—H14B | 108.5 (10) |
C8—C9—H9 | 120.8 | C15—C14—H14B | 109.8 (10) |
C10—C9—H9 | 120.8 | H14A—C14—H14B | 110.5 (14) |
C2—C3—C4 | 119.37 (12) | C14—O3—H3O | 111.5 (14) |
C2—C3—H3 | 120.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···N1i | 0.85 (1) | 2.08 (1) | 2.8258 (19) | 146 (2) |
C1—H1···O2ii | 0.95 | 2.53 | 3.3381 (19) | 143 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···N1i | 0.850 (10) | 2.080 (14) | 2.8258 (19) | 146.2 (18) |
C1—H1···O2ii | 0.95 | 2.53 | 3.3381 (19) | 143.1 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1, y+1, z. |
Acknowledgements
The authors would like to thank the China Scholarship Council (CSC).
References
Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goss, C. A. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263–4267. CrossRef CAS Web of Science Google Scholar
Ma, Q., Zhu, M. L., Yuan, C. X., Feng, S. S., Lu, L. P. & Wang, Q. M. (2010). Cryst. Growth Des. 10, 1706–1714. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murphy, D. M., McNamara, K., Richardson, P., Sanchez-Romaguera, V., Winpenny, R. E. P. & Yellowlees, L. J. (2011). Inorg. Chim. Acta, 374, 435–441. Web of Science CrossRef CAS Google Scholar
Paw, W., Connick, W. B. & Eisenberg, R. (1998). Inorg. Chem. 37, 3919–3926. Web of Science CrossRef PubMed CAS Google Scholar
Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293. CSD CrossRef PubMed CAS Web of Science Google Scholar
Pinczewska, A., Sosna, M., Bloodworth, S., Kilburn, J. D. & Bartlett, P. N. (2012). J. Am. Chem. Soc. 134, 18022–18033. Web of Science CrossRef CAS PubMed Google Scholar
Poteet, S. A. & MacDonnell, F. M. (2013). Dalton Trans. 42, 13305–13307. Web of Science CrossRef CAS PubMed Google Scholar
Poteet, S. A., Majewski, M. B., Breitbach, Z. S., Griffith, C. A., Singh, S., Armstrong, D. W., Wolf, M. O. & MacDonnell, F. M. (2013). J. Am. Chem. Soc. 135, 2419–2422. Web of Science CrossRef CAS PubMed Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G. F. & Cagle, F. W. (1947). J. Org. Chem. 12, 781–784. CrossRef PubMed CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, J. Z., Li, H., Zhang, J. G. & Xu, J. H. (2002). Inorg. Chem. Commun. 5, 71–75. Web of Science CrossRef CAS Google Scholar
Wu, Q., Maskus, M., Pariente, F., Tobalina, F., Fernandez, V. M., Lorenzo, E. & Abruna, H. D. (1996). Anal. Chem. 68, 3688–3696. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.