organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Chloro-2-{[4-(di­methyl­amino)­benzyl­­idene]amino}­phenol

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université Constantine 1, Algeria
*Correspondence e-mail: king.ali@hotmail.fr

(Received 11 April 2014; accepted 18 April 2014; online 26 April 2014)

In the title aromatic Schiff base compound, C15H15ClN2O, the mol­ecule exists in a trans conformation with respect to the C=N bond. The dihedral angle between the benzene rings is 14.49 (6)°. In the crystal, weak C—H⋯π inter­actions link mol­ecules into supra­molecular chains propagated along the a-axis direction.

Related literature

For the use of Schiff bases in synthesis, see: Arora et al. (2002[Arora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem. 14, 1611-1615.]). For their use as biological, analytical, polymer and liquid crystalline materials, see: Tanaka & Shiraishi (2000[Tanaka, K. & Shiraishi, R. (2000). Green Chem. 2, 272-273.]). Schiff bases have been reported to show anti­bacterial (Jarrahpour & Khalili, 2006[Jarrahpour, A. A. & Khalili, D. (2006). Molecules, 11, 59-63.]; Jarrahpour et al., 2004[Jarrahpour, A. A., Motamedifar, M., Pakshir, K., Hadi, N. & Zarei, M. (2004). Molecules, 9, 815-824.]; El-masry et al., 2000[El-masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]), anti­fungal (More et al., 2001[More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.]; Singh & Dash, 1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]), anti­cancer (Desai et al., 2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]; Phatak et al., 2000[Phatak, P., Jolly, V. S. & Sharma, K. P. (2000). Orient. J. Chem. 16, 493-494.]) and herbicidal activity (Samadhiya & Halve, 2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119-122.]). For related structures, see: Akkurt et al. (2005[Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776-o778.], 2008[Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15ClN2O

  • Mr = 274.74

  • Orthorhombic, P b c a

  • a = 7.411 (5) Å

  • b = 12.314 (5) Å

  • c = 29.684 (5) Å

  • V = 2709 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.03 × 0.02 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 14319 measured reflections

  • 2346 independent reflections

  • 1895 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.102

  • S = 1.10

  • 2346 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg2i 0.93 2.70 3.533 (3) 150
C15—H15BCg1ii 0.96 2.76 3.581 (4) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases are widely used for synthetic purposes both by organic and inorganic chemists (Arora et al., 2002) and have uses as biological, analytical, polymer and liquid crystalline materials (Tanaka & Shiraishi, 2000). Schiff bases are reported to show a variety of biological activities such as antibacterial (Jarrahpour & Khalili, 2006; Jarrahpour et al., 2004; El-masry et al., 2000), antifungal (More et al., 2001; Singh & Dash, 1988), anticancer (Desai et al., 2001; Phatak et al., 2000) and herbicidal activities (Samadhiya & Halve, 2001). As an extension of our work on Schiff bases, we report here the crystal structure of the title compound (I).

Related literature top

For the use of Schiff bases in synthesis, see: Arora et al. (2002). For their use as biological, analytical, polymer and liquid crystalline materials, see: Tanaka & Shiraishi (2000). Schiff bases have been reported to show antibacterial (Jarrahpour & Khalili, 2006; Jarrahpour et al., 2004; El-masry et al., 2000), antifungal (More et al., 2001; Singh & Dash, 1988), anticancer (Desai et al., 2001; Phatak et al., 2000) and herbicidal activity (Samadhiya & Halve, 2001). For related structures, see: Akkurt et al. (2005, 2008).

Experimental top

A mixture of 3,4-dimethoxyaniline (1 mmol) and 4-nitrobenzaldehyde (1 mmol) was added and heated to form a clear solution. To this a few drops of conc. H2SO4 was added as a catalyst and refluxed for 6 h. After cooling the solution, After stirring at 80°C for 20 min the formed precipitate was filtered off and washed with ice ethanol to give pure Schiff base as an yellow solid in an 80% yield. The crude product was dissolved in ethanol and two spoons of activated charcoal were added. The mixture was filtered over celite® and the product was crystallized from ethyl acetate, yellow crystal was obtained after two weeks.

Refinement top

Anisotropic thermal parameters were applied to all non hydrogen atoms. The organic hydrogen atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
(E)-4-Chloro-2-{[4-(dimethylamino)benzylidene]amino}phenol top
Crystal data top
C15H15ClN2OZ = 8
Mr = 274.74F(000) = 1152
Orthorhombic, PbcaDx = 1.347 Mg m3
Hall symbol: -P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 7.411 (5) ŵ = 0.28 mm1
b = 12.314 (5) ÅT = 293 K
c = 29.684 (5) ÅBlock, yellow
V = 2709 (2) Å30.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
1895 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.028
Graphite monochromatorθmax = 25.1°, θmin = 3.1°
phi and ω scansh = 88
14319 measured reflectionsk = 1314
2346 independent reflectionsl = 3335
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0321P)2 + 1.9647P]
where P = (Fo2 + 2Fc2)/3
2346 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H15ClN2OV = 2709 (2) Å3
Mr = 274.74Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.411 (5) ŵ = 0.28 mm1
b = 12.314 (5) ÅT = 293 K
c = 29.684 (5) Å0.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
1895 reflections with I > 2σ(I)
14319 measured reflectionsRint = 0.028
2346 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.10Δρmax = 0.20 e Å3
2346 reflectionsΔρmin = 0.20 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl010.50194 (10)0.14231 (6)0.23931 (2)0.0581 (2)
O0020.7854 (3)0.17647 (13)0.11151 (6)0.0568 (6)
N10.6988 (2)0.01773 (14)0.07922 (6)0.0368 (6)
N20.7096 (3)0.22034 (16)0.12244 (6)0.0488 (7)
C10.7045 (4)0.1285 (2)0.18620 (8)0.0527 (9)
C20.6370 (4)0.0540 (2)0.21635 (8)0.0508 (9)
C30.5870 (3)0.04721 (19)0.20103 (7)0.0401 (7)
C40.6031 (3)0.07596 (18)0.15641 (7)0.0377 (7)
C50.6693 (3)0.00046 (17)0.12564 (7)0.0336 (6)
C60.7202 (3)0.10202 (19)0.14121 (7)0.0415 (8)
C70.6153 (3)0.09407 (18)0.05884 (7)0.0353 (7)
C80.6406 (3)0.12185 (17)0.01192 (7)0.0326 (7)
C90.5587 (3)0.21453 (18)0.00490 (7)0.0404 (7)
C100.5801 (3)0.24837 (19)0.04866 (7)0.0409 (7)
C110.6858 (3)0.18775 (17)0.07873 (7)0.0351 (7)
C120.7676 (3)0.09286 (18)0.06181 (7)0.0384 (7)
C130.7462 (3)0.06157 (17)0.01784 (7)0.0364 (7)
C140.6269 (4)0.3194 (2)0.13863 (8)0.0584 (10)
C150.7819 (4)0.1475 (2)0.15601 (7)0.0542 (9)
H10.739700.196900.196200.0630*
H020.787300.150000.086200.0850*
H20.625200.071700.246700.0610*
H40.570000.145100.146900.0450*
H70.532500.134600.075300.0420*
H90.486300.255500.014200.0480*
H100.524200.311800.058400.0490*
H120.837800.050500.080900.0460*
H130.803100.001100.007700.0440*
H14A0.657100.329700.169800.0870*
H14B0.670500.379800.121300.0870*
H14C0.498300.314200.135500.0870*
H15A0.788400.184300.184500.0810*
H15B0.704800.085200.158700.0810*
H15C0.900600.124600.147200.0810*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl010.0648 (4)0.0729 (5)0.0366 (3)0.0025 (4)0.0062 (3)0.0031 (3)
O0020.0736 (13)0.0446 (10)0.0522 (10)0.0160 (9)0.0035 (9)0.0047 (8)
N10.0422 (11)0.0344 (10)0.0337 (9)0.0028 (9)0.0004 (8)0.0040 (8)
N20.0689 (15)0.0490 (12)0.0285 (9)0.0023 (11)0.0040 (10)0.0006 (9)
C10.0608 (17)0.0469 (14)0.0504 (14)0.0015 (13)0.0106 (13)0.0188 (12)
C20.0555 (16)0.0617 (16)0.0351 (12)0.0045 (14)0.0066 (11)0.0156 (12)
C30.0366 (12)0.0506 (14)0.0330 (11)0.0062 (11)0.0021 (10)0.0026 (10)
C40.0390 (13)0.0384 (12)0.0357 (11)0.0042 (10)0.0017 (10)0.0077 (10)
C50.0324 (11)0.0345 (11)0.0340 (11)0.0054 (10)0.0033 (9)0.0059 (9)
C60.0397 (13)0.0415 (13)0.0432 (13)0.0000 (11)0.0065 (11)0.0053 (11)
C70.0362 (12)0.0368 (12)0.0328 (11)0.0023 (10)0.0025 (10)0.0003 (9)
C80.0335 (12)0.0328 (11)0.0315 (11)0.0023 (10)0.0001 (9)0.0001 (9)
C90.0445 (14)0.0431 (13)0.0335 (11)0.0100 (11)0.0058 (10)0.0018 (10)
C100.0485 (14)0.0392 (13)0.0350 (11)0.0100 (11)0.0009 (10)0.0035 (10)
C110.0392 (13)0.0359 (12)0.0303 (11)0.0084 (10)0.0005 (9)0.0024 (9)
C120.0437 (13)0.0360 (12)0.0356 (11)0.0011 (11)0.0060 (10)0.0084 (10)
C130.0408 (13)0.0287 (11)0.0398 (12)0.0003 (10)0.0008 (10)0.0006 (9)
C140.084 (2)0.0552 (16)0.0359 (13)0.0045 (15)0.0009 (13)0.0107 (11)
C150.0613 (17)0.0677 (17)0.0335 (12)0.0105 (14)0.0077 (12)0.0066 (12)
Geometric parameters (Å, º) top
Cl01—C31.749 (3)C10—C111.403 (3)
O002—C61.361 (3)C11—C121.409 (3)
O002—H020.8200C12—C131.370 (3)
N1—C71.278 (3)C1—H10.9300
N1—C51.411 (3)C2—H20.9300
N2—C111.370 (3)C4—H40.9300
N2—C151.444 (3)C7—H70.9300
N2—C141.447 (3)C9—H90.9300
C1—C61.380 (3)C10—H100.9300
C1—C21.376 (4)C12—H120.9300
C2—C31.378 (4)C13—H130.9300
C3—C41.376 (3)C14—H14A0.9600
C4—C51.393 (3)C14—H14B0.9600
C5—C61.396 (3)C14—H14C0.9600
C7—C81.446 (3)C15—H15A0.9600
C8—C131.394 (3)C15—H15B0.9600
C8—C91.386 (3)C15—H15C0.9600
C9—C101.373 (3)
Cl01···H15Ai3.1200H4···O002ii2.6600
Cl01···H1ii3.0400H7···C42.5700
Cl01···H14Aiii2.9500H7···H42.1500
O002···N12.655 (3)H7···H92.3700
O002···C10iv3.406 (4)H7···O002ii2.9000
O002···C7v3.312 (4)H9···H72.3700
O002···H14Civ2.7900H9···C8i3.0700
O002···H15Cvi2.6400H9···C11i3.0200
O002···H4v2.6600H9···C12i2.8500
O002···H7v2.9000H9···C13i2.8700
N1···O0022.655 (3)H10···C142.5000
N1···H022.1800H10···H14B2.3200
N1···H132.7000H10···H14C2.3000
C7···C13iv3.512 (4)H12···C152.5600
C7···O002ii3.312 (4)H12···H15B2.5500
C10···O002iv3.406 (4)H12···H15C2.2200
C13···C7iv3.512 (4)H12···H14Bv2.4200
C2···H15Biv3.0800H13···N12.7000
C3···H15Biv2.9900H14A···H15A2.0800
C4···H15Biv3.0200H14A···Cl01ix2.9500
C4···H72.5700H14B···C102.7800
C6···H15Cvi2.8300H14B···H102.3200
C6···H14Civ3.0800H14B···H12ii2.4200
C7···H42.7100H14C···C102.7700
C8···H9vii3.0700H14C···H102.3000
C10···H14B2.7800H14C···O002iv2.7900
C10···H14C2.7700H14C···C6iv3.0800
C11···H9vii3.0200H15A···H14A2.0800
C12···H15B2.9200H15A···H2x2.5500
C12···H9vii2.8500H15A···Cl01vii3.1200
C12···H15C2.7500H15B···C122.9200
C13···H9vii2.8700H15B···H122.5500
C14···H102.5000H15B···C2iv3.0800
C15···H122.5600H15B···C3iv2.9900
H1···Cl01v3.0400H15B···C4iv3.0200
H02···N12.1800H15C···C122.7500
H2···H15Aviii2.5500H15C···H122.2200
H4···C72.7100H15C···O002vi2.6400
H4···H72.1500H15C···C6vi2.8300
C6—O002—H02109.00C2—C1—H1120.00
C5—N1—C7119.88 (18)C6—C1—H1120.00
C11—N2—C14120.47 (19)C1—C2—H2120.00
C14—N2—C15116.85 (18)C3—C2—H2120.00
C11—N2—C15121.31 (19)C3—C4—H4120.00
C2—C1—C6120.2 (2)C5—C4—H4120.00
C1—C2—C3119.1 (2)N1—C7—H7118.00
Cl01—C3—C4118.96 (18)C8—C7—H7118.00
C2—C3—C4121.8 (2)C8—C9—H9119.00
Cl01—C3—C2119.23 (17)C10—C9—H9119.00
C3—C4—C5119.3 (2)C9—C10—H10120.00
N1—C5—C4126.47 (19)C11—C10—H10120.00
N1—C5—C6114.69 (18)C11—C12—H12119.00
C4—C5—C6118.79 (19)C13—C12—H12119.00
O002—C6—C5119.38 (19)C8—C13—H13119.00
C1—C6—C5120.8 (2)C12—C13—H13119.00
O002—C6—C1119.9 (2)N2—C14—H14A109.00
N1—C7—C8124.6 (2)N2—C14—H14B109.00
C7—C8—C13123.85 (19)N2—C14—H14C109.00
C9—C8—C13117.13 (19)H14A—C14—H14B110.00
C7—C8—C9119.01 (19)H14A—C14—H14C109.00
C8—C9—C10122.7 (2)H14B—C14—H14C110.00
C9—C10—C11120.3 (2)N2—C15—H15A109.00
N2—C11—C10121.3 (2)N2—C15—H15B109.00
N2—C11—C12121.7 (2)N2—C15—H15C110.00
C10—C11—C12117.05 (19)H15A—C15—H15B109.00
C11—C12—C13121.5 (2)H15A—C15—H15C109.00
C8—C13—C12121.3 (2)H15B—C15—H15C109.00
C7—N1—C5—C421.8 (3)N1—C5—C6—O0022.4 (3)
C7—N1—C5—C6161.0 (2)N1—C5—C6—C1177.8 (2)
C5—N1—C7—C8177.4 (2)C4—C5—C6—O002179.9 (2)
C14—N2—C11—C100.6 (3)C4—C5—C6—C10.3 (3)
C14—N2—C11—C12178.7 (2)N1—C7—C8—C9172.2 (2)
C15—N2—C11—C10165.6 (2)N1—C7—C8—C136.7 (4)
C15—N2—C11—C1215.1 (3)C7—C8—C9—C10178.1 (2)
C6—C1—C2—C30.5 (4)C13—C8—C9—C100.9 (3)
C2—C1—C6—O002179.4 (2)C7—C8—C13—C12178.9 (2)
C2—C1—C6—C50.4 (4)C9—C8—C13—C120.1 (3)
C1—C2—C3—Cl01179.8 (2)C8—C9—C10—C111.1 (3)
C1—C2—C3—C40.2 (4)C9—C10—C11—N2179.7 (2)
Cl01—C3—C4—C5179.48 (17)C9—C10—C11—C120.4 (3)
C2—C3—C4—C50.9 (4)N2—C11—C12—C13178.8 (2)
C3—C4—C5—N1178.1 (2)C10—C11—C12—C130.5 (3)
C3—C4—C5—C61.0 (3)C11—C12—C13—C80.8 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+3/2, y+1/2, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+3/2, y1/2, z; (vi) x+2, y, z; (vii) x+1/2, y+1/2, z; (viii) x+3/2, y, z+1/2; (ix) x, y+1/2, z1/2; (x) x+3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg2i0.932.703.533 (3)150
C15—H15B···Cg1iv0.962.763.581 (4)142
Symmetry codes: (i) x1/2, y+1/2, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg2i0.932.703.533 (3)150
C15—H15B···Cg1ii0.962.763.581 (4)142
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1, y, z.
 

Acknowledgements

We thank all researchers of the CHEMS Research Unit, University of Constantine 1, Algeria, for their valuable assistance. The authors thank the MESRS (Algeria) for financial support.

References

First citationAkkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem. 14, 1611–1615.  CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationEl-masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A. A. & Khalili, D. (2006). Molecules, 11, 59–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarrahpour, A. A., Motamedifar, M., Pakshir, K., Hadi, N. & Zarei, M. (2004). Molecules, 9, 815–824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMore, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.  CAS Google Scholar
First citationPhatak, P., Jolly, V. S. & Sharma, K. P. (2000). Orient. J. Chem. 16, 493–494.  CAS Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationTanaka, K. & Shiraishi, R. (2000). Green Chem. 2, 272–273.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds