organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,8-Di­iodo-4-oxo-4H-chromene-3-carbalde­hyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 16 March 2014; accepted 27 March 2014; online 12 April 2014)

The title compound, C10H4I2O3, is an iodinated 3-formyl­chromone derivative, and the atoms are essentially coplanar [r.m.s. deviation = 0.049 Å, largest deviation from the least-squares plane = 0.111 (9) Å for the CH(=O) C atom]. In the crystal, mol­ecules are linked into a three-dimensional network through halogen bonds [I⋯O = 3.352 (5) and 3.405 (7) Å, C—I⋯O = 144.2 (3) and 154.5 (3)°, and C=O⋯I = 134.9 (6) and 146.0 (6)°], and ππ stacking inter­actions [centroid–centroid distance = 3.527 (6) Å].

Related literature

For the preparation of the precursor of the title compound, see: Khansole et al. (2008[Khansole, S. V., Mokle, S. S., Sayyed, M. A. & Vibhute, Y. B. (2008). J. Chin. Chem. Soc. 55, 871-874.]). For related structures, see: Ishikawa & Motohashi (2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]); Ishikawa (2014[Ishikawa, Y. (2014). Acta Cryst. E70, o439.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013)[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]; Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]).

[Scheme 1]

Experimental

Crystal data
  • C10H4I2O3

  • Mr = 425.95

  • Triclinic, [P \overline 1]

  • a = 7.290 (3) Å

  • b = 8.779 (5) Å

  • c = 9.767 (4) Å

  • α = 63.82 (3)°

  • β = 75.44 (3)°

  • γ = 68.05 (4)°

  • V = 517.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.06 mm−1

  • T = 100 K

  • 0.48 × 0.30 × 0.25 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.152, Tmax = 0.220

  • 2933 measured reflections

  • 2383 independent reflections

  • 2361 reflections with F2 > 2σ(F2)

  • Rint = 0.026

  • 3 standard reflections every 150 reflections intensity decay: −1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.147

  • S = 1.23

  • 2383 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 3.56 e Å−3

  • Δρmin = −3.01 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of halogenated 3-formylchromone derivatives, 6,8-dichloro-4-oxochromene-3-carbaldehyde and 6,8-dibromo-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013; Ishikawa, 2014). It was found that these molecules are linked through halogen bonds in a similar fashion in the crystals. As part of our interest in chemical bonding, we herein report the crystal structure of 6,8-diiodo-4-oxochromene-3-carbaldehyde, which was prepared by the Vilsmeier–Haack reaction of 2-hydroxy-3,5-diiodoacetophenone with N,N-dimethylformamide (DMF) in the presence of POCl3 in good yield.

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0487 Å, and the largest deviations is 0.111 (9) Å for C10. These mean that the atoms are essentially coplanar.

In the crystal, the molecule is assembled through characteristic intermolecular interactions between the I1 atom at the 6-position and the O2 atom of the α,β-unsaturated carbonyl group of its inversion-symmetry equivalent [I1···O2; 3.405 (7) Å, C5–I1···O2i = 154.5 (3)°, I1···O2i–C3i = 134.9 (6)° (i): -x + 1, -y + 2, -z + 1, Fig. 1], and between the I2 atom at the 6-position and the O2 atom of the α,β-unsaturated carbonyl group of its translation-symmetry equivalent [I2···O2; 3.352 (5) Å, C7–I2···O2ii = 144.2 (3)°, I2···O2ii–C3ii = 146.0 (6)° (i): x, y - 1, z+1, Fig. 2]. The short contact and the geometry of the I···O interactions come within the range of halogen bonding (Auffinger et al., 2004). It is noted that the geometry of the I···O interactions for the title compound is different from that for 6,8-dichloro-4-oxochromene-3-carbaldehyde and 6,8-dibromo-4-oxochromene-3-carbaldehyde. The three-dimensional network via the halogen bonds in the crystal of the title compound is more extensive. This is probably due to the larger size of the positive σ-holes of the I1 and I2 atoms (Auffinger et al., 2004, Sirimulla et al., 2013). The intermolecular π-π stacking interaction of the benzene ring of the molecule with that of the inversion-symmetry equivalentiii is also observed [centroid–centroid distance = 3.527 (6) Å (iii): -x + 1, -y + 1, -z + 1], as shown in Fig. 2.

