metal-organic compounds
Poly[(μ4-decanedioato)cobalt(II)]
aDipartimento di Scienze Chimiche, Universita di Messina, Messina, Italy
*Correspondence e-mail: gbruno@unime.it
In the title compound, [Co(C10H16O4)]n, the CoII atom is bonded in a slightly distorted tetrahedral environment by four O atoms from the bridging sebacate dications, comprising two separate half-ligands which lie across crystallographic inversion centres. In the three-dimensional network coordination polymer, there are two different spatial extensions of CoII atoms, one with the CoII atoms lying parallel to (100) [Co⋯Co = 4.653 (1) Å], the other lying parallel to (010) [Co⋯Co = 4.764 (1) Å].
CCDC reference: 992380
Related literature
For background to the construction of supramolecular frameworks, see: Gavezzotti (1994); Desiraju (2003); Sarma & Desiraju (2002); Biradha et al. (1998); Hosseini (2003). For the structure of sebacic acid, see: Morrison & Robertson (1949); Bond et al. (2001). For its use in constructing stable metal-organic frameworks, see: Borkowski & Cahill (2004, 2006); Thuéry (2008); Zhou et al. (2010).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 992380
10.1107/S1600536814006011/zs2284sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814006011/zs2284Isup2.hkl
The polymer was synthesized by reaction of cobalt chloride hexahydrate (0.05 mmol) with sebacic acid (0.05 mmol) sealed in a teflon-lined stainless steel autoclave filled with 8 ml of water, which was heated at 130 °C for 3 days under autogenous pressure. After slow cooling to room temperature over 6 h, two different types of crystal were observed, the expected pink violet product, the title complex (yield 50%) and transparent colourless crystals, which tested separately appear to be unreacted sebacic acid.
The H atoms were included in the
at calculated positions [C—H = 0.97 Å] and were allowed to ride, with Ueq(H) = 1.2Ueq(H).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Co(C10H16O4)] | F(000) = 1080 |
Mr = 259.16 | Dx = 1.559 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 2ya | Cell parameters from 98 reflections |
a = 9.276 (1) Å | θ = 2.2–27.5° |
b = 4.764 (1) Å | µ = 1.55 mm−1 |
c = 50.154 (3) Å | T = 295 K |
β = 95.02 (2)° | Prismatic, pink |
V = 2207.9 (5) Å3 | 0.28 × 0.21 × 0.17 mm |
Z = 8 |
Bruker APEXII CCD diffractometer | 2477 independent reflections |
Radiation source: fine-focus sealed tube | 2175 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ϕ and ω scans | θmax = 27.5°, θmin = 0.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −12→12 |
Tmin = 0.661, Tmax = 0.746 | k = −6→6 |
32758 measured reflections | l = −65→65 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.157 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0975P)2 + 11.5316P] where P = (Fo2 + 2Fc2)/3 |
2477 reflections | (Δ/σ)max = 0.005 |
136 parameters | Δρmax = 0.59 e Å−3 |
0 restraints | Δρmin = −1.13 e Å−3 |
[Co(C10H16O4)] | V = 2207.9 (5) Å3 |
Mr = 259.16 | Z = 8 |
Monoclinic, I2/a | Mo Kα radiation |
a = 9.276 (1) Å | µ = 1.55 mm−1 |
b = 4.764 (1) Å | T = 295 K |
c = 50.154 (3) Å | 0.28 × 0.21 × 0.17 mm |
β = 95.02 (2)° |
Bruker APEXII CCD diffractometer | 2477 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2175 reflections with I > 2σ(I) |
Tmin = 0.661, Tmax = 0.746 | Rint = 0.044 |
32758 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.157 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0975P)2 + 11.5316P] where P = (Fo2 + 2Fc2)/3 |
2477 reflections | Δρmax = 0.59 e Å−3 |
136 parameters | Δρmin = −1.13 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Structure has been solved and refined in the centrosymmetric monoclinic C2/c space group. Refining the structure in the non standard I2/a space group leads to identical R value results, but at a value of G.o.f. (1.014) significantly closer to the ideal value of 1, for this reason we prefer the non-standard space group. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.47978 (6) | 0.46111 (10) | 0.12353 (1) | 0.0250 (2) | |
O1 | 0.6900 (3) | 0.4833 (6) | 0.13284 (6) | 0.0309 (8) | |
O2 | 0.4577 (4) | 0.0653 (6) | 0.11391 (6) | 0.0366 (9) | |
O3 | 0.8963 (3) | 0.3988 (7) | 0.15584 (6) | 0.0323 (8) | |
O4 | 0.4116 (3) | −0.3222 (6) | 0.09159 (6) | 0.0325 (8) | |
C1 | 0.7614 (4) | 0.3735 (8) | 0.15271 (7) | 0.0257 (10) | |
C2 | 0.6850 (4) | 0.2035 (10) | 0.17252 (8) | 0.0354 (11) | |
C3 | 0.7826 (5) | 0.0818 (10) | 0.19561 (9) | 0.0376 (14) | |
C4 | 0.6969 (5) | −0.0629 (11) | 0.21590 (10) | 0.0405 (14) | |
C5 | 0.7919 (5) | −0.1789 (11) | 0.23957 (9) | 0.0418 (14) | |
C6 | 0.0421 (5) | −0.0875 (10) | 0.01058 (9) | 0.0363 (12) | |
C7 | 0.1253 (5) | 0.0870 (9) | 0.03230 (8) | 0.0354 (12) | |
C8 | 0.2129 (4) | −0.0888 (9) | 0.05305 (8) | 0.0331 (11) | |
C9 | 0.2964 (5) | 0.0920 (9) | 0.07393 (8) | 0.0323 (12) | |
C10 | 0.3946 (4) | −0.0612 (7) | 0.09434 (8) | 0.0246 (10) | |
H2A | 0.63420 | 0.05040 | 0.16300 | 0.0430* | |
H2B | 0.61290 | 0.32160 | 0.17980 | 0.0430* | |
H3A | 0.84870 | −0.05180 | 0.18860 | 0.0450* | |
H3B | 0.83970 | 0.23150 | 0.20440 | 0.0450* | |
H4A | 0.64190 | −0.21550 | 0.20720 | 0.0490* | |
H4B | 0.62870 | 0.06970 | 0.22240 | 0.0490* | |
H5A | 0.85920 | −0.31300 | 0.23300 | 0.0510* | |
H5B | 0.84820 | −0.02640 | 0.24800 | 0.0510* | |
H6A | 0.10990 | −0.20510 | 0.00200 | 0.0440* | |
H6B | −0.02450 | −0.21000 | 0.01890 | 0.0440* | |
H7A | 0.19000 | 0.21330 | 0.02400 | 0.0420* | |
H7B | 0.05720 | 0.20070 | 0.04120 | 0.0420* | |
H8A | 0.28010 | −0.20510 | 0.04420 | 0.0400* | |
H8B | 0.14830 | −0.21190 | 0.06180 | 0.0400* | |
H9A | 0.35410 | 0.22490 | 0.06480 | 0.0390* | |
H9B | 0.22750 | 0.19920 | 0.08330 | 0.0390* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0240 (3) | 0.0266 (3) | 0.0228 (3) | 0.0029 (2) | −0.0062 (2) | −0.0017 (2) |
O1 | 0.0254 (14) | 0.0385 (15) | 0.0282 (14) | 0.0012 (10) | −0.0013 (11) | 0.0082 (11) |
O2 | 0.0502 (19) | 0.0249 (14) | 0.0306 (15) | 0.0056 (12) | −0.0197 (13) | −0.0032 (11) |
O3 | 0.0215 (13) | 0.0426 (16) | 0.0320 (14) | 0.0037 (11) | −0.0013 (10) | −0.0053 (12) |
O4 | 0.0408 (15) | 0.0236 (14) | 0.0309 (14) | 0.0030 (11) | −0.0095 (11) | 0.0003 (10) |
C1 | 0.0223 (16) | 0.0287 (18) | 0.0258 (17) | 0.0032 (14) | −0.0001 (13) | −0.0015 (14) |
C2 | 0.0247 (18) | 0.047 (2) | 0.034 (2) | −0.0021 (16) | 0.0002 (15) | 0.0122 (17) |
C3 | 0.027 (2) | 0.051 (3) | 0.034 (2) | −0.0023 (17) | −0.0013 (16) | 0.0137 (18) |
C4 | 0.030 (2) | 0.056 (3) | 0.035 (2) | −0.0023 (18) | 0.0000 (17) | 0.0147 (19) |
C5 | 0.033 (2) | 0.055 (3) | 0.037 (2) | −0.0004 (19) | 0.0009 (17) | 0.015 (2) |
C6 | 0.031 (2) | 0.042 (2) | 0.033 (2) | 0.0033 (17) | −0.0143 (17) | 0.0003 (17) |
C7 | 0.032 (2) | 0.040 (2) | 0.031 (2) | 0.0028 (17) | −0.0148 (16) | 0.0004 (16) |
C8 | 0.0292 (19) | 0.033 (2) | 0.034 (2) | −0.0009 (15) | −0.0148 (16) | −0.0002 (16) |
C9 | 0.034 (2) | 0.030 (2) | 0.030 (2) | 0.0037 (16) | −0.0135 (15) | −0.0003 (15) |
C10 | 0.0206 (17) | 0.0259 (18) | 0.0263 (18) | 0.0021 (13) | −0.0037 (14) | −0.0008 (13) |
Co1—O1 | 1.968 (3) | C9—C10 | 1.499 (6) |
Co1—O2 | 1.953 (3) | C2—H2A | 0.9700 |
Co1—O3i | 1.972 (3) | C2—H2B | 0.9700 |
Co1—O4ii | 1.963 (3) | C3—H3A | 0.9700 |
O1—C1 | 1.261 (5) | C3—H3B | 0.9700 |
O2—C10 | 1.252 (5) | C4—H4A | 0.9700 |
O3—C1 | 1.253 (5) | C4—H4B | 0.9700 |
O4—C10 | 1.262 (4) | C5—H5A | 0.9700 |
C1—C2 | 1.506 (6) | C5—H5B | 0.9700 |
C2—C3 | 1.521 (6) | C6—H6A | 0.9700 |
C3—C4 | 1.511 (7) | C6—H6B | 0.9700 |
C4—C5 | 1.519 (7) | C7—H7A | 0.9700 |
C5—C5iii | 1.517 (7) | C7—H7B | 0.9700 |
C6—C7 | 1.525 (6) | C8—H8A | 0.9700 |
C6—C6iv | 1.512 (7) | C8—H8B | 0.9700 |
C7—C8 | 1.516 (6) | C9—H9A | 0.9700 |
C8—C9 | 1.515 (6) | C9—H9B | 0.9700 |
O1—Co1—O2 | 101.00 (14) | C4—C3—H3B | 109.00 |
O1—Co1—O4ii | 114.02 (12) | H3A—C3—H3B | 108.00 |
O1—Co1—O3i | 103.83 (12) | C3—C4—H4A | 109.00 |
O2—Co1—O4ii | 106.66 (13) | C3—C4—H4B | 109.00 |
O2—Co1—O3i | 119.31 (14) | C5—C4—H4A | 109.00 |
O3i—Co1—O4ii | 111.77 (13) | C5—C4—H4B | 109.00 |
Co1—O1—C1 | 127.3 (3) | H4A—C4—H4B | 108.00 |
Co1—O2—C10 | 133.6 (3) | C4—C5—H5A | 109.00 |
Co1v—O3—C1 | 112.9 (2) | C4—C5—H5B | 109.00 |
Co1vi—O4—C10 | 117.6 (3) | H5A—C5—H5B | 108.00 |
O1—C1—O3 | 120.6 (3) | C5iii—C5—H5A | 109.00 |
O1—C1—C2 | 120.0 (3) | C5iii—C5—H5B | 109.00 |
O3—C1—C2 | 119.4 (3) | C7—C6—H6A | 109.00 |
C1—C2—C3 | 115.1 (3) | C7—C6—H6B | 109.00 |
C2—C3—C4 | 111.9 (4) | H6A—C6—H6B | 108.00 |
C3—C4—C5 | 112.9 (4) | C6iv—C6—H6A | 109.00 |
C4—C5—C5iii | 113.8 (4) | C6iv—C6—H6B | 109.00 |
C6iv—C6—C7 | 113.5 (4) | C6—C7—H7A | 109.00 |
C6—C7—C8 | 113.4 (4) | C6—C7—H7B | 109.00 |
C7—C8—C9 | 111.8 (4) | C8—C7—H7A | 109.00 |
C8—C9—C10 | 116.0 (3) | C8—C7—H7B | 109.00 |
O2—C10—O4 | 120.4 (4) | H7A—C7—H7B | 108.00 |
O2—C10—C9 | 121.0 (3) | C7—C8—H8A | 109.00 |
O4—C10—C9 | 118.6 (3) | C7—C8—H8B | 109.00 |
C1—C2—H2A | 108.00 | C9—C8—H8A | 109.00 |
C1—C2—H2B | 108.00 | C9—C8—H8B | 109.00 |
C3—C2—H2A | 109.00 | H8A—C8—H8B | 108.00 |
C3—C2—H2B | 109.00 | C8—C9—H9A | 108.00 |
H2A—C2—H2B | 107.00 | C8—C9—H9B | 108.00 |
C2—C3—H3A | 109.00 | C10—C9—H9A | 108.00 |
C2—C3—H3B | 109.00 | C10—C9—H9B | 108.00 |
C4—C3—H3A | 109.00 | H9A—C9—H9B | 107.00 |
O2—Co1—O1—C1 | −68.6 (3) | Co1v—O3—C1—C2 | 164.7 (3) |
O4ii—Co1—O1—C1 | 177.4 (3) | Co1vi—O4—C10—O2 | 20.7 (5) |
O3i—Co1—O1—C1 | 55.5 (3) | Co1vi—O4—C10—C9 | −158.6 (3) |
O1—Co1—O2—C10 | −130.9 (4) | O1—C1—C2—C3 | 180.0 (4) |
O4ii—Co1—O2—C10 | −11.5 (4) | O3—C1—C2—C3 | 1.7 (6) |
O3i—Co1—O2—C10 | 116.2 (4) | C1—C2—C3—C4 | 174.8 (4) |
O1—Co1—O4ii—C10ii | −80.3 (3) | C2—C3—C4—C5 | −178.3 (4) |
O2—Co1—O4ii—C10ii | 169.1 (3) | C3—C4—C5—C5iii | 179.1 (4) |
O1—Co1—O3i—C1i | 173.9 (3) | C4—C5—C5iii—C4iii | 180.0 (4) |
O2—Co1—O3i—C1i | −74.8 (3) | C6iv—C6—C7—C8 | −178.4 (4) |
Co1—O1—C1—O3 | 178.1 (3) | C7—C6—C6iv—C7iv | 180.0 (4) |
Co1—O1—C1—C2 | −0.2 (5) | C6—C7—C8—C9 | 178.8 (4) |
Co1—O2—C10—O4 | 171.7 (3) | C7—C8—C9—C10 | −176.0 (3) |
Co1—O2—C10—C9 | −9.0 (6) | C8—C9—C10—O2 | −173.1 (4) |
Co1v—O3—C1—O1 | −13.6 (5) | C8—C9—C10—O4 | 6.2 (5) |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) x, y+1, z; (iii) −x+3/2, −y−1/2, −z+1/2; (iv) −x, −y, −z; (v) x+1/2, −y+1, z; (vi) x, y−1, z. |
Co1—O1 | 1.968 (3) | Co1—O3i | 1.972 (3) |
Co1—O2 | 1.953 (3) | Co1—O4ii | 1.963 (3) |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) x, y+1, z. |
References
Biradha, K., Dennis, D., MacKinnon, V. A., Sharma, C. V. K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 11894–11903. Web of Science CSD CrossRef CAS Google Scholar
Bond, A. D., Edwards, M. R. & Jones, W. (2001). Acta Cryst. E57, o141–o142. CSD CrossRef CAS IUCr Journals Google Scholar
Borkowski, L. A. & Cahill, C. L. (2004). Acta Cryst. C60, m159–m161. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Borkowski, L. A. & Cahill, C. L. (2006). Cryst. Growth Des. 10, 2241–2247. Web of Science CSD CrossRef Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (2003). J. Mol. Struct. 656, 5–15. Web of Science CrossRef CAS Google Scholar
Gavezzotti, A. (1994). Acc. Chem. Res. 27, 309–314. CrossRef CAS Web of Science Google Scholar
Hosseini, M. W. (2003). Coord. Chem. Rev. 240, 157–166. Web of Science CrossRef CAS Google Scholar
Morrison, J. D. & Robertson, J. M. (1949). J. Chem. Soc., pp. 993–1001. Google Scholar
Sarma, J. A. R. P. & Desiraju, G. R. (2002). Cryst. Growth Des. 2, 93–100. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thuéry, P. (2008). Cryst. Growth Des. 11, 4132–4143. Google Scholar
Zhou, Y.-L., Liang, H. & Zeng, M.-H. (2010). Acta Cryst. E66, m405. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crystal engineering is primarily concerned with the ability to predictably synthesize supramolecular structures from well designed building-blocks (Desiraju, 2003). To date it is still a big challenge the exact prediction of the structure of a molecular solid because crystal packing is driven by many weak non-covalent interactions (Gavezzotti, 1994). Suitable substrates to design specific architectures should bear functional groups apt to develop predefined interactions synthones (Sarma & Desiraju, 2002) for this purpose, often, planar aromatic or linear aliphatic molecules with carboxylic groups (Biradha et al., 1998) were exploited as building-blocks (Hosseini, 2003) to yield particular crystal lattice. Crystal structure of sebacic acid was first determined by Morrison & Robertson (1949) it has been redetermined at low temperature (180 K) (Bond et al., 2001). Sebacic acid both in its protonated or deprotonated forms has been found in several metal complexes, either coordinated to the metal center or as a counter ion, or in co-crystals in its protonated form. In all the examined compounds, the alkyl chain of either the free or coordinated sebacate or sebacic acid are usually linear with a few exceptions (Zhou et al., 2010; Thuéry, 2008). In the title zinc sebacate complex, [CoC10H16O4]n the linear chain is evidenced by the C1–C10 separation of 11.452 (4) Å, equal within the e.s.d's to the corresponding value of 11.466 (5) Å found in the low- temperature X-ray structure of sebacic acid (Bond et al., 2001).The shortest separation [11.419 (4) Å] for the linear C1···C10 chain was found in a dimeric uranil sebacate complex (Borkowski & Cahill, 2006).
The asymmetric unit of the title complex comprises a cobalt cation coordinated by four carboxyl O-atom donors from two non-equivalent half-sebacate anions which lie across crystallographic inversion centres (Fig. 1). The cobalt has close to ideal tetrahedral geometry [Co—O range, 1.953 (3) – 1.972 (3) Å (Table 1)]. The C—O bond lengths in the carboxylate groups range from 1.252 (5) Å to 1.262 (5) Å, this narrow range being smaller than the usual range found in monodentate carboxylates. The title complex forms a three-dimensional network polymer in which there are two different arrangenments of cobalt atoms (Fig. 2). The column of cobalt atoms with the oxygen atoms linked to it extends parallel to the crystallographic b axis and in this column the Co–Co separation is exactly the length of b axis [4.7640 (7) Å]. The second column extends almost parallel to (1 0 0) with a Co···Co separation of 4.6528 (8) Å. The overall molecular packing is illustrated in Fig. 3.