organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o524-o525

{(3aR,5S,6R,6aR)-5-[(R)-1,2-Di­hy­droxy­eth­yl]-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-6-yl}methyl methane­sulfonate

aFaculty of Material Science and Applied Chemistry, Riga Technical University, 3 P. Valdena Street, Riga, LV-1007, Latvia, and bLatvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia
*Correspondence e-mail: v.rjabovs@gmail.com

(Received 17 February 2014; accepted 2 April 2014; online 5 April 2014)

In the title compound, C11H20O8S, the furan­ose ring has a pseudorotation phase angle equal to 31.3° and assumes a 3T4 conformation, with deviations of 0.297 (4) and −0.152 (4) Å for the corresponding C atoms. The dioxolane ring adopts an envelope conformation. One of the O atoms is at the flap and deviates from the least-squares plane formed by the other four ring atoms by 0.405 (2) Å. The dihedral angle between the planar fragments of the rings is 63.53 (8)°. In the crystal, mol­ecules are associated into sheets perpendiculer to the b axis by means of O—H⋯O hydrogen bonds. A few weak C—H⋯O inter­actions are also observed.

Related literature

For the synthesis, properties and applications of the title compound, see: Mikhailopulo et al. (1996[Mikhailopulo, I. A., Poopeiko, N. O., Tsvetkova, T. M., Marochkin, A. P., Balzarini, J. & De Clercq, E. (1996). Carbohydr. Res. 285, 17-28.]); Rjabova et al. (2012[Rjabova, J., Rjabovs, V., Moreno Vargas, A. J., Clavijo, E. M. & Turks, M. (2012). Centr. Eur. J. Chem. 10, 386-394.]). Its applications in the synthesis of imino sugars and 1′-aza-C-nucleosides are described by Filichev & Pedersen (2001[Filichev, V. V. & Pedersen, E. B. (2001). Tetrahedron, 57, 9163-9168.]). For a review on the syntheses and biological properties of imino sugars, see: López et al. (2012[López, O., Merino-Montiel, P., Martos, S. & González-Benjumea, A. (2012). Carbohydr. Chem. 38, 215-262.]). For reviews on the synthesies and biological properties of aza-nucleosides, see: Romeo et al. (2010[Romeo, G., Chiacchio, U., Corsaro, A. & Merino, P. (2010). Chem. Rev. 110, 3337-3370.]); Merino (2006[Merino, P. (2006). Curr. Med. Chem. 13, 539-545.]).

[Scheme 1]

Experimental

Crystal data
  • C11H20O8S

  • Mr = 312.33

  • Monoclinic, P 21

  • a = 5.5794 (1) Å

  • b = 15.6118 (3) Å

  • c = 8.0653 (2) Å

  • β = 98.913 (1)°

  • V = 694.04 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.28 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 5266 measured reflections

  • 3185 independent reflections

  • 3005 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.03

  • 3185 reflections

  • 187 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1528 Friedel pairs

  • Absolute structure parameter: 0.00 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O5i 0.82 2.00 2.820 (2) 174
O5—H51⋯O2ii 0.82 2.24 3.009 (2) 156
C3—H3⋯O5i 0.98 2.58 3.344 (2) 135
C8—H8C⋯O6iii 0.96 2.55 3.486 (2) 165
C9—H9A⋯O4iv 0.96 2.55 3.306 (2) 136
C11—H11C⋯O8iii 0.96 2.44 3.387 (2) 167
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x-1, y, z; (iv) x, y, z-1.

Data collection: COLLECT (Bruker, 2004)[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

1,2-O-isopropylidene-3-deoxy-3-mesyloxymethyl-α-D-allofuranose was obtained as the intermediate in the syntheses of 3-C-branched 3-C-deoxy nucleoside analogs (Mikhailopulo et al., 1996) by an acidic hydrolysis of 5,6-isopropylidene protecting group of the corresponding mesylate. Both the title compound and its precursor can be used for the syntheses of different carbohydrate derivatives such as triazole conjugates of 3-C-branched 3-C-deoxy allofuranose (Rjabova et al., 2012) and imino sugars and 1'-aza-C-nucleosides (Filichev & Pedersen, 2001). For review on syntheses and biological properties of imino sugars, see: López et al. (2012). For reviews on syntheses and biological properties of aza-nucleosides, see: Romeo et al. (2010) and Merino (2006). Fig. 1 shows a view of the molecular structure of the title compound. The furanose ring has a pseudorotation phase angle equal to 31.3° and assumes 3T4 conformation with deviations of 0.297 (4) Å and -0.152 (4) Å for corresponding C atoms. The dioxolane ring adopts envelope conformation. One of the O atoms deviates from the least squares plane formed by four other atoms of the dioxolane ring by 0.405 (2) Å. The dihedral angle betweeen plane fragments of the cycles is 63.53 (8)°. In the crystal by means of O—H···O type hydrogen bonds the molecules are associated in sheets perpendiculer to crystallographic axis b (Fig. 2). A few week C—H···O hydrogen bond interactions have been also detected in the structure (Table 1).

Related literature top

For the synthesis, properties and applications of the title compound, see: Mikhailopulo et al. (1996); Rjabova et al. (2012). Its applications in the synthesis of imino sugars and 1'-aza-C-nucleosides are described by Filichev & Pedersen (2001). For a review on the syntheses and biological properties of imino sugars, see: López et al. (2012). For reviews on the synthesies and biological properties of aza-nucleosides, see: Romeo et al. (2010); Merino (2006).

Experimental top

Single crystals of ((3aR,5S,6R,6aR)-5-((R)-1,2-dihydroxyethyl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)methyl methanesulfonate were grown from a dichloromethane solution by a slow evaporation at ambient temperature. 1H-NMR and 13C-NMR spectra were recorded at 300 MHz and at 75.5 MHz, respectively. The proton signals for residual non-deuterated solvents (δ 7.26 for CHCl3) and carbon signals (δ 77.1 for CDCl3) were used as the internal references for 1H-NMR and 13C-NMR spectra, respectively. Coupling constants are reported in Hz. Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates precoated with a 0.25 mm thickness of silica gel. 2M aqueous solution of H2SO4 (1 ml, 2.0 mmol, 0.5 equiv.) was added to a solution of 1,2,5,6-di-O-isopropylidene-3-deoxy-3-mesyloxymethyl-α-D-allofuranose (1.46 g, 4.1 mmol, 1.0 equiv.) in a mixture of MeOH (11 ml) and DCM (4 ml). The resulting reaction mixture was stirred at 50 °C for 1.5 h (TLC control). The reaction mixture was quenched with saturated aqueous solution of NaHCO3 (10 ml) and organic solvents were evaporated under reduced pressure. Ethyl acetate (50 ml) was added, the layers were separated, and the organic layer was washed with brine (3 × 10 ml), dried over Na2SO4, filtered and evaporated. Crystallization of the crude product from DCM yielded analytically pure mesylate (1.24 g, 96%) as a white solid. M.p. 103–104°C (DCM), Rf=0.16 (hexanes/EtOAc 1:3), 1H-NMR (CDCl3, 300 MHz): 1.34 (s, 3H), 1.52 (s, 3H), 2.36 (b.s., 2H), 2.49 (tt, J=9.8 Hz, J=4.8 Hz, 1H), 3.05 (s, 3H), 3.69 (m, 2H), 3.83 (m, 2H), 4.42 (t, J=10.0 Hz, 1H), 4.67 (dd, J=10.0 Hz, J=5.0 Hz, 1H), 4.77 (t, J=4.0 Hz, 1H), 5.83 (d, J=3.6 Hz, 1H), 13C-NMR (CDCl3, 75 MHz): 26.4, 26.7, 37.1, 47.5, 63.7, 66.6, 73.3, 78.8, 80.4, 105.0, 112.4, HRMS: Calculated for C11H20O8NaS [M+Na]+: 335.0777. Found [M+Na]+: 335.0736.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All 20 non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically (O—H = 0.82 Å, C—H = 0.93 to 0.98 Å) and refined as riding on their parent atoms with Uiso (H) = 1.5Ueq (C,O) for methyl and oxy groups and Uiso (H) = 1.2Ueq (C) for others.

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 50% probability displacement ellipsoids and the atom-numbering (hydrogen atoms are shown as small spheres of arbitrary radii)
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis.
{(3aR,5S,6R,6aR)-5-[(R)-1,2-Dihydroxyethyl]-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl}methyl methanesulfonate top
Crystal data top
C11H20O8SF(000) = 332
Mr = 312.33Dx = 1.495 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7583 reflections
a = 5.5794 (1) Åθ = 1.0–27.5°
b = 15.6118 (3) ŵ = 0.27 mm1
c = 8.0653 (2) ÅT = 293 K
β = 98.913 (1)°Prism, colourless
V = 694.04 (3) Å30.35 × 0.30 × 0.28 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3005 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
CCD scansh = 76
5266 measured reflectionsk = 2020
3185 independent reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.0938P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.003
S = 1.03Δρmax = 0.16 e Å3
3185 reflectionsΔρmin = 0.21 e Å3
187 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.064 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1528 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (5)
Crystal data top
C11H20O8SV = 694.04 (3) Å3
Mr = 312.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.5794 (1) ŵ = 0.27 mm1
b = 15.6118 (3) ÅT = 293 K
c = 8.0653 (2) Å0.35 × 0.30 × 0.28 mm
β = 98.913 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3005 reflections with I > 2σ(I)
5266 measured reflectionsRint = 0.018
3185 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.065Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.21 e Å3
3185 reflectionsAbsolute structure: Flack (1983), 1528 Friedel pairs
187 parametersAbsolute structure parameter: 0.00 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.0490 (4)0.33494 (13)0.8352 (2)0.0407 (4)
H9A0.17970.37410.84220.061*
H9B0.07570.34290.93020.061*
H9C0.10830.27720.83450.061*
C70.0536 (3)0.35157 (11)0.6762 (2)0.0316 (3)
C80.2632 (4)0.29425 (14)0.6553 (2)0.0470 (5)
H8A0.20920.23580.64650.071*
H8B0.38820.30030.75070.071*
H8C0.32620.31000.55540.071*
S10.60651 (6)0.22002 (2)0.20810 (5)0.02715 (10)
O40.22882 (19)0.51605 (8)0.01079 (13)0.0303 (2)
H410.37380.51990.00490.046*
O10.0420 (3)0.52359 (9)0.43022 (15)0.0465 (4)
O60.55516 (19)0.31615 (7)0.26299 (14)0.0278 (2)
O30.1263 (2)0.34259 (7)0.53311 (14)0.0347 (3)
O50.27358 (19)0.51658 (8)0.01728 (15)0.0364 (3)
H510.19290.50140.07160.055*
O20.1278 (2)0.44075 (9)0.67350 (16)0.0396 (3)
O80.8446 (2)0.20376 (8)0.24301 (17)0.0427 (3)
O70.5551 (2)0.20875 (9)0.04236 (15)0.0426 (3)
C100.3456 (3)0.35774 (10)0.2075 (2)0.0284 (3)
H10A0.38190.37180.08910.034*
H10B0.20630.31980.22440.034*
C30.2921 (3)0.43831 (10)0.31045 (18)0.0247 (3)
H30.42700.47870.28330.030*
C10.0500 (3)0.48807 (11)0.5677 (2)0.0329 (4)
H10.11850.53290.63130.039*
C60.1460 (3)0.58175 (10)0.0923 (2)0.0335 (4)
H6A0.11280.62930.01470.040*
H6B0.24770.60280.19250.040*
C40.0556 (3)0.48076 (10)0.2760 (2)0.0276 (3)
H40.05830.43700.24930.033*
C20.2447 (3)0.42291 (10)0.49929 (19)0.0277 (3)
H20.39170.42820.55110.033*
C50.0908 (3)0.54919 (10)0.13860 (19)0.0266 (3)
H50.17890.59760.17770.032*
C110.3976 (3)0.16137 (13)0.3475 (3)0.0445 (4)
H11A0.41880.10140.32370.067*
H11B0.42330.17240.46050.067*
H11C0.23580.17810.33480.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.0485 (10)0.0442 (10)0.0313 (9)0.0040 (8)0.0124 (8)0.0070 (8)
C70.0347 (8)0.0323 (8)0.0268 (7)0.0030 (7)0.0017 (6)0.0024 (7)
C80.0445 (11)0.0566 (13)0.0421 (11)0.0097 (9)0.0132 (8)0.0093 (9)
S10.02425 (17)0.02403 (17)0.03312 (19)0.00244 (15)0.00429 (13)0.00247 (17)
O40.0234 (5)0.0375 (6)0.0295 (6)0.0003 (5)0.0024 (4)0.0030 (5)
O10.0576 (8)0.0472 (8)0.0306 (6)0.0302 (7)0.0062 (5)0.0066 (6)
O60.0260 (5)0.0252 (5)0.0333 (6)0.0046 (4)0.0078 (4)0.0031 (5)
O30.0438 (7)0.0268 (6)0.0298 (6)0.0021 (5)0.0061 (5)0.0033 (5)
O50.0227 (5)0.0496 (7)0.0359 (6)0.0025 (5)0.0013 (4)0.0006 (6)
O20.0408 (7)0.0384 (7)0.0356 (7)0.0089 (5)0.0061 (5)0.0052 (5)
O80.0284 (6)0.0370 (7)0.0640 (8)0.0093 (5)0.0112 (5)0.0074 (6)
O70.0536 (7)0.0392 (7)0.0362 (6)0.0050 (6)0.0101 (5)0.0113 (6)
C100.0281 (7)0.0300 (8)0.0287 (8)0.0076 (6)0.0093 (6)0.0022 (6)
C30.0228 (7)0.0248 (7)0.0262 (7)0.0009 (6)0.0032 (5)0.0018 (6)
C10.0379 (9)0.0309 (8)0.0283 (8)0.0032 (7)0.0003 (7)0.0005 (7)
C60.0300 (8)0.0307 (8)0.0387 (9)0.0062 (6)0.0019 (7)0.0090 (7)
C40.0253 (7)0.0273 (7)0.0288 (8)0.0047 (6)0.0003 (6)0.0037 (6)
C20.0293 (8)0.0271 (7)0.0270 (7)0.0010 (6)0.0050 (6)0.0016 (6)
C50.0250 (7)0.0242 (7)0.0302 (8)0.0000 (6)0.0029 (6)0.0032 (6)
C110.0392 (10)0.0399 (10)0.0536 (11)0.0059 (8)0.0051 (8)0.0139 (9)
Geometric parameters (Å, º) top
C9—C71.506 (2)O5—H510.8200
C9—H9A0.9600O2—C11.413 (2)
C9—H9B0.9600C10—C31.511 (2)
C9—H9C0.9600C10—H10A0.9700
C7—O31.4140 (19)C10—H10B0.9700
C7—O21.454 (2)C3—C21.524 (2)
C7—C81.503 (3)C3—C41.540 (2)
C8—H8A0.9600C3—H30.9800
C8—H8B0.9600C1—C21.528 (2)
C8—H8C0.9600C1—H10.9800
S1—O71.4210 (12)C6—C51.515 (2)
S1—O81.4226 (12)C6—H6A0.9700
S1—O61.5782 (11)C6—H6B0.9700
S1—C111.7480 (18)C4—C51.530 (2)
O4—C51.4230 (18)C4—H40.9800
O4—H410.8200C2—H20.9800
O1—C11.406 (2)C5—H50.9800
O1—C41.442 (2)C11—H11A0.9600
O6—C101.4669 (17)C11—H11B0.9600
O3—C21.4238 (19)C11—H11C0.9600
O5—C61.429 (2)
C7—C9—H9A109.5C10—C3—H3109.5
C7—C9—H9B109.5C2—C3—H3109.5
H9A—C9—H9B109.5C4—C3—H3109.5
C7—C9—H9C109.5O1—C1—O2112.02 (14)
H9A—C9—H9C109.5O1—C1—C2107.70 (13)
H9B—C9—H9C109.5O2—C1—C2105.27 (13)
O3—C7—O2104.53 (12)O1—C1—H1110.6
O3—C7—C8108.42 (14)O2—C1—H1110.6
O2—C7—C8109.89 (15)C2—C1—H1110.6
O3—C7—C9111.26 (14)O5—C6—C5112.10 (13)
O2—C7—C9108.93 (14)O5—C6—H6A109.2
C8—C7—C9113.43 (15)C5—C6—H6A109.2
C7—C8—H8A109.5O5—C6—H6B109.2
C7—C8—H8B109.5C5—C6—H6B109.2
H8A—C8—H8B109.5H6A—C6—H6B107.9
C7—C8—H8C109.5O1—C4—C5106.85 (12)
H8A—C8—H8C109.5O1—C4—C3105.29 (12)
H8B—C8—H8C109.5C5—C4—C3114.43 (12)
O7—S1—O8119.66 (8)O1—C4—H4110.0
O7—S1—O6109.11 (7)C5—C4—H4110.0
O8—S1—O6104.40 (7)C3—C4—H4110.0
O7—S1—C11109.17 (10)O3—C2—C3109.51 (12)
O8—S1—C11109.23 (9)O3—C2—C1103.57 (12)
O6—S1—C11104.11 (8)C3—C2—C1105.03 (12)
C5—O4—H41109.5O3—C2—H2112.7
C1—O1—C4111.21 (12)C3—C2—H2112.7
C10—O6—S1117.00 (10)C1—C2—H2112.7
C7—O3—C2108.57 (12)O4—C5—C6106.96 (12)
C6—O5—H51109.5O4—C5—C4110.57 (12)
C1—O2—C7109.55 (12)C6—C5—C4113.18 (12)
O6—C10—C3107.43 (11)O4—C5—H5108.7
O6—C10—H10A110.2C6—C5—H5108.7
C3—C10—H10A110.2C4—C5—H5108.7
O6—C10—H10B110.2S1—C11—H11A109.5
C3—C10—H10B110.2S1—C11—H11B109.5
H10A—C10—H10B108.5H11A—C11—H11B109.5
C10—C3—C2114.00 (13)S1—C11—H11C109.5
C10—C3—C4111.15 (12)H11A—C11—H11C109.5
C2—C3—C4103.12 (12)H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O5i0.822.002.820 (2)174
O5—H51···O2ii0.822.243.009 (2)156
O5—H51···O40.822.492.777 (2)102
C3—H3···O5i0.982.583.344 (2)135
C8—H8C···O6iii0.962.553.486 (2)165
C9—H9A···O4iv0.962.553.306 (2)136
C10—H10A···O40.972.583.160 (2)118
C11—H11C···O8iii0.962.443.387 (2)167
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O5i0.822.002.820 (2)174
O5—H51···O2ii0.822.243.009 (2)156
C3—H3···O5i0.982.583.344 (2)135
C8—H8C···O6iii0.962.553.486 (2)165
C9—H9A···O4iv0.962.553.306 (2)136
C11—H11C···O8iii0.962.443.387 (2)167
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y, z1.
 

Acknowledgements

This work was supported by the Latvian Council of Science (grant No 09.1557).

References

First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilichev, V. V. & Pedersen, E. B. (2001). Tetrahedron, 57, 9163–9168.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLópez, O., Merino-Montiel, P., Martos, S. & González-Benjumea, A. (2012). Carbohydr. Chem. 38, 215–262.  Google Scholar
First citationMerino, P. (2006). Curr. Med. Chem. 13, 539–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMikhailopulo, I. A., Poopeiko, N. O., Tsvetkova, T. M., Marochkin, A. P., Balzarini, J. & De Clercq, E. (1996). Carbohydr. Res. 285, 17-28.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRjabova, J., Rjabovs, V., Moreno Vargas, A. J., Clavijo, E. M. & Turks, M. (2012). Centr. Eur. J. Chem. 10, 386–394.  Web of Science CrossRef CAS Google Scholar
First citationRomeo, G., Chiacchio, U., Corsaro, A. & Merino, P. (2010). Chem. Rev. 110, 3337–3370.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o524-o525
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds