organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o556-o557

(E)-tert-Butyl 2-(5-{[4-(di­methylamino)phenyl]diazenyl}-2,6-dioxo-1H-pyrimid­in-3-yl)acetate di­chloro­methane monosolvate

a1151 Richmond Street, Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
*Correspondence e-mail: robert.hudson@uwo.ca

(Received 11 March 2014; accepted 3 April 2014; online 16 April 2014)

In the title compound, C18H23N5O4·CH2Cl2, the di­chloro­methane solvent mol­ecule is disordered over two sets of sites in a 0.630 (13):0.370 (13) ratio. The dihedral angle between the uracil and phenyl rings is 30.2 (1)°. In the crystal, the principal inter­actions are N—H⋯O hydrogen bonds, which link uracil units across centres of symmetry, forming eight-membered rings with an R22(8) graph-set motif. The structure also displays C—H⋯O and C—H⋯Cl hydrogen bonds. Intra­molecular C—H⋯O short contacts are also observed.

Related literature

As part of our program in the synthesis of modified nucleobases that possess intrinsic fluorescence while maintaining an unadultered base-paring face, we have prepared an asymmetrical azo compound as a hybrid between a nulceobase and the known fluorescence quencher 4-((4-(di­methyl­amino)­phen­yl)azo)benzoic acid (DABCYL), see: Dodd & Hudson(2009[Dodd, D. W. & Hudson, R. H. E. (2009). Mini Rev. Org. Chem. 4, 378-39.]); Tyagi & Kramer (1996[Tyagi, S. & Kramer, F. R. (1996). Nat. Biotechnol. 14, 303-308.]). For an azo-based fluorescence quencher in peptide nucleic acid, see: Moustafa & Hudson (2011[Moustafa, M. E. & Hudson, R. H. E. (2011). Nucleosides Nucleotides Nucleic Acids 30, 740-751.]). For an example of photoisomerization of azo groups in peptide nucleic acid, see: Yue et al. (2009[Yue, S. S., Li, J. D., Zhang, J. Y., Lu, J. J. & Chen, M. (2009). Chin. Chem. Bull. 54, 4753-4755.]), and in DNA, see: Asanuma et al. (1999[Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. (1999). Angew. Chem. Int. Ed. Engl. 38, 2393-2395.]). The title compound was prepared following standard procedures, see: Thurber & Townsend (1972[Thurber, T. C. & Townsend, L. B. (1972). J. Heterocycl. Chem. 9, 629-636.]), Tsupak et al. (2002[Tsupak, E. B., Shevchenko, M. A., Tkachenko, Y. N. & Nazarov, D. A. (2002). Russ. J. Org. Chem. 38, 923-930.]) and Moustafa (2011[Moustafa, M. E. (2011). Ph.D. thesis, The University of Western Ontario, London, Ontario, Canada.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N5O4·CH2Cl2

  • Mr = 458.34

  • Monoclinic, P 21 /n

  • a = 13.208 (9) Å

  • b = 10.783 (6) Å

  • c = 17.255 (11) Å

  • β = 112.33 (2)°

  • V = 2273 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 150 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.689, Tmax = 0.746

  • 34970 measured reflections

  • 5944 independent reflections

  • 3567 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.128

  • S = 1.03

  • 5944 reflections

  • 374 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2i 0.84 (3) 2.02 (3) 2.851 (2) 171 (2)
C2—H2C⋯O1ii 1.03 (3) 2.62 (3) 3.189 (4) 115 (2)
C4—H4⋯Cl2Xiii 0.94 (2) 2.98 (2) 3.784 (4) 143.5 (17)
C12—H12⋯O1iv 0.99 (2) 2.34 (2) 3.214 (3) 145.8 (18)
C13—H13B⋯Cl2Xv 0.96 (2) 2.99 (2) 3.895 (4) 158.6 (16)
C16—H16A⋯O3 0.98 (3) 2.51 (3) 3.042 (3) 114 (2)
C17—H17C⋯O3 0.96 (3) 2.48 (3) 2.994 (4) 113 (2)
C1X—H1X1⋯O3vi 0.99 2.52 3.346 (4) 141
C1X—H1X2⋯O1ii 0.99 2.48 3.256 (4) 135
C1Y—H1Y1⋯O3vi 0.99 2.50 3.346 (4) 143
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+1, -y+1, -z+2.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); software used to prepare material for publication: cif2tables.py (Boyle, 2008[Boyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/]).

Supporting information


Introduction top

As part of our program in the synthesis of modified nucleobases that possess intrinsic fluorescence while maintaining an unadultered base-paring face, we have prepared an asymmetrical azo compound as a hybrid between a nulceobase and the known fluorescence quencher 4-((4-(di­methyl­amino)­phenyl)­azo)benzoic acid (DABCYL) see: Dodd & Hudson(2009) and Tyagi & Kramer (1996).

Experimental top

The title compound was prepared following standard procedures see: Thurber & Townsend (1972), Tsupak et al. (2002) and Moustafa (2011).

Synthesis and crystallization top

The title compound was crystallized by slow diffusion of hexanes into a solution of di­chloro­methane. Orange plates of suitable quality for diffraction were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

The molecule resides at a general position in the lattice as does a disordered methyl­ene chloride of solvation. Selected inter­molecular hydrogen bonding inter­actions are mentioned briefly below. All potential hydrogen bonding inter­actions are listed in Table 1.

The principal inter­molecular inter­actions are N—H···O hydrogen bonds which join uracil moieties across a centre of symmetry forming an eight membered ring, designated as R22(8) ring in graph set notation. This hydrogen bond consists of N4—H4A···O2 with an H···A distance of 2.02 (3) Å. The other uracil carbonyl oxygen, O1, participates in two inter­molecular C—H···O hydrogen bonds. The shorter of the two inter­actions arises with the atoms C12—H12 acting as the donor group. The hydrogen bond pattern forms a C(5) chain. The H12···O1 distance is 2.34 (2) Å. The longer inter­action is with the atom H1X1 from the CH2Cl2 of solvation. The H1X2···O1 distance is 2.48 Å.

Related literature top

As part of our program in the synthesis of modified nucleobases that possess intrinsic fluorescence while maintaining an unadultered base-paring face, we have prepared an asymmetrical azo compound as a hybrid between a nulceobase and the known fluorescence quencher 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL), see: Dodd & Hudson(2009); Tyagi & Kramer (1996). For an azo-based fluorescence quencher in peptide nucleic acid, see: Moustafa & Hudson (2011). For an example of photoisomerization of azo groups in peptide nucleic acid, see: Yue et al. (2009), and in DNA, see: Asanuma et al. (1999). The title compound was prepared following standard procedures, see: Thurber & Townsend (1972), Tsupak et al. (2002) and Moustafa (2011). All references (aprt from computer programs) must be cited here. Please note that the scheme should show the title compound only (the solvent must be included)

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: NRCVAX (Gabe et al., 1989); software used to prepare material for publication: cif2tables.py (Boyle, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP representation of the title compound showing the atom-numbering. The asymmetric unit contains an enclathrated CH2Cl2 also.
[Figure 2] Fig. 2. Reaction scheme.
(E)-tert-Butyl 2-(5-{[4-(dimethylamino)phenyl]diazenyl}-2,6-dioxo-1H-pyrimidin-3-yl)acetate dichloromethane monosolvate top
Crystal data top
C18H23N5O4·CH2Cl2F(000) = 960
Mr = 458.34Dx = 1.339 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.208 (9) ÅCell parameters from 9939 reflections
b = 10.783 (6) Åθ = 2.3–28.1°
c = 17.255 (11) ŵ = 0.32 mm1
β = 112.33 (2)°T = 150 K
V = 2273 (3) Å3Prism, colourless
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
3567 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.054
phi and ω scansθmax = 29.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1817
Tmin = 0.689, Tmax = 0.746k = 1414
34970 measured reflectionsl = 2223
5944 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0446P)2 + 1.4761P]
where P = (Fo2 + 2Fc2)/3
5944 reflections(Δ/σ)max = 0.001
374 parametersΔρmax = 0.53 e Å3
12 restraintsΔρmin = 0.59 e Å3
Crystal data top
C18H23N5O4·CH2Cl2V = 2273 (3) Å3
Mr = 458.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.208 (9) ŵ = 0.32 mm1
b = 10.783 (6) ÅT = 150 K
c = 17.255 (11) Å0.20 × 0.18 × 0.15 mm
β = 112.33 (2)°
Data collection top
Nonius KappaCCD
diffractometer
5944 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3567 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.746Rint = 0.054
34970 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05112 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.53 e Å3
5944 reflectionsΔρmin = 0.59 e Å3
374 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9052 (2)0.7150 (3)1.05913 (18)0.0474 (7)
H1A0.873 (2)0.777 (2)1.0869 (16)0.045 (7)*
H1B0.929 (3)0.766 (3)1.020 (2)0.084 (11)*
H1C0.969 (3)0.675 (3)1.101 (2)0.083 (11)*
C20.8704 (2)0.4912 (3)1.02020 (18)0.0443 (7)
H2A0.939 (3)0.490 (3)1.069 (2)0.071 (9)*
H2B0.891 (2)0.465 (2)0.9674 (18)0.056 (8)*
H2C0.817 (3)0.427 (3)1.0273 (19)0.071 (10)*
N10.82913 (15)0.61752 (19)1.01530 (12)0.0372 (5)
C30.72814 (16)0.6469 (2)0.95471 (13)0.0279 (5)
C40.68748 (18)0.7695 (2)0.94533 (14)0.0305 (5)
H40.7300 (18)0.833 (2)0.9799 (14)0.028 (6)*
C50.58531 (18)0.7985 (2)0.88637 (14)0.0293 (5)
H50.5580 (19)0.877 (2)0.8811 (15)0.039 (7)*
C60.51979 (16)0.70655 (18)0.83333 (12)0.0232 (4)
C70.56023 (17)0.58499 (19)0.84203 (14)0.0261 (5)
H70.5167 (17)0.524 (2)0.8034 (14)0.029 (6)*
C80.66189 (17)0.5549 (2)0.90144 (14)0.0281 (5)
H80.6874 (18)0.469 (2)0.9054 (14)0.034 (6)*
N20.41469 (13)0.72338 (16)0.77085 (10)0.0250 (4)
N30.37871 (13)0.83448 (15)0.76006 (10)0.0245 (4)
C90.26949 (15)0.83883 (18)0.69941 (12)0.0213 (4)
C100.23176 (16)0.95536 (18)0.65479 (12)0.0210 (4)
O10.28351 (11)1.05269 (13)0.66708 (9)0.0269 (3)
N40.12641 (13)0.94789 (16)0.59289 (10)0.0216 (4)
H4A0.1030 (19)1.012 (2)0.5641 (16)0.037 (7)*
C110.05549 (15)0.84931 (18)0.57493 (12)0.0199 (4)
O20.03756 (11)0.85176 (13)0.52046 (8)0.0254 (3)
N50.09479 (13)0.74509 (14)0.62430 (10)0.0207 (4)
C120.19932 (16)0.74158 (19)0.68434 (12)0.0226 (4)
H120.2182 (18)0.663 (2)0.7162 (14)0.033 (6)*
C130.01573 (17)0.64735 (19)0.61964 (14)0.0229 (4)
H13A0.0566 (19)0.576 (2)0.6456 (15)0.036 (6)*
H13B0.0272 (17)0.6270 (19)0.5626 (14)0.023 (5)*
C140.05649 (16)0.68765 (18)0.66563 (12)0.0220 (4)
O30.03756 (12)0.77674 (14)0.71118 (9)0.0318 (4)
O40.14075 (11)0.60916 (13)0.64849 (8)0.0245 (3)
C150.21469 (16)0.6153 (2)0.69607 (13)0.0271 (5)
C160.1464 (2)0.5914 (3)0.78781 (16)0.0456 (7)
H16A0.095 (2)0.659 (3)0.8133 (19)0.066 (9)*
H16B0.104 (3)0.516 (3)0.7938 (19)0.070 (10)*
H16C0.193 (3)0.584 (3)0.819 (2)0.072 (10)*
C170.2744 (2)0.7388 (3)0.6801 (2)0.0440 (6)
H17A0.328 (2)0.738 (3)0.7089 (17)0.057 (8)*
H17B0.311 (2)0.755 (3)0.6188 (19)0.056 (8)*
H17C0.227 (3)0.807 (3)0.7051 (19)0.065 (9)*
C180.2945 (2)0.5097 (3)0.65820 (18)0.0382 (6)
H18A0.256 (2)0.432 (2)0.6654 (15)0.040 (7)*
H18B0.337 (2)0.524 (3)0.595 (2)0.067 (9)*
H18C0.347 (2)0.506 (3)0.6847 (17)0.054 (8)*
C1X0.8190 (3)0.1657 (3)1.1140 (2)0.0728 (10)0.630 (13)
H1X10.85640.16661.17580.087*0.630 (13)
H1X20.78070.24601.09700.087*0.630 (13)
Cl1X0.91767 (6)0.15439 (9)1.07048 (5)0.0687 (3)0.630 (13)
Cl2X0.72201 (17)0.0480 (2)1.08651 (16)0.0511 (7)0.630 (13)
C1Y0.8190 (3)0.1657 (3)1.1140 (2)0.0728 (10)0.370 (13)
H1Y10.85500.18881.17390.087*0.370 (13)
H1Y20.76690.23261.08530.087*0.370 (13)
Cl1Y0.91767 (6)0.15439 (9)1.07048 (5)0.0687 (3)0.370 (13)
Cl2Y0.7489 (11)0.0313 (6)1.1063 (8)0.114 (2)0.370 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (13)0.072 (2)0.0370 (15)0.0029 (13)0.0051 (12)0.0058 (15)
C20.0346 (14)0.0589 (18)0.0386 (15)0.0208 (13)0.0128 (12)0.0140 (13)
N10.0243 (9)0.0461 (12)0.0349 (11)0.0039 (9)0.0042 (8)0.0078 (9)
C30.0231 (10)0.0355 (12)0.0267 (11)0.0020 (9)0.0112 (9)0.0078 (9)
C40.0291 (11)0.0286 (12)0.0293 (11)0.0049 (10)0.0061 (10)0.0004 (10)
C50.0305 (11)0.0224 (11)0.0322 (12)0.0019 (9)0.0087 (10)0.0025 (9)
C60.0223 (10)0.0211 (10)0.0257 (10)0.0003 (8)0.0083 (8)0.0028 (8)
C70.0241 (10)0.0226 (11)0.0331 (12)0.0018 (9)0.0126 (9)0.0001 (9)
C80.0274 (11)0.0238 (11)0.0362 (12)0.0046 (9)0.0154 (10)0.0069 (9)
N20.0231 (9)0.0244 (9)0.0264 (9)0.0010 (7)0.0083 (7)0.0023 (7)
N30.0241 (9)0.0250 (9)0.0238 (9)0.0010 (7)0.0085 (7)0.0040 (7)
C90.0211 (9)0.0227 (10)0.0199 (10)0.0007 (8)0.0076 (8)0.0011 (8)
C100.0250 (10)0.0207 (10)0.0196 (9)0.0000 (8)0.0109 (8)0.0008 (8)
O10.0308 (8)0.0201 (7)0.0284 (8)0.0036 (6)0.0097 (6)0.0010 (6)
N40.0235 (8)0.0181 (9)0.0221 (9)0.0009 (7)0.0073 (7)0.0038 (7)
C110.0233 (10)0.0190 (10)0.0206 (10)0.0012 (8)0.0117 (8)0.0008 (8)
O20.0236 (7)0.0233 (7)0.0257 (7)0.0011 (6)0.0052 (6)0.0032 (6)
N50.0211 (8)0.0177 (8)0.0237 (8)0.0002 (7)0.0088 (7)0.0026 (7)
C120.0251 (10)0.0207 (11)0.0226 (10)0.0040 (8)0.0096 (9)0.0038 (8)
C130.0229 (10)0.0170 (10)0.0287 (11)0.0010 (8)0.0097 (9)0.0017 (9)
C140.0228 (10)0.0193 (10)0.0224 (10)0.0006 (8)0.0068 (8)0.0053 (8)
O30.0373 (9)0.0270 (8)0.0348 (8)0.0071 (7)0.0179 (7)0.0087 (7)
O40.0248 (7)0.0231 (7)0.0287 (8)0.0038 (6)0.0138 (6)0.0004 (6)
C150.0244 (10)0.0315 (12)0.0297 (11)0.0011 (9)0.0151 (9)0.0013 (9)
C160.0399 (15)0.069 (2)0.0298 (13)0.0125 (15)0.0155 (12)0.0091 (13)
C170.0367 (14)0.0416 (16)0.0602 (19)0.0039 (12)0.0255 (14)0.0042 (14)
C180.0325 (13)0.0400 (15)0.0457 (15)0.0086 (11)0.0189 (12)0.0017 (12)
C1X0.085 (2)0.0521 (19)0.105 (3)0.0259 (17)0.063 (2)0.0354 (18)
Cl1X0.0585 (5)0.0981 (7)0.0553 (5)0.0121 (4)0.0282 (4)0.0193 (4)
Cl2X0.0499 (14)0.0513 (13)0.0461 (11)0.0163 (7)0.0114 (11)0.0014 (7)
C1Y0.085 (2)0.0521 (19)0.105 (3)0.0259 (17)0.063 (2)0.0354 (18)
Cl1Y0.0585 (5)0.0981 (7)0.0553 (5)0.0121 (4)0.0282 (4)0.0193 (4)
Cl2Y0.232 (6)0.0284 (17)0.153 (5)0.024 (3)0.155 (5)0.013 (3)
Geometric parameters (Å, º) top
C1—N11.452 (3)C11—O21.232 (2)
C1—H1A1.00 (3)C11—N51.386 (2)
C1—H1B1.01 (4)N5—C121.376 (3)
C1—H1C0.98 (4)N5—C131.464 (3)
C2—N11.458 (3)C12—H120.99 (2)
C2—H2A0.98 (3)C13—C141.518 (3)
C2—H2B1.08 (3)C13—H13A0.95 (2)
C2—H2C1.03 (3)C13—H13B0.96 (2)
N1—C31.383 (3)C14—O31.206 (2)
C3—C81.408 (3)C14—O41.339 (2)
C3—C41.414 (3)O4—C151.497 (3)
C4—C51.382 (3)C15—C161.517 (3)
C4—H40.94 (2)C15—C171.518 (3)
C5—C61.403 (3)C15—C181.521 (3)
C5—H50.91 (3)C16—H16A0.98 (3)
C6—C71.402 (3)C16—H16B0.97 (3)
C6—N21.409 (3)C16—H16C0.95 (3)
C7—C81.383 (3)C17—H17A1.00 (3)
C7—H70.95 (2)C17—H17B1.00 (3)
C8—H80.98 (2)C17—H17C0.96 (3)
N2—N31.276 (2)C18—H18A0.97 (3)
N3—C91.425 (3)C18—H18B1.03 (3)
C9—C121.358 (3)C18—H18C0.97 (3)
C9—C101.459 (3)C1X—Cl2X1.737 (3)
C10—O11.226 (2)C1X—Cl1X1.738 (3)
C10—N41.398 (3)C1X—H1X10.9900
N4—C111.372 (3)C1X—H1X20.9900
N4—H4A0.84 (3)
N1—C1—H1A113.5 (15)C12—N5—C11121.27 (16)
N1—C1—H1B112.0 (19)C12—N5—C13120.81 (16)
H1A—C1—H1B104 (2)C11—N5—C13117.19 (16)
N1—C1—H1C108 (2)C9—C12—N5122.66 (18)
H1A—C1—H1C110 (2)C9—C12—H12123.2 (13)
H1B—C1—H1C109 (3)N5—C12—H12114.2 (13)
N1—C2—H2A105.4 (19)N5—C13—C14110.01 (17)
N1—C2—H2B113.6 (14)N5—C13—H13A107.0 (14)
H2A—C2—H2B106 (2)C14—C13—H13A110.0 (14)
N1—C2—H2C112.1 (17)N5—C13—H13B110.7 (13)
H2A—C2—H2C110 (2)C14—C13—H13B111.1 (13)
H2B—C2—H2C109 (2)H13A—C13—H13B107.9 (19)
C3—N1—C1120.4 (2)O3—C14—O4126.64 (19)
C3—N1—C2119.3 (2)O3—C14—C13123.57 (18)
C1—N1—C2118.5 (2)O4—C14—C13109.78 (17)
N1—C3—C8121.0 (2)C14—O4—C15120.76 (16)
N1—C3—C4121.1 (2)O4—C15—C16108.16 (19)
C8—C3—C4117.98 (19)O4—C15—C17109.97 (18)
C5—C4—C3121.2 (2)C16—C15—C17113.6 (2)
C5—C4—H4118.8 (13)O4—C15—C18102.75 (18)
C3—C4—H4120.0 (13)C16—C15—C18111.2 (2)
C4—C5—C6120.6 (2)C17—C15—C18110.6 (2)
C4—C5—H5121.4 (15)C15—C16—H16A112.1 (18)
C6—C5—H5118.0 (15)C15—C16—H16B110.1 (19)
C7—C6—C5118.39 (19)H16A—C16—H16B108 (2)
C7—C6—N2115.27 (18)C15—C16—H16C109.9 (19)
C5—C6—N2126.34 (19)H16A—C16—H16C107 (3)
C8—C7—C6121.4 (2)H16B—C16—H16C110 (3)
C8—C7—H7121.1 (13)C15—C17—H17A108.7 (16)
C6—C7—H7117.4 (13)C15—C17—H17B110.5 (17)
C7—C8—C3120.4 (2)H17A—C17—H17B112 (2)
C7—C8—H8119.0 (13)C15—C17—H17C112.6 (18)
C3—C8—H8120.6 (13)H17A—C17—H17C104 (2)
N3—N2—C6115.89 (16)H17B—C17—H17C108 (2)
N2—N3—C9110.80 (16)C15—C18—H18A110.5 (15)
C12—C9—N3122.83 (18)C15—C18—H18B110.8 (16)
C12—C9—C10119.52 (18)H18A—C18—H18B109 (2)
N3—C9—C10117.61 (17)C15—C18—H18C109.2 (17)
O1—C10—N4120.61 (18)H18A—C18—H18C110 (2)
O1—C10—C9126.13 (18)H18B—C18—H18C107 (2)
N4—C10—C9113.26 (17)Cl2X—C1X—Cl1X115.3 (2)
C11—N4—C10127.82 (17)Cl2X—C1X—H1X1108.5
C11—N4—H4A116.1 (17)Cl1X—C1X—H1X1108.5
C10—N4—H4A116.0 (17)Cl2X—C1X—H1X2108.5
O2—C11—N4123.60 (18)Cl1X—C1X—H1X2108.5
O2—C11—N5121.23 (17)H1X1—C1X—H1X2107.5
N4—C11—N5115.15 (17)
C1—N1—C3—C8168.5 (2)N3—C9—C10—N4175.99 (16)
C2—N1—C3—C84.1 (3)O1—C10—N4—C11175.49 (18)
C1—N1—C3—C412.6 (3)C9—C10—N4—C114.9 (3)
C2—N1—C3—C4177.0 (2)C10—N4—C11—O2177.93 (19)
N1—C3—C4—C5178.2 (2)C10—N4—C11—N50.6 (3)
C8—C3—C4—C50.7 (3)O2—C11—N5—C12179.03 (18)
C3—C4—C5—C60.9 (3)N4—C11—N5—C122.4 (3)
C4—C5—C6—C70.4 (3)O2—C11—N5—C1310.7 (3)
C4—C5—C6—N2180.0 (2)N4—C11—N5—C13167.88 (17)
C5—C6—C7—C80.3 (3)N3—C9—C12—N5178.38 (18)
N2—C6—C7—C8179.39 (19)C10—C9—C12—N54.2 (3)
C6—C7—C8—C30.5 (3)C11—N5—C12—C90.5 (3)
N1—C3—C8—C7178.9 (2)C13—N5—C12—C9169.43 (19)
C4—C3—C8—C70.0 (3)C12—N5—C13—C1496.3 (2)
C7—C6—N2—N3177.35 (18)C11—N5—C13—C1474.0 (2)
C5—C6—N2—N33.0 (3)N5—C13—C14—O312.2 (3)
C6—N2—N3—C9176.25 (16)N5—C13—C14—O4168.70 (15)
N2—N3—C9—C1226.9 (3)O3—C14—O4—C158.9 (3)
N2—N3—C9—C10155.63 (17)C13—C14—O4—C15170.22 (16)
C12—C9—C10—O1173.92 (19)C14—O4—C15—C1660.9 (2)
N3—C9—C10—O13.6 (3)C14—O4—C15—C1763.7 (2)
C12—C9—C10—N46.5 (3)C14—O4—C15—C18178.54 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2i0.84 (3)2.02 (3)2.851 (2)171 (2)
C2—H2C···O1ii1.03 (3)2.62 (3)3.189 (4)115 (2)
C4—H4···Cl2Xiii0.94 (2)2.98 (2)3.784 (4)143.5 (17)
C12—H12···O1iv0.99 (2)2.34 (2)3.214 (3)145.8 (18)
C13—H13B···Cl2Xv0.96 (2)2.99 (2)3.895 (4)158.6 (16)
C16—H16A···O30.98 (3)2.51 (3)3.042 (3)114 (2)
C17—H17C···O30.96 (3)2.48 (3)2.994 (4)113 (2)
C1X—H1X1···O3vi0.992.523.346 (4)141
C1X—H1X2···O1ii0.992.483.256 (4)135
C1Y—H1Y1···O3vi0.992.503.346 (4)143
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z+3/2; (vi) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2i0.84 (3)2.02 (3)2.851 (2)171 (2)
C2—H2C···O1ii1.03 (3)2.62 (3)3.189 (4)115 (2)
C4—H4···Cl2Xiii0.94 (2)2.98 (2)3.784 (4)143.5 (17)
C12—H12···O1iv0.99 (2)2.34 (2)3.214 (3)145.8 (18)
C13—H13B···Cl2Xv0.96 (2)2.99 (2)3.895 (4)158.6 (16)
C16—H16A···O30.98 (3)2.51 (3)3.042 (3)114 (2)
C17—H17C···O30.96 (3)2.48 (3)2.994 (4)113 (2)
C1X—H1X1···O3vi0.992.523.346 (4)140.7
C1X—H1X2···O1ii0.992.483.256 (4)135.3
C1Y—H1Y1···O3vi0.992.503.346 (4)143.1
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z+3/2; (vi) x+1, y+1, z+2.
 

Acknowledgements

The authors thank NSERC Canada and the School of Graduate and Postdoctoral Studies (Western) for financial support of this work and the Egyptian Higher Education Ministry for scholarship support for MEM.

References

First citationAsanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. (1999). Angew. Chem. Int. Ed. Engl. 38, 2393–2395.  CrossRef PubMed CAS Google Scholar
First citationBoyle, P. D. (2008). http://www.xray.ncsu .edu/PyCIFUtils/  Google Scholar
First citationBruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDodd, D. W. & Hudson, R. H. E. (2009). Mini Rev. Org. Chem. 4, 378–39.  CrossRef Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMoustafa, M. E. (2011). Ph.D. thesis, The University of Western Ontario, London, Ontario, Canada.  Google Scholar
First citationMoustafa, M. E. & Hudson, R. H. E. (2011). Nucleosides Nucleotides Nucleic Acids 30, 740–751.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThurber, T. C. & Townsend, L. B. (1972). J. Heterocycl. Chem. 9, 629–636.  CrossRef CAS Google Scholar
First citationTsupak, E. B., Shevchenko, M. A., Tkachenko, Y. N. & Nazarov, D. A. (2002). Russ. J. Org. Chem. 38, 923–930.  Web of Science CrossRef Google Scholar
First citationTyagi, S. & Kramer, F. R. (1996). Nat. Biotechnol. 14, 303–308.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYue, S. S., Li, J. D., Zhang, J. Y., Lu, J. J. & Chen, M. (2009). Chin. Chem. Bull. 54, 4753–4755.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o556-o557
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds