organic compounds
6,8-Diiodo-4-oxo-4H-chromene-3-carbaldehyde
aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp
The title compound, C10H4I2O3, is an iodinated 3-formylchromone derivative, and the atoms are essentially coplanar [r.m.s. deviation = 0.049 Å, largest deviation from the least-squares plane = 0.111 (9) Å for the CH(=O) C atom]. In the crystal, molecules are linked into a three-dimensional network through halogen bonds [I⋯O = 3.352 (5) and 3.405 (7) Å, C—I⋯O = 144.2 (3) and 154.5 (3)°, and C=O⋯I = 134.9 (6) and 146.0 (6)°], and π–π stacking interactions [centroid–centroid distance = 3.527 (6) Å].
CCDC reference: 994113
Related literature
For the preparation of the precursor of the title compound, see: Khansole et al. (2008). For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).
Experimental
Crystal data
|
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.
Supporting information
CCDC reference: 994113
10.1107/S1600536814006904/zl2583sup1.cif
contains datablocks General, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814006904/zl2583Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814006904/zl2583Isup3.cml
2-Hydroxy-3,5-diiodoacetophenone was prepared according to the literature method (Khansole et al., 2008). To a solution of 2-hydroxy-3,5-diiodoacetophenone (134 mmol) in DMF (5 ml) was added dropwise POCl3 (335 mmol) for 5 min at 0 °C. After the mixture was stirred for 15 h at room temperature, water (20 ml) was added. The precipitates were collected, washed with water and dried in vacuo (yield: 81.1%). 1H NMR (400 MHz, DMSO-d6): δ = 8.31 (d, 1H, J = 2.0 Hz), 8.63 (d, 1H, J = 2.0 Hz), 9.04 (s, 1H), 10.07 (s, 1H). DART-MS calcd for [C10H4I2O3 + H+]: 426.825, found 426.869. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the title compound at room temperature.
The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. There are large positive and negative electron densities around the iodine atoms in spite of the good R value. The reflection data were collected separately with a smaller sized crystal, but it is found that the large residual electron densities around the iodine atoms still remained. For most of the disagreeable reflections in the SHELX.lst file, Fobs is much greater than Fcalc. This suggests the possibility of non-merohedral
Thus, the large residual electron densities could be derived from non-merohedral Unfortunately, it is difficult to confirm the possibility on a single point detector diffractometer, Rigaku AFC7R. One reflection (–2 7 3) was omitted because of systematic error. Extinction correction was applied for improvement of large negative electron densities and the R value.Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell
WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).C10H4I2O3 | Z = 2 |
Mr = 425.95 | F(000) = 388.00 |
Triclinic, P1 | Dx = 2.733 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 7.290 (3) Å | Cell parameters from 25 reflections |
b = 8.779 (5) Å | θ = 15.2–17.1° |
c = 9.767 (4) Å | µ = 6.06 mm−1 |
α = 63.82 (3)° | T = 100 K |
β = 75.44 (3)° | Block, yellow |
γ = 68.05 (4)° | 0.48 × 0.30 × 0.25 mm |
V = 517.5 (5) Å3 |
Rigaku AFC-7R diffractometer | Rint = 0.026 |
ω–2θ scans | θmax = 27.5° |
Absorption correction: ψ scan (North et al., 1968) | h = −5→9 |
Tmin = 0.152, Tmax = 0.220 | k = −10→11 |
2933 measured reflections | l = −12→12 |
2383 independent reflections | 3 standard reflections every 150 reflections |
2361 reflections with F2 > 2σ(F2) | intensity decay: −1.1% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.147 | w = 1/[σ2(Fo2) + (0.0884P)2 + 4.3985P] where P = (Fo2 + 2Fc2)/3 |
S = 1.23 | (Δ/σ)max = 0.001 |
2383 reflections | Δρmax = 3.56 e Å−3 |
137 parameters | Δρmin = −3.01 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.018 (3) |
Secondary atom site location: difference Fourier map |
C10H4I2O3 | γ = 68.05 (4)° |
Mr = 425.95 | V = 517.5 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.290 (3) Å | Mo Kα radiation |
b = 8.779 (5) Å | µ = 6.06 mm−1 |
c = 9.767 (4) Å | T = 100 K |
α = 63.82 (3)° | 0.48 × 0.30 × 0.25 mm |
β = 75.44 (3)° |
Rigaku AFC-7R diffractometer | 2361 reflections with F2 > 2σ(F2) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.026 |
Tmin = 0.152, Tmax = 0.220 | 3 standard reflections every 150 reflections |
2933 measured reflections | intensity decay: −1.1% |
2383 independent reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.23 | Δρmax = 3.56 e Å−3 |
2383 reflections | Δρmin = −3.01 e Å−3 |
137 parameters |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
I1 | 0.32790 (6) | 0.83369 (5) | 0.74688 (5) | 0.0152 (3) | |
I2 | 0.74091 (6) | 0.06022 (5) | 0.85492 (5) | 0.0179 (3) | |
O1 | 0.9121 (7) | 0.2469 (6) | 0.5147 (6) | 0.0131 (9) | |
O2 | 0.8156 (8) | 0.7689 (7) | 0.2159 (6) | 0.0180 (10) | |
O3 | 1.2172 (8) | 0.3795 (8) | 0.0749 (6) | 0.0197 (10) | |
C1 | 1.0076 (10) | 0.2949 (10) | 0.3730 (8) | 0.0163 (13) | |
C2 | 0.9844 (9) | 0.4629 (10) | 0.2687 (8) | 0.0129 (12) | |
C3 | 0.8432 (9) | 0.6141 (9) | 0.3051 (7) | 0.0109 (12) | |
C4 | 0.6053 (10) | 0.6899 (9) | 0.5166 (8) | 0.0125 (12) | |
C5 | 0.5157 (10) | 0.6387 (9) | 0.6645 (8) | 0.0135 (12) | |
C6 | 0.5540 (10) | 0.4571 (10) | 0.7630 (8) | 0.0146 (12) | |
C7 | 0.6876 (10) | 0.3271 (9) | 0.7098 (7) | 0.0128 (12) | |
C8 | 0.7425 (9) | 0.5587 (9) | 0.4625 (7) | 0.0118 (12) | |
C9 | 0.7809 (9) | 0.3800 (8) | 0.5608 (7) | 0.0104 (11) | |
C10 | 1.1073 (10) | 0.4944 (9) | 0.1196 (8) | 0.0128 (12) | |
H1 | 1.1002 | 0.2020 | 0.3435 | 0.0196* | |
H2 | 0.5756 | 0.8124 | 0.4509 | 0.0150* | |
H3 | 0.4896 | 0.4234 | 0.8646 | 0.0176* | |
H4 | 1.0995 | 0.6144 | 0.0536 | 0.0153* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0159 (3) | 0.0127 (3) | 0.0163 (3) | −0.00142 (18) | 0.00485 (17) | −0.0107 (2) |
I2 | 0.0180 (3) | 0.0106 (3) | 0.0169 (3) | −0.00243 (19) | 0.00704 (18) | −0.0045 (2) |
O1 | 0.014 (2) | 0.010 (2) | 0.013 (2) | −0.0006 (17) | 0.0030 (17) | −0.0082 (17) |
O2 | 0.019 (3) | 0.016 (3) | 0.012 (3) | −0.0030 (19) | 0.0043 (18) | −0.0046 (19) |
O3 | 0.017 (3) | 0.026 (3) | 0.015 (3) | −0.003 (2) | 0.0040 (18) | −0.012 (2) |
C1 | 0.014 (3) | 0.021 (4) | 0.016 (3) | −0.004 (3) | 0.001 (3) | −0.012 (3) |
C2 | 0.007 (3) | 0.023 (4) | 0.015 (3) | −0.006 (3) | 0.004 (3) | −0.015 (3) |
C3 | 0.008 (3) | 0.016 (3) | 0.010 (3) | −0.003 (3) | 0.003 (2) | −0.010 (3) |
C4 | 0.015 (3) | 0.009 (3) | 0.013 (3) | −0.002 (3) | −0.005 (3) | −0.004 (3) |
C5 | 0.011 (3) | 0.016 (3) | 0.018 (3) | −0.005 (3) | 0.002 (3) | −0.011 (3) |
C6 | 0.014 (3) | 0.026 (4) | 0.010 (3) | −0.010 (3) | 0.006 (2) | −0.012 (3) |
C7 | 0.014 (3) | 0.016 (3) | 0.011 (3) | −0.006 (3) | 0.002 (3) | −0.007 (3) |
C8 | 0.013 (3) | 0.015 (3) | 0.009 (3) | −0.007 (3) | 0.003 (3) | −0.006 (3) |
C9 | 0.013 (3) | 0.010 (3) | 0.011 (3) | −0.003 (3) | 0.002 (3) | −0.008 (3) |
C10 | 0.012 (3) | 0.015 (3) | 0.010 (3) | −0.001 (3) | 0.001 (3) | −0.008 (3) |
I1—C5 | 2.088 (8) | C4—C5 | 1.373 (9) |
I2—C7 | 2.077 (7) | C4—C8 | 1.420 (10) |
O1—C1 | 1.340 (8) | C5—C6 | 1.412 (9) |
O1—C9 | 1.377 (9) | C6—C7 | 1.399 (11) |
O2—C3 | 1.219 (8) | C7—C9 | 1.392 (9) |
O3—C10 | 1.208 (10) | C8—C9 | 1.392 (8) |
C1—C2 | 1.348 (9) | C1—H1 | 0.950 |
C2—C3 | 1.470 (10) | C4—H2 | 0.950 |
C2—C10 | 1.474 (9) | C6—H3 | 0.950 |
C3—C8 | 1.476 (9) | C10—H4 | 0.950 |
I2···O1 | 3.150 (5) | C9···C5v | 3.539 (13) |
O1···C3 | 2.884 (8) | C10···O3vii | 2.980 (10) |
O2···C1 | 3.566 (9) | C10···C5ii | 3.421 (11) |
O2···C4 | 2.862 (8) | C10···C6ii | 3.199 (13) |
O2···C10 | 2.895 (9) | C10···C7ii | 3.574 (14) |
O3···C1 | 2.840 (8) | C10···C10vii | 3.072 (13) |
C1···C7 | 3.579 (10) | I1···H2 | 3.0418 |
C1···C8 | 2.730 (11) | I1···H3 | 3.0886 |
C2···C9 | 2.778 (9) | I2···H3 | 3.0562 |
C4···C7 | 2.811 (9) | O2···H2 | 2.5939 |
C5···C9 | 2.772 (10) | O2···H4 | 2.6052 |
C6···C8 | 2.806 (9) | O3···H1 | 2.5096 |
I1···O2i | 3.405 (7) | C1···H4 | 3.2682 |
I1···O3ii | 3.594 (6) | C3···H1 | 3.2906 |
I2···O2iii | 3.352 (5) | C3···H2 | 2.6671 |
I2···O3iv | 3.514 (7) | C3···H4 | 2.6866 |
O1···C3ii | 3.587 (12) | C4···H3 | 3.2790 |
O1···C5v | 3.557 (10) | C6···H2 | 3.2839 |
O2···I1i | 3.405 (7) | C9···H1 | 3.1762 |
O2···I2vi | 3.352 (5) | C9···H2 | 3.2812 |
O2···C7ii | 3.585 (10) | C9···H3 | 3.2682 |
O2···C9ii | 3.599 (10) | C10···H1 | 2.5423 |
O3···I1ii | 3.594 (6) | H1···H4 | 3.4744 |
O3···I2iv | 3.514 (7) | I1···H2i | 3.0877 |
O3···O3vii | 3.353 (8) | I1···H4ix | 3.2019 |
O3···C2vii | 3.493 (10) | I2···H1iv | 3.3483 |
O3···C5ii | 3.492 (12) | O1···H1iv | 3.5832 |
O3···C6viii | 3.381 (8) | O3···H3viii | 2.4768 |
O3···C6ii | 3.531 (13) | O3···H3ii | 3.4952 |
O3···C10vii | 2.980 (10) | O3···H4vii | 2.8657 |
C1···C4ii | 3.329 (13) | C1···H2ii | 3.4833 |
C1···C8ii | 3.548 (14) | C3···H3v | 3.4417 |
C2···O3vii | 3.493 (10) | C4···H1ii | 3.3938 |
C2···C4ii | 3.580 (11) | C5···H1ii | 3.5387 |
C2···C5ii | 3.571 (11) | C6···H4ii | 3.1756 |
C2···C8ii | 3.577 (12) | C7···H2v | 3.5512 |
C2···C9ii | 3.581 (14) | C7···H4ii | 3.3859 |
C3···O1ii | 3.587 (12) | C10···H3viii | 3.3078 |
C3···C6v | 3.451 (13) | C10···H3ii | 3.3304 |
C3···C9ii | 3.346 (12) | C10···H4vii | 3.1352 |
C4···C1ii | 3.329 (13) | H1···I2iv | 3.3483 |
C4···C2ii | 3.580 (11) | H1···O1iv | 3.5832 |
C4···C7v | 3.518 (13) | H1···C4ii | 3.3938 |
C4···C9v | 3.413 (12) | H1···C5ii | 3.5387 |
C5···O1v | 3.557 (10) | H1···H2ii | 3.4018 |
C5···O3ii | 3.492 (12) | H2···I1i | 3.0877 |
C5···C2ii | 3.571 (11) | H2···C1ii | 3.4833 |
C5···C9v | 3.539 (13) | H2···C7v | 3.5512 |
C5···C10ii | 3.421 (11) | H2···H1ii | 3.4018 |
C6···O3ix | 3.381 (8) | H2···H2i | 3.5393 |
C6···O3ii | 3.531 (13) | H3···O3ix | 2.4768 |
C6···C3v | 3.451 (13) | H3···O3ii | 3.4952 |
C6···C8v | 3.526 (13) | H3···C3v | 3.4417 |
C6···C10ii | 3.199 (13) | H3···C10ix | 3.3078 |
C7···O2ii | 3.585 (10) | H3···C10ii | 3.3304 |
C7···C4v | 3.518 (13) | H3···H3x | 3.5106 |
C7···C8v | 3.533 (11) | H3···H4ix | 3.2916 |
C7···C10ii | 3.574 (14) | H3···H4ii | 3.1545 |
C8···C1ii | 3.548 (14) | H4···I1viii | 3.2019 |
C8···C2ii | 3.577 (12) | H4···O3vii | 2.8657 |
C8···C6v | 3.526 (13) | H4···C6ii | 3.1756 |
C8···C7v | 3.533 (11) | H4···C7ii | 3.3859 |
C9···O2ii | 3.599 (10) | H4···C10vii | 3.1352 |
C9···C2ii | 3.581 (14) | H4···H3viii | 3.2916 |
C9···C3ii | 3.346 (12) | H4···H3ii | 3.1545 |
C9···C4v | 3.413 (12) | H4···H4vii | 3.4680 |
C1—O1—C9 | 117.8 (5) | C3—C8—C4 | 119.6 (6) |
O1—C1—C2 | 126.0 (7) | C3—C8—C9 | 121.5 (6) |
C1—C2—C3 | 120.3 (6) | C4—C8—C9 | 118.9 (6) |
C1—C2—C10 | 119.5 (7) | O1—C9—C7 | 116.8 (6) |
C3—C2—C10 | 120.2 (6) | O1—C9—C8 | 121.5 (6) |
O2—C3—C2 | 123.5 (6) | C7—C9—C8 | 121.7 (6) |
O2—C3—C8 | 123.7 (7) | O3—C10—C2 | 125.0 (7) |
C2—C3—C8 | 112.8 (5) | O1—C1—H1 | 116.984 |
C5—C4—C8 | 119.7 (6) | C2—C1—H1 | 116.981 |
I1—C5—C4 | 119.2 (5) | C5—C4—H2 | 120.173 |
I1—C5—C6 | 119.6 (5) | C8—C4—H2 | 120.164 |
C4—C5—C6 | 121.1 (7) | C5—C6—H3 | 120.281 |
C5—C6—C7 | 119.4 (6) | C7—C6—H3 | 120.280 |
I2—C7—C6 | 119.1 (5) | O3—C10—H4 | 117.476 |
I2—C7—C9 | 121.7 (5) | C2—C10—H4 | 117.479 |
C6—C7—C9 | 119.2 (6) | ||
C1—O1—C9—C7 | −178.3 (7) | C8—C4—C5—I1 | 176.2 (7) |
C1—O1—C9—C8 | 2.2 (11) | C8—C4—C5—C6 | −1.5 (13) |
C9—O1—C1—C2 | −1.6 (13) | H2—C4—C5—I1 | −3.8 |
C9—O1—C1—H1 | 178.5 | H2—C4—C5—C6 | 178.5 |
O1—C1—C2—C3 | −0.3 (14) | H2—C4—C8—C3 | 1.8 |
O1—C1—C2—C10 | 177.4 (8) | H2—C4—C8—C9 | −179.1 |
H1—C1—C2—C3 | 179.7 | I1—C5—C6—C7 | −176.9 (5) |
H1—C1—C2—C10 | −2.6 | I1—C5—C6—H3 | 3.1 |
C1—C2—C3—O2 | 179.9 (8) | C4—C5—C6—C7 | 0.9 (13) |
C1—C2—C3—C8 | 1.4 (12) | C4—C5—C6—H3 | −179.1 |
C1—C2—C10—O3 | 7.6 (14) | C5—C6—C7—I2 | −179.4 (7) |
C1—C2—C10—H4 | −172.4 | C5—C6—C7—C9 | 0.4 (13) |
C3—C2—C10—O3 | −174.7 (8) | H3—C6—C7—I2 | 0.6 |
C3—C2—C10—H4 | 5.3 | H3—C6—C7—C9 | −179.6 |
C10—C2—C3—O2 | 2.3 (13) | I2—C7—C9—O1 | −0.7 (11) |
C10—C2—C3—C8 | −176.3 (7) | I2—C7—C9—C8 | 178.8 (5) |
O2—C3—C8—C4 | −0.2 (13) | C6—C7—C9—O1 | 179.5 (7) |
O2—C3—C8—C9 | −179.3 (8) | C6—C7—C9—C8 | −1.0 (13) |
C2—C3—C8—C4 | 178.4 (7) | C3—C8—C9—O1 | −1.1 (12) |
C2—C3—C8—C9 | −0.7 (11) | C3—C8—C9—C7 | 179.5 (7) |
C5—C4—C8—C3 | −178.2 (7) | C4—C8—C9—O1 | 179.8 (7) |
C5—C4—C8—C9 | 0.9 (12) | C4—C8—C9—C7 | 0.3 (12) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y−1, z+1; (iv) −x+2, −y, −z+1; (v) −x+1, −y+1, −z+1; (vi) x, y+1, z−1; (vii) −x+2, −y+1, −z; (viii) x+1, y, z−1; (ix) x−1, y, z+1; (x) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C10H4I2O3 |
Mr | 425.95 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.290 (3), 8.779 (5), 9.767 (4) |
α, β, γ (°) | 63.82 (3), 75.44 (3), 68.05 (4) |
V (Å3) | 517.5 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.06 |
Crystal size (mm) | 0.48 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Rigaku AFC-7R diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.152, 0.220 |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 2933, 2383, 2361 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.147, 1.23 |
No. of reflections | 2383 |
No. of parameters | 137 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 3.56, −3.01 |
Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).
Acknowledgements
We acknowledge the University of Shizuoka for instrumental support.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. Web of Science CrossRef PubMed CAS Google Scholar
Ishikawa, Y. (2014). Acta Cryst. E70, o439. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. CSD CrossRef IUCr Journals Google Scholar
Khansole, S. V., Mokle, S. S., Sayyed, M. A. & Vibhute, Y. B. (2008). J. Chin. Chem. Soc. 55, 871–874. CAS Google Scholar
Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. Web of Science CrossRef PubMed CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. Web of Science CrossRef CAS PubMed Google Scholar
Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of halogenated 3-formylchromone derivatives, 6,8-dichloro-4-oxochromene-3-carbaldehyde and 6,8-dibromo-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013; Ishikawa, 2014). It was found that these molecules are linked through halogen bonds in a similar fashion in the crystals. As part of our interest in chemical bonding, we herein report the crystal structure of 6,8-diiodo-4-oxochromene-3-carbaldehyde, which was prepared by the Vilsmeier–Haack reaction of 2-hydroxy-3,5-diiodoacetophenone with N,N-dimethylformamide (DMF) in the presence of POCl3 in good yield.
The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0487 Å, and the largest deviations is 0.111 (9) Å for C10. These mean that the atoms are essentially coplanar.
In the crystal, the molecule is assembled through characteristic intermolecular interactions between the I1 atom at the 6-position and the O2 atom of the α,β-unsaturated carbonyl group of its inversion-symmetry equivalent [I1···O2; 3.405 (7) Å, C5–I1···O2i = 154.5 (3)°, I1···O2i–C3i = 134.9 (6)° (i): -x + 1, -y + 2, -z + 1, Fig. 1], and between the I2 atom at the 6-position and the O2 atom of the α,β-unsaturated carbonyl group of its translation-symmetry equivalent [I2···O2; 3.352 (5) Å, C7–I2···O2ii = 144.2 (3)°, I2···O2ii–C3ii = 146.0 (6)° (i): x, y - 1, z+1, Fig. 2]. The short contact and the geometry of the I···O interactions come within the range of halogen bonding (Auffinger et al., 2004). It is noted that the geometry of the I···O interactions for the title compound is different from that for 6,8-dichloro-4-oxochromene-3-carbaldehyde and 6,8-dibromo-4-oxochromene-3-carbaldehyde. The three-dimensional network via the halogen bonds in the crystal of the title compound is more extensive. This is probably due to the larger size of the positive σ-holes of the I1 and I2 atoms (Auffinger et al., 2004, Sirimulla et al., 2013). The intermolecular π-π stacking interaction of the benzene ring of the molecule with that of the inversion-symmetry equivalentiii is also observed [centroid–centroid distance = 3.527 (6) Å (iii): -x + 1, -y + 1, -z + 1], as shown in Fig. 2.