Related literature top

For the preparation of the precursor of the title compound, see: Khansole et al. (2008). For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).

Experimental top

2-Hydroxy-3,5-diiodoacetophenone was prepared according to the literature method (Khansole et al., 2008). To a solution of 2-hydroxy-3,5-diiodoacetophenone (134 mmol) in DMF (5 ml) was added dropwise POCl3 (335 mmol) for 5 min at 0 °C. After the mixture was stirred for 15 h at room temperature, water (20 ml) was added. The precipitates were collected, washed with water and dried in vacuo (yield: 81.1%). 1H NMR (400 MHz, DMSO-d6): δ = 8.31 (d, 1H, J = 2.0 Hz), 8.63 (d, 1H, J = 2.0 Hz), 9.04 (s, 1H), 10.07 (s, 1H). DART-MS calcd for [C10H4I2O3 + H+]: 426.825, found 426.869. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the title compound at room temperature.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. There are large positive and negative electron densities around the iodine atoms in spite of the good R value. The reflection data were collected separately with a smaller sized crystal, but it is found that the large residual electron densities around the iodine atoms still remained. For most of the disagreeable reflections in the SHELX.lst file, Fobs is much greater than Fcalc. This suggests the possibility of non-merohedral twinning. Thus, the large residual electron densities could be derived from non-merohedral twinning. Unfortunately, it is difficult to confirm the possibility on a single point detector diffractometer, Rigaku AFC7R. One reflection (–2 7 3) was omitted because of systematic error. Extinction correction was applied for improvement of large negative electron densities and the R value.

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius. The intermolecular interaction of the title compound is represented as dashed lines for I···O.
[Figure 2] Fig. 2. A view of the intermolecular interactions of the title compound, represented as dashed lines for I···O interactions.
6,8-Diiodo-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H4I2O3Z = 2
Mr = 425.95F(000) = 388.00
Triclinic, P1Dx = 2.733 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.290 (3) ÅCell parameters from 25 reflections
b = 8.779 (5) Åθ = 15.2–17.1°
c = 9.767 (4) ŵ = 6.06 mm1
α = 63.82 (3)°T = 100 K
β = 75.44 (3)°Block, yellow
γ = 68.05 (4)°0.48 × 0.30 × 0.25 mm
V = 517.5 (5) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.026
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 59
Tmin = 0.152, Tmax = 0.220k = 1011
2933 measured reflectionsl = 1212
2383 independent reflections3 standard reflections every 150 reflections
2361 reflections with F2 > 2σ(F2) intensity decay: 1.1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0884P)2 + 4.3985P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.001
2383 reflectionsΔρmax = 3.56 e Å3
137 parametersΔρmin = 3.01 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (3)
Secondary atom site location: difference Fourier map
Crystal data top
C10H4I2O3γ = 68.05 (4)°
Mr = 425.95V = 517.5 (5) Å3
Triclinic, P1Z = 2
a = 7.290 (3) ÅMo Kα radiation
b = 8.779 (5) ŵ = 6.06 mm1
c = 9.767 (4) ÅT = 100 K
α = 63.82 (3)°0.48 × 0.30 × 0.25 mm
β = 75.44 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
2361 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.152, Tmax = 0.2203 standard reflections every 150 reflections
2933 measured reflections intensity decay: 1.1%
2383 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.23Δρmax = 3.56 e Å3
2383 reflectionsΔρmin = 3.01 e Å3
137 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.32790 (6)0.83369 (5)0.74688 (5)0.0152 (3)
I20.74091 (6)0.06022 (5)0.85492 (5)0.0179 (3)
O10.9121 (7)0.2469 (6)0.5147 (6)0.0131 (9)
O20.8156 (8)0.7689 (7)0.2159 (6)0.0180 (10)
O31.2172 (8)0.3795 (8)0.0749 (6)0.0197 (10)
C11.0076 (10)0.2949 (10)0.3730 (8)0.0163 (13)
C20.9844 (9)0.4629 (10)0.2687 (8)0.0129 (12)
C30.8432 (9)0.6141 (9)0.3051 (7)0.0109 (12)
C40.6053 (10)0.6899 (9)0.5166 (8)0.0125 (12)
C50.5157 (10)0.6387 (9)0.6645 (8)0.0135 (12)
C60.5540 (10)0.4571 (10)0.7630 (8)0.0146 (12)
C70.6876 (10)0.3271 (9)0.7098 (7)0.0128 (12)
C80.7425 (9)0.5587 (9)0.4625 (7)0.0118 (12)
C90.7809 (9)0.3800 (8)0.5608 (7)0.0104 (11)
C101.1073 (10)0.4944 (9)0.1196 (8)0.0128 (12)
H11.10020.20200.34350.0196*
H20.57560.81240.45090.0150*
H30.48960.42340.86460.0176*
H41.09950.61440.05360.0153*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0159 (3)0.0127 (3)0.0163 (3)0.00142 (18)0.00485 (17)0.0107 (2)
I20.0180 (3)0.0106 (3)0.0169 (3)0.00243 (19)0.00704 (18)0.0045 (2)
O10.014 (2)0.010 (2)0.013 (2)0.0006 (17)0.0030 (17)0.0082 (17)
O20.019 (3)0.016 (3)0.012 (3)0.0030 (19)0.0043 (18)0.0046 (19)
O30.017 (3)0.026 (3)0.015 (3)0.003 (2)0.0040 (18)0.012 (2)
C10.014 (3)0.021 (4)0.016 (3)0.004 (3)0.001 (3)0.012 (3)
C20.007 (3)0.023 (4)0.015 (3)0.006 (3)0.004 (3)0.015 (3)
C30.008 (3)0.016 (3)0.010 (3)0.003 (3)0.003 (2)0.010 (3)
C40.015 (3)0.009 (3)0.013 (3)0.002 (3)0.005 (3)0.004 (3)
C50.011 (3)0.016 (3)0.018 (3)0.005 (3)0.002 (3)0.011 (3)
C60.014 (3)0.026 (4)0.010 (3)0.010 (3)0.006 (2)0.012 (3)
C70.014 (3)0.016 (3)0.011 (3)0.006 (3)0.002 (3)0.007 (3)
C80.013 (3)0.015 (3)0.009 (3)0.007 (3)0.003 (3)0.006 (3)
C90.013 (3)0.010 (3)0.011 (3)0.003 (3)0.002 (3)0.008 (3)
C100.012 (3)0.015 (3)0.010 (3)0.001 (3)0.001 (3)0.008 (3)
Geometric parameters (Å, º) top
I1—C52.088 (8)C4—C51.373 (9)
I2—C72.077 (7)C4—C81.420 (10)
O1—C11.340 (8)C5—C61.412 (9)
O1—C91.377 (9)C6—C71.399 (11)
O2—C31.219 (8)C7—C91.392 (9)
O3—C101.208 (10)C8—C91.392 (8)
C1—C21.348 (9)C1—H10.950
C2—C31.470 (10)C4—H20.950
C2—C101.474 (9)C6—H30.950
C3—C81.476 (9)C10—H40.950
I2···O13.150 (5)C9···C5v3.539 (13)
O1···C32.884 (8)C10···O3vii2.980 (10)
O2···C13.566 (9)C10···C5ii3.421 (11)
O2···C42.862 (8)C10···C6ii3.199 (13)
O2···C102.895 (9)C10···C7ii3.574 (14)
O3···C12.840 (8)C10···C10vii3.072 (13)
C1···C73.579 (10)I1···H23.0418
C1···C82.730 (11)I1···H33.0886
C2···C92.778 (9)I2···H33.0562
C4···C72.811 (9)O2···H22.5939
C5···C92.772 (10)O2···H42.6052
C6···C82.806 (9)O3···H12.5096
I1···O2i3.405 (7)C1···H43.2682
I1···O3ii3.594 (6)C3···H13.2906
I2···O2iii3.352 (5)C3···H22.6671
I2···O3iv3.514 (7)C3···H42.6866
O1···C3ii3.587 (12)C4···H33.2790
O1···C5v3.557 (10)C6···H23.2839
O2···I1i3.405 (7)C9···H13.1762
O2···I2vi3.352 (5)C9···H23.2812
O2···C7ii3.585 (10)C9···H33.2682
O2···C9ii3.599 (10)C10···H12.5423
O3···I1ii3.594 (6)H1···H43.4744
O3···I2iv3.514 (7)I1···H2i3.0877
O3···O3vii3.353 (8)I1···H4ix3.2019
O3···C2vii3.493 (10)I2···H1iv3.3483
O3···C5ii3.492 (12)O1···H1iv3.5832
O3···C6viii3.381 (8)O3···H3viii2.4768
O3···C6ii3.531 (13)O3···H3ii3.4952
O3···C10vii2.980 (10)O3···H4vii2.8657
C1···C4ii3.329 (13)C1···H2ii3.4833
C1···C8ii3.548 (14)C3···H3v3.4417
C2···O3vii3.493 (10)C4···H1ii3.3938
C2···C4ii3.580 (11)C5···H1ii3.5387
C2···C5ii3.571 (11)C6···H4ii3.1756
C2···C8ii3.577 (12)C7···H2v3.5512
C2···C9ii3.581 (14)C7···H4ii3.3859
C3···O1ii3.587 (12)C10···H3viii3.3078
C3···C6v3.451 (13)C10···H3ii3.3304
C3···C9ii3.346 (12)C10···H4vii3.1352
C4···C1ii3.329 (13)H1···I2iv3.3483
C4···C2ii3.580 (11)H1···O1iv3.5832
C4···C7v3.518 (13)H1···C4ii3.3938
C4···C9v3.413 (12)H1···C5ii3.5387
C5···O1v3.557 (10)H1···H2ii3.4018
C5···O3ii3.492 (12)H2···I1i3.0877
C5···C2ii3.571 (11)H2···C1ii3.4833
C5···C9v3.539 (13)H2···C7v3.5512
C5···C10ii3.421 (11)H2···H1ii3.4018
C6···O3ix3.381 (8)H2···H2i3.5393
C6···O3ii3.531 (13)H3···O3ix2.4768
C6···C3v3.451 (13)H3···O3ii3.4952
C6···C8v3.526 (13)H3···C3v3.4417
C6···C10ii3.199 (13)H3···C10ix3.3078
C7···O2ii3.585 (10)H3···C10ii3.3304
C7···C4v3.518 (13)H3···H3x3.5106
C7···C8v3.533 (11)H3···H4ix3.2916
C7···C10ii3.574 (14)H3···H4ii3.1545
C8···C1ii3.548 (14)H4···I1viii3.2019
C8···C2ii3.577 (12)H4···O3vii2.8657
C8···C6v3.526 (13)H4···C6ii3.1756
C8···C7v3.533 (11)H4···C7ii3.3859
C9···O2ii3.599 (10)H4···C10vii3.1352
C9···C2ii3.581 (14)H4···H3viii3.2916
C9···C3ii3.346 (12)H4···H3ii3.1545
C9···C4v3.413 (12)H4···H4vii3.4680
C1—O1—C9117.8 (5)C3—C8—C4119.6 (6)
O1—C1—C2126.0 (7)C3—C8—C9121.5 (6)
C1—C2—C3120.3 (6)C4—C8—C9118.9 (6)
C1—C2—C10119.5 (7)O1—C9—C7116.8 (6)
C3—C2—C10120.2 (6)O1—C9—C8121.5 (6)
O2—C3—C2123.5 (6)C7—C9—C8121.7 (6)
O2—C3—C8123.7 (7)O3—C10—C2125.0 (7)
C2—C3—C8112.8 (5)O1—C1—H1116.984
C5—C4—C8119.7 (6)C2—C1—H1116.981
I1—C5—C4119.2 (5)C5—C4—H2120.173
I1—C5—C6119.6 (5)C8—C4—H2120.164
C4—C5—C6121.1 (7)C5—C6—H3120.281
C5—C6—C7119.4 (6)C7—C6—H3120.280
I2—C7—C6119.1 (5)O3—C10—H4117.476
I2—C7—C9121.7 (5)C2—C10—H4117.479
C6—C7—C9119.2 (6)
C1—O1—C9—C7178.3 (7)C8—C4—C5—I1176.2 (7)
C1—O1—C9—C82.2 (11)C8—C4—C5—C61.5 (13)
C9—O1—C1—C21.6 (13)H2—C4—C5—I13.8
C9—O1—C1—H1178.5H2—C4—C5—C6178.5
O1—C1—C2—C30.3 (14)H2—C4—C8—C31.8
O1—C1—C2—C10177.4 (8)H2—C4—C8—C9179.1
H1—C1—C2—C3179.7I1—C5—C6—C7176.9 (5)
H1—C1—C2—C102.6I1—C5—C6—H33.1
C1—C2—C3—O2179.9 (8)C4—C5—C6—C70.9 (13)
C1—C2—C3—C81.4 (12)C4—C5—C6—H3179.1
C1—C2—C10—O37.6 (14)C5—C6—C7—I2179.4 (7)
C1—C2—C10—H4172.4C5—C6—C7—C90.4 (13)
C3—C2—C10—O3174.7 (8)H3—C6—C7—I20.6
C3—C2—C10—H45.3H3—C6—C7—C9179.6
C10—C2—C3—O22.3 (13)I2—C7—C9—O10.7 (11)
C10—C2—C3—C8176.3 (7)I2—C7—C9—C8178.8 (5)
O2—C3—C8—C40.2 (13)C6—C7—C9—O1179.5 (7)
O2—C3—C8—C9179.3 (8)C6—C7—C9—C81.0 (13)
C2—C3—C8—C4178.4 (7)C3—C8—C9—O11.1 (12)
C2—C3—C8—C90.7 (11)C3—C8—C9—C7179.5 (7)
C5—C4—C8—C3178.2 (7)C4—C8—C9—O1179.8 (7)
C5—C4—C8—C90.9 (12)C4—C8—C9—C70.3 (12)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x, y1, z+1; (iv) x+2, y, z+1; (v) x+1, y+1, z+1; (vi) x, y+1, z1; (vii) x+2, y+1, z; (viii) x+1, y, z1; (ix) x1, y, z+1; (x) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H4I2O3
Mr425.95
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.290 (3), 8.779 (5), 9.767 (4)
α, β, γ (°)63.82 (3), 75.44 (3), 68.05 (4)
V3)517.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)6.06
Crystal size (mm)0.48 × 0.30 × 0.25
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.152, 0.220
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
2933, 2383, 2361
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.147, 1.23
No. of reflections2383
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.56, 3.01

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

We acknowledge the University of Shizuoka for instrumental support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIshikawa, Y. (2014). Acta Cryst. E70, o439.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationKhansole, S. V., Mokle, S. S., Sayyed, M. A. & Vibhute, Y. B. (2008). J. Chin. Chem. Soc. 55, 871–874.  CAS Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds