organic compounds
2-(5-Methyl-1,3,4-oxadiazol-2-yl)phenyl acetate
aDepto. de Química - Campus I - Universidade Federal da Paraíba, 58051-900 - João Pessoa, PB, Brazil, and bDepto. de Química - Universidade Federal de Santa Catarina, 88040-900 - Florianópolis, Santa Catarina, Brazil
*Correspondence e-mail: adailton.bortoluzzi@ufsc.br
In the title compound, C11H10N2O3, which is a potential bioactive compound, the benzene and oxadiazole rings are approximately coplanar, with an inter-ring dihedral angle of 4.14 (2)°, while the ester plane is rotated out of the benzene plane [dihedral angle = 82.69 (9)°]. In the crystal, the molecules form layers down the a axis with weak π–π interactions between the oxadiazole and benzene rings [minimum ring centroid separation = 3.7706 (14) Å].
CCDC reference: 996388
Related literature
For the bioactivity of 1,3,4-oxadiazole derivatives, see: Boström et al. (2012); Rajak et al. (2009); Polshettiwar & Varma (2008). For the properties of the 1,3,4-oxadiazole heterocycle, see: Bolton & Kim (2007); Liu et al. (2007); Kulkarni et al. (2004). For material chemistry applications, see: Hughes & Bryce (2005); Wang et al. (2011); Cristiano et al. (2006); Han (2013). For the synthesis, see: Gallardo et al. (2001). For related structures, see: Vencato et al. (1996); Gutov (2013).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 996388
10.1107/S1600536814007946/zs2285sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814007946/zs2285Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814007946/zs2285Isup3.mol
Supporting information file. DOI: 10.1107/S1600536814007946/zs2285Isup4.cml
A mixture of 5-(2-hydroxyphenyl)tetrazole (Gallardo et al., 2001) (2.0 g, 12.3 mmol) and acetic anhydride (6.3 g, 61.5 mmol) was heated under reflux for 2 h. The reaction mixture was poured into water/ice, the precipitate was filtered, washed with cold water and dried under vacuum to give the title compound as a white solid (1.88 g, 70%). Crystals suitable for X-ray diffraction were obtained from slow evaporation of the CDCl3 solution. M.p.= 108 °C. 1H NMR (CDCl3) = 8.00 (dd, J = 7.8 and 1.6 Hz, 1H), 7.60 - 7.51 (m, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 2.60 (s, 3H), 2.42 (s, 3H); 13C NMR (CDCl3) = 169.88, 163.35, 162.12, 148.68, 132.67, 129.21, 126.60, 124.22, 117.65, 21.20, 11.08.
All non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed at their idealized positions with distances of 0.93 Å for C—HAr and 0.96 Å for CH3 groups and allowed to ride. Their Ueq were fixed at 1.2 and 1.5 times Uiso of the preceding atom for aromatic and methyl groups, respectively. H atoms of the methyl groups were treated as ideally disordered over two sites.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. |
C11H10N2O3 | Dx = 1.359 Mg m−3 |
Mr = 218.21 | Melting point: 381 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
a = 6.6335 (6) Å | Cell parameters from 25 reflections |
b = 16.925 (3) Å | θ = 6.5–15.6° |
c = 9.5078 (6) Å | µ = 0.10 mm−1 |
β = 92.113 (6)° | T = 293 K |
V = 1066.7 (2) Å3 | Block, colorless |
Z = 4 | 0.50 × 0.36 × 0.16 mm |
F(000) = 456 |
Enraf–Nonius CAD-4 diffractometer | θmax = 25.1°, θmin = 2.4° |
Radiation source: fine-focus sealed tube | h = −7→7 |
ω–2θ scans | k = −20→0 |
1998 measured reflections | l = −11→0 |
1885 independent reflections | 3 standard reflections every 200 reflections |
1403 reflections with I > 2σ(I) | intensity decay: 1% |
Rint = 0.018 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.07P)2 + 0.1662P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.136 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.24 e Å−3 |
1885 reflections | Δρmin = −0.20 e Å−3 |
146 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.020 (4) |
C11H10N2O3 | V = 1066.7 (2) Å3 |
Mr = 218.21 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.6335 (6) Å | µ = 0.10 mm−1 |
b = 16.925 (3) Å | T = 293 K |
c = 9.5078 (6) Å | 0.50 × 0.36 × 0.16 mm |
β = 92.113 (6)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.018 |
1998 measured reflections | 3 standard reflections every 200 reflections |
1885 independent reflections | intensity decay: 1% |
1403 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.24 e Å−3 |
1885 reflections | Δρmin = −0.20 e Å−3 |
146 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C3 | 0.7116 (3) | 0.20207 (12) | 0.5466 (2) | 0.0529 (5) | |
C5 | 0.7187 (3) | 0.09558 (12) | 0.42764 (19) | 0.0449 (5) | |
C6 | 0.7352 (3) | 0.00994 (11) | 0.4065 (2) | 0.0438 (5) | |
C7 | 0.7258 (3) | −0.02402 (12) | 0.2733 (2) | 0.0466 (5) | |
C8 | 0.7460 (3) | −0.10475 (13) | 0.2556 (2) | 0.0572 (6) | |
H8 | 0.7388 | −0.1265 | 0.1658 | 0.069* | |
C9 | 0.7766 (3) | −0.15261 (13) | 0.3706 (3) | 0.0613 (6) | |
H9 | 0.7912 | −0.2068 | 0.3587 | 0.074* | |
C10 | 0.7858 (3) | −0.12053 (13) | 0.5041 (3) | 0.0602 (6) | |
H10 | 0.8053 | −0.1532 | 0.5820 | 0.072* | |
C11 | 0.7660 (3) | −0.03993 (13) | 0.5220 (2) | 0.0509 (5) | |
H11 | 0.7733 | −0.0187 | 0.6123 | 0.061* | |
C12 | 0.7142 (4) | 0.25279 (14) | 0.6729 (3) | 0.0694 (7) | |
H12A | 0.7253 | 0.2204 | 0.7557 | 0.104* | 0.5 |
H12B | 0.5916 | 0.2829 | 0.6741 | 0.104* | 0.5 |
H12C | 0.8274 | 0.2881 | 0.6712 | 0.104* | 0.5 |
H12D | 0.7043 | 0.3072 | 0.6449 | 0.104* | 0.5 |
H12E | 0.8379 | 0.2447 | 0.7266 | 0.104* | 0.5 |
H12F | 0.6021 | 0.2395 | 0.7295 | 0.104* | 0.5 |
C13 | 0.8374 (4) | 0.06195 (13) | 0.0975 (2) | 0.0552 (6) | |
C14 | 0.7638 (4) | 0.11009 (17) | −0.0244 (3) | 0.0776 (8) | |
H14A | 0.6205 | 0.1038 | −0.0371 | 0.116* | 0.5 |
H14B | 0.8285 | 0.0929 | −0.1077 | 0.116* | 0.5 |
H14C | 0.7949 | 0.1647 | −0.0073 | 0.116* | 0.5 |
H14D | 0.8754 | 0.1371 | −0.0643 | 0.116* | 0.5 |
H14E | 0.6674 | 0.1481 | 0.0063 | 0.116* | 0.5 |
H14F | 0.7011 | 0.0762 | −0.0942 | 0.116* | 0.5 |
N1 | 0.7036 (3) | 0.15221 (10) | 0.33808 (19) | 0.0611 (5) | |
N2 | 0.6990 (3) | 0.22223 (11) | 0.4170 (2) | 0.0669 (6) | |
O1 | 0.6816 (2) | 0.02180 (8) | 0.15409 (14) | 0.0548 (4) | |
O2 | 1.0070 (2) | 0.05640 (10) | 0.14221 (17) | 0.0666 (5) | |
O4 | 0.7239 (2) | 0.12238 (8) | 0.56256 (14) | 0.0491 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C3 | 0.0587 (13) | 0.0460 (12) | 0.0541 (13) | 0.0042 (10) | 0.0026 (10) | −0.0013 (10) |
C5 | 0.0451 (11) | 0.0506 (11) | 0.0391 (10) | 0.0001 (8) | 0.0021 (8) | 0.0012 (9) |
C6 | 0.0368 (10) | 0.0470 (11) | 0.0476 (11) | −0.0006 (8) | 0.0021 (8) | 0.0024 (9) |
C7 | 0.0421 (10) | 0.0490 (12) | 0.0487 (12) | −0.0030 (8) | 0.0011 (8) | 0.0009 (9) |
C8 | 0.0546 (12) | 0.0531 (13) | 0.0639 (14) | −0.0025 (10) | 0.0026 (10) | −0.0103 (11) |
C9 | 0.0547 (14) | 0.0443 (12) | 0.0853 (18) | 0.0006 (10) | 0.0070 (12) | 0.0026 (12) |
C10 | 0.0504 (12) | 0.0543 (13) | 0.0762 (16) | 0.0013 (10) | 0.0056 (11) | 0.0214 (11) |
C11 | 0.0452 (11) | 0.0561 (13) | 0.0517 (12) | −0.0011 (9) | 0.0057 (9) | 0.0100 (10) |
C12 | 0.0863 (17) | 0.0600 (14) | 0.0617 (15) | 0.0041 (13) | −0.0012 (12) | −0.0142 (11) |
C13 | 0.0674 (15) | 0.0549 (13) | 0.0434 (11) | 0.0016 (11) | 0.0032 (10) | −0.0043 (9) |
C14 | 0.0953 (19) | 0.0802 (18) | 0.0571 (14) | 0.0043 (14) | 0.0002 (13) | 0.0150 (13) |
N1 | 0.0915 (14) | 0.0473 (10) | 0.0446 (11) | 0.0068 (9) | 0.0045 (9) | 0.0027 (8) |
N2 | 0.0977 (15) | 0.0453 (10) | 0.0580 (12) | 0.0072 (10) | 0.0057 (10) | 0.0011 (9) |
O1 | 0.0577 (9) | 0.0606 (9) | 0.0456 (8) | −0.0032 (7) | −0.0046 (6) | 0.0004 (7) |
O2 | 0.0631 (11) | 0.0777 (12) | 0.0591 (10) | −0.0034 (8) | 0.0038 (8) | 0.0065 (8) |
O4 | 0.0542 (8) | 0.0504 (8) | 0.0427 (8) | 0.0029 (6) | 0.0007 (6) | −0.0010 (6) |
C3—N2 | 1.278 (3) | C12—H12A | 0.9600 |
C3—O4 | 1.359 (2) | C12—H12B | 0.9600 |
C3—C12 | 1.476 (3) | C12—H12C | 0.9600 |
C5—N1 | 1.283 (3) | C12—H12D | 0.9600 |
C5—O4 | 1.360 (2) | C12—H12E | 0.9600 |
C5—C6 | 1.468 (3) | C12—H12F | 0.9600 |
C6—C7 | 1.390 (3) | C13—O2 | 1.191 (3) |
C6—C11 | 1.395 (3) | C13—O1 | 1.364 (3) |
C7—C8 | 1.384 (3) | C13—C14 | 1.485 (3) |
C7—O1 | 1.395 (2) | C14—H14A | 0.9600 |
C8—C9 | 1.370 (3) | C14—H14B | 0.9600 |
C8—H8 | 0.9300 | C14—H14C | 0.9600 |
C9—C10 | 1.380 (3) | C14—H14D | 0.9600 |
C9—H9 | 0.9300 | C14—H14E | 0.9600 |
C10—C11 | 1.382 (3) | C14—H14F | 0.9600 |
C10—H10 | 0.9300 | N1—N2 | 1.404 (3) |
C11—H11 | 0.9300 | ||
N2—C3—O4 | 111.94 (18) | H12C—C12—H12E | 56.3 |
N2—C3—C12 | 128.9 (2) | H12D—C12—H12E | 109.5 |
O4—C3—C12 | 119.19 (19) | C3—C12—H12F | 109.5 |
N1—C5—O4 | 112.05 (17) | H12A—C12—H12F | 56.3 |
N1—C5—C6 | 130.60 (18) | H12B—C12—H12F | 56.3 |
O4—C5—C6 | 117.34 (16) | H12C—C12—H12F | 141.1 |
C7—C6—C11 | 117.89 (19) | H12D—C12—H12F | 109.5 |
C7—C6—C5 | 122.15 (17) | H12E—C12—H12F | 109.5 |
C11—C6—C5 | 119.94 (18) | O2—C13—O1 | 122.6 (2) |
C8—C7—C6 | 121.16 (19) | O2—C13—C14 | 126.9 (2) |
C8—C7—O1 | 117.97 (18) | O1—C13—C14 | 110.4 (2) |
C6—C7—O1 | 120.73 (17) | C13—C14—H14A | 109.5 |
C9—C8—C7 | 120.0 (2) | C13—C14—H14B | 109.5 |
C9—C8—H8 | 120.0 | H14A—C14—H14B | 109.5 |
C7—C8—H8 | 120.0 | C13—C14—H14C | 109.5 |
C8—C9—C10 | 120.1 (2) | H14A—C14—H14C | 109.5 |
C8—C9—H9 | 119.9 | H14B—C14—H14C | 109.5 |
C10—C9—H9 | 119.9 | C13—C14—H14D | 109.5 |
C9—C10—C11 | 120.1 (2) | H14A—C14—H14D | 141.1 |
C9—C10—H10 | 120.0 | H14B—C14—H14D | 56.3 |
C11—C10—H10 | 120.0 | H14C—C14—H14D | 56.3 |
C10—C11—C6 | 120.8 (2) | C13—C14—H14E | 109.5 |
C10—C11—H11 | 119.6 | H14A—C14—H14E | 56.3 |
C6—C11—H11 | 119.6 | H14B—C14—H14E | 141.1 |
C3—C12—H12A | 109.5 | H14C—C14—H14E | 56.3 |
C3—C12—H12B | 109.5 | H14D—C14—H14E | 109.5 |
H12A—C12—H12B | 109.5 | C13—C14—H14F | 109.5 |
C3—C12—H12C | 109.5 | H14A—C14—H14F | 56.3 |
H12A—C12—H12C | 109.5 | H14B—C14—H14F | 56.3 |
H12B—C12—H12C | 109.5 | H14C—C14—H14F | 141.1 |
C3—C12—H12D | 109.5 | H14D—C14—H14F | 109.5 |
H12A—C12—H12D | 141.1 | H14E—C14—H14F | 109.5 |
H12B—C12—H12D | 56.3 | C5—N1—N2 | 106.16 (17) |
H12C—C12—H12D | 56.3 | C3—N2—N1 | 106.76 (17) |
C3—C12—H12E | 109.5 | C13—O1—C7 | 117.22 (16) |
H12A—C12—H12E | 56.3 | C3—O4—C5 | 103.10 (15) |
H12B—C12—H12E | 141.1 | ||
C7—O1—C13—C14 | −177.68 (18) | N1—C5—C6—C11 | 175.0 (2) |
C13—O1—C7—C6 | 83.3 (2) | O4—C5—C6—C11 | −3.4 (3) |
C13—O1—C7—C8 | −101.1 (2) | N1—C5—C6—C7 | −3.5 (3) |
C7—O1—C13—O2 | 3.3 (3) | C11—C6—C7—O1 | 175.59 (17) |
C3—O4—C5—C6 | 178.30 (17) | C7—C6—C11—C10 | −0.2 (3) |
C5—O4—C3—N2 | 0.4 (2) | C11—C6—C7—C8 | 0.1 (3) |
C3—O4—C5—N1 | −0.4 (2) | C5—C6—C7—C8 | 178.61 (19) |
C5—O4—C3—C12 | −179.60 (19) | C5—C6—C7—O1 | −5.9 (3) |
C5—N1—N2—C3 | 0.0 (2) | C5—C6—C11—C10 | −178.75 (19) |
N2—N1—C5—O4 | 0.2 (2) | C6—C7—C8—C9 | −0.2 (3) |
N2—N1—C5—C6 | −178.2 (2) | O1—C7—C8—C9 | −175.85 (18) |
N1—N2—C3—O4 | −0.2 (2) | C7—C8—C9—C10 | 0.5 (3) |
N1—N2—C3—C12 | 179.7 (2) | C8—C9—C10—C11 | −0.6 (3) |
O4—C5—C6—C7 | 178.11 (18) | C9—C10—C11—C6 | 0.5 (3) |
Experimental details
Crystal data | |
Chemical formula | C11H10N2O3 |
Mr | 218.21 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 6.6335 (6), 16.925 (3), 9.5078 (6) |
β (°) | 92.113 (6) |
V (Å3) | 1066.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.50 × 0.36 × 0.16 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1998, 1885, 1403 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.136, 1.11 |
No. of reflections | 1885 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.20 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SET4 in CAD-4 Software (Enraf–Nonius, 1989), HELENA (Spek, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), the Financiadora de Estudos e Projetos (FINEP) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálise for financial assistance.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bolton, O. & Kim, J. (2007). J. Mater. Chem. 17, 1981–1988. Web of Science CrossRef CAS Google Scholar
Boström, J., Hogner, A., Llinàs, A., Wellner, E. & Plowright, A. T. (2012). J. Med. Chem. 55, 1817–1830. Web of Science PubMed Google Scholar
Cristiano, R., Vieira, A. A., Ely, F. & Gallardo, H. (2006). Liq. Cryst. 33, 381–390. Web of Science CrossRef CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gallardo, H., Magnago, R. & Bortoluzzi, A. J. (2001). Liq. Cryst. 28, 1343–1352. CSD CrossRef CAS Google Scholar
Gutov, O. V. (2013). Cryst. Growth Des. 13, 3953–3957. Web of Science CSD CrossRef CAS Google Scholar
Han, J. (2013). J. Mater. Chem. C1, 7779–7797. Google Scholar
Hughes, G. & Bryce, B. (2005). J. Mater. Chem. 15, 94–107. Web of Science CrossRef CAS Google Scholar
Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573. Web of Science CrossRef CAS Google Scholar
Liu, Y., Zong, L., Zheng, L., Wu, L. & Cheng, Y. (2007). Polymer, 48, 6799–6807. Web of Science CrossRef CAS Google Scholar
Polshettiwar, V. & Varma, R. S. (2008). Tetrahedron Lett. 49, 879–883. Web of Science CrossRef CAS Google Scholar
Rajak, H., Kharya, M. D. & Mishra, P. (2009). Int. J. Pharm. Sci. Nanotech. 1, 390–406. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vencato, I., Gallardo, H. & Meyer, E. (1996). Acta Cryst. C52, 2301–2303. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Wang, X., Guang, S., Xu, H., Su, X. & Lin, N. (2011). J. Mater. Chem. 21, 12941–12948. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Molecules containing the heterocycle 1,3,4-oxadiazole exhibit a wide range of biological activities, such as anticancer, antidiabetic, anti-inflammatory, analgesic, antibacterial, anticonvulsant, anti-HIV, herbicidal, fungicidal, pesticidal and antihypertensive (Boström et al., 2012; Rajak et al., 2009). This five-membered ring has been studied as a potential pharmacophore in a variety of chemical structures, due to its favorable metabolic profile and its capability of forming H-bonding associations (Polshettiwar & Varma, 2008; Gutov, 2013). Furthermore, aromatic substituted 1,3,4-oxadiazoles have widely been used in electro-optical devices due to their good thermal and chemical stability, blue luminescence with high quantum yield and electron transporting capabilities (Hughes & Bryce, 2005; Han, 2013).
As part of our continuing interest in the synthesis and evaluation of bioactive molecules containing N-heterocycles, we now report the synthesis and structure of the title compound C11H10N2O3. In this structure (Fig. 1), the benzene and oxadiazole rings are approximately coplanar, with an inter-ring dihedral angle of 4.14 (2)°, while the ester plane defined by O1, O2, C13, C14 is rotated out of the benzene plane giving a dihedral angle of 82.69 (9)° which corresponds to a torsion angle C6—C7—O1—C13 of 83.26 (22)°. In the crystal the molecules form layers down the a axis with weak inter-layer π–π interactions between the oxadiazole and benzene rings [minimum ring centroid separation = 3.7706 (14) Å].