organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o507-o508

[2-(Benzyl­­idene­amino)-4,5,6,7-tetra­hydro­benzo[b]thio­phen-3-yl](phen­yl)methanone

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 18 March 2014; accepted 26 March 2014; online 2 April 2014)

In the title compound, C22H19NOS, the cyclo­hexene ring of the tetra­hydro­benzo­thio­phenyl ring system adopts a slightly distorted half-chair conformation and is twisted slightly [7.5 (8)° for the major disorder component] from the mean plane of the thio­phene ring. The dihedral angles between the mean planes of the thio­phene ring and the phenyl rings are 65.7 (3) and 8.3 (4)°. The phenyl rings are twisted with respect to each other by 73.8 (7)°. Disorder was modeled for four C atoms of the cyclo­hexene ring over two sets of sites with an occupancy ratio of 0.659 (2):0.341 (2). In the crystal, a single weak C—H⋯O inter­action links the mol­ecules into [001] chains.

Related literature

For the importance of thio­phene derivatives, see: Molvi et al. (2007[Molvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049-1058.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Asthalatha et al. (2007[Asthalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719-728.]). For applications of 2-amino­thio­phene derivatives, see: Sabnis et al. (1999[Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333-345.]); Puterová et al. (2010[Puterová, Z., Krutošíková, A. & Végh, D. (2010). Arkivoc, i, 209-246.]); Cannito et al. (1990[Cannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635-639.]); Nikolakopoulos et al. (2006[Nikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358-2365.]); Lütjens et al. (2005[Lütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2005). J. Med. Chem. 46, 1870-1877.]). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetrocycl. Commun. 7, 83-90.]); Karia & Parsania (1999[Karia, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991-995.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119-122.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Aydogan et al. (2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For a related structure, see: Kubicki et al. (2012[Kubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19NOS

  • Mr = 345.44

  • Monoclinic, P 21 /n

  • a = 8.78760 (16) Å

  • b = 14.0091 (3) Å

  • c = 14.4120 (2) Å

  • β = 94.8913 (17)°

  • V = 1767.75 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.24 × 0.22 × 0.12 mm

Data collection
  • Agilent Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.896, Tmax = 1.000

  • 22680 measured reflections

  • 6047 independent reflections

  • 4745 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.03

  • 6047 reflections

  • 239 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.95 2.45 3.4034 (15) 176
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Thiophene derivatives have been reported to exhibit a broad spectrum of biological properties such as anti-inflammatory, analgesic, antidepressant, antimicrobial and anticonvulsant activities (Molvi et al., 2007; Rai et al., 2008; Asthalatha et al. , 2007). 2-Aminothiophene derivatives have been used in a number of applications in pesticides, dyes and pharmaceuticals. A review on the synthesis and properties of these compounds was reported in 1999 by Sabnis et al. and more recently by Puterová et al. (2010). Substituted 2-aminothiophenes are active as allosteric enhancers at the human A1 adenosine receptor (Cannito et al., 1990; Nikolakopoulos et al., 2006; Lütjens et al., 2005). Schiff base compounds are an important class of compounds both synthetically and biologically. These compounds show biological properties including antibacterial, antifungal, anticancer and herbicidal activities (Desai et al., 2001; Karia & Parsania, 1999; Samadhiya & Halve, 2001; Singh & Dash, 1988). Furthermore, Schiff bases are utilized as starting materials in the synthesis of compounds of industrial (Aydogan et al., 2001) and biological interest such as b-lactams (Taggi et al., 2002). The crystal structures and molecular structures of two 2-aminothiphenes have been previously reported by our group (Kubicki et al., 2012). In view of the importance of 2-aminothiphenes and Schiff bases, we report the crystal structure of the Schiff base of the previously reported 2-aminothiophene, C22H19NOS, (I).

The title compound (I) crystallizes with one independent molecule in the asymmetric unit (Fig. 1). In the molecule, the cyclohexene moiety of tetrahydrobenzothiophenyl ring adopts a slightly distorted half-chair conformation and is slightly twisted from the mean plane of the thiophene ring by 7.5 (8)° for the major disorder component. The dihedral angle between the mean planes of the thiophene ring and the two phenyl rings is 65.7 (3)° (C10–C15) and 8.3 (4)° (C17–C22), respectively. The two phenyl rings are twisted with respect to each other by 73.8 (7)°. Disorder was modeled for the C4, C5, C6 and C7 carbon atoms of the cyclohexene ring over two sites with occupancy ratios of 0.659 (2):0.341 (2). Bond lengths are within normal ranges (Allen et al., 1987). A single weak intermolecular C18—H···O1i hydrogen-bonding interaction (Table 1) links the molecules into dimers (Fig. 2) but no classical hydrogen bonds are present.

Related literature top

For the importance of thiophene derivatives, see: Molvi et al. (2007); Rai et al. (2008); Asthalatha et al. (2007). For applications of 2-aminothiophene derivatives, see: Sabnis et al. (1999); Puterová et al. (2010); Cannito et al. (1990); Nikolakopoulos et al. (2006); Lütjens et al. (2005). For the biological and industrial importance of Schiff bases, see: Desai et al. (2001); Karia & Parsania (1999); Samadhiya & Halve (2001); Singh & Dash (1988); Aydogan et al. (2001); Taggi et al. (2002). For a related structure, see: Kubicki et al. (2012). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of (2-amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)- phenylmethanone (200 mg, 0.79 mmol) in 10 ml of methanol, an equimolar amount of benzaldehyde (84 mg, 0.79 mmol) was added dropwise with constant stirring. The mixture was refluxed for 4 hours. A yellow precipitate was obtained. The reaction completion was confirmed by thin layer chromatography. The precipitate was filtered and dried at room temperature overnight. The solid was recrystallized from dichloromethane and the crystals were used as such for the X-ray diffraction studies.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H bond lengths of 0.95 Å (CH) or 0.99 Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom. Disorder was modeled for the C4, C5, C6 and C7 carbon atoms of the tetrahydrobenzothiophenyl ring over two sites with an occupancy ratio of 0.659 (2):0.341 (2).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of (I) showing the labeling scheme of the molecule with 30% probability displacement ellipsoids. Disorder is shown modeled for the C4, C5, C6 and C7 carbon atoms of the tetrahydrobenzothiophenyl ring over two sites with an occupancy ratio of 0.659 (2):0.341 (2).
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the c axis. Dashed lines indicate weak C—H···O intermolecular interactions which link the molecules into dimers. H atoms not involved in hydrogen bonding have been removed for clarity.
[2-(Benzylideneamino)-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl](phenyl)methanone top
Crystal data top
C22H19NOSF(000) = 728
Mr = 345.44Dx = 1.298 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.78760 (16) ÅCell parameters from 6837 reflections
b = 14.0091 (3) Åθ = 3.9–32.5°
c = 14.4120 (2) ŵ = 0.19 mm1
β = 94.8913 (17)°T = 173 K
V = 1767.75 (5) Å3Irregular, yellow
Z = 40.24 × 0.22 × 0.12 mm
Data collection top
Agilent Eos, Gemini
diffractometer
6047 independent reflections
Radiation source: Enhance (Mo) X-ray Source4745 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.029
ω scansθmax = 32.9°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1313
Tmin = 0.896, Tmax = 1.000k = 2018
22680 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.5445P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6047 reflectionsΔρmax = 0.39 e Å3
239 parametersΔρmin = 0.25 e Å3
48 restraints
Crystal data top
C22H19NOSV = 1767.75 (5) Å3
Mr = 345.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.78760 (16) ŵ = 0.19 mm1
b = 14.0091 (3) ÅT = 173 K
c = 14.4120 (2) Å0.24 × 0.22 × 0.12 mm
β = 94.8913 (17)°
Data collection top
Agilent Eos, Gemini
diffractometer
6047 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4745 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 1.000Rint = 0.029
22680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04348 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
6047 reflectionsΔρmin = 0.25 e Å3
239 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.43796 (4)0.38720 (2)0.29828 (2)0.02980 (8)
O10.24466 (11)0.32510 (7)0.59768 (6)0.0331 (2)
N10.38490 (11)0.20786 (7)0.37310 (7)0.02681 (19)
C10.36366 (13)0.30555 (8)0.37431 (8)0.0252 (2)
C20.28925 (12)0.35256 (8)0.44102 (7)0.0242 (2)
C30.29554 (12)0.45436 (8)0.43292 (8)0.0256 (2)
C40.2295 (15)0.5272 (10)0.4954 (9)0.0321 (5)0.659 (2)
H4A0.25540.50880.56120.038*0.659 (2)
H4B0.11690.52700.48380.038*0.659 (2)
C4A0.232 (3)0.523 (2)0.4994 (18)0.0321 (5)0.341 (2)
H4AA0.30500.53160.55500.038*0.341 (2)
H4AB0.13470.49840.51980.038*0.341 (2)
C50.2890 (2)0.62862 (13)0.47989 (14)0.0319 (3)0.659 (2)
H5A0.22740.67520.51230.038*0.659 (2)
H5B0.39630.63370.50660.038*0.659 (2)
C5A0.2063 (4)0.6169 (3)0.4479 (3)0.0319 (3)0.341 (2)
H5AA0.17710.66630.49210.038*0.341 (2)
H5AB0.12080.60950.39910.038*0.341 (2)
C60.2800 (3)0.65215 (15)0.37652 (16)0.0358 (4)0.659 (2)
H6A0.17330.64570.34920.043*0.659 (2)
H6B0.31290.71890.36780.043*0.659 (2)
C6A0.3481 (6)0.6498 (3)0.4029 (3)0.0358 (4)0.341 (2)
H6AA0.43420.65440.45160.043*0.341 (2)
H6AB0.32910.71450.37680.043*0.341 (2)
C70.3826 (19)0.5846 (14)0.3276 (11)0.0324 (10)0.659 (2)
H7A0.35630.58880.25950.039*0.659 (2)
H7B0.49010.60530.34040.039*0.659 (2)
C7A0.396 (4)0.583 (3)0.324 (2)0.0324 (10)0.341 (2)
H7AA0.33260.59550.26490.039*0.341 (2)
H7AB0.50450.59210.31350.039*0.341 (2)
C80.36852 (13)0.48275 (8)0.35769 (8)0.0270 (2)
C90.21326 (13)0.30278 (8)0.51617 (8)0.0249 (2)
C100.09322 (12)0.23048 (8)0.49013 (7)0.0247 (2)
C110.04152 (14)0.17248 (10)0.55985 (8)0.0323 (3)
H110.08720.17720.62180.039*
C120.07579 (16)0.10824 (11)0.53899 (10)0.0393 (3)
H120.10960.06850.58650.047*
C130.14437 (15)0.10158 (11)0.44890 (10)0.0389 (3)
H130.22530.05760.43480.047*
C140.09461 (14)0.15925 (11)0.37946 (9)0.0354 (3)
H140.14210.15510.31790.042*
C150.02434 (13)0.22300 (9)0.39966 (8)0.0297 (2)
H150.05900.26170.35160.036*
C160.46997 (13)0.16863 (8)0.31614 (8)0.0266 (2)
H160.51780.20770.27320.032*
C170.49574 (13)0.06571 (8)0.31511 (8)0.0249 (2)
C180.58705 (14)0.02651 (9)0.25008 (8)0.0295 (2)
H180.62830.06650.20520.035*
C190.61767 (16)0.07066 (10)0.25078 (9)0.0352 (3)
H190.67900.09710.20610.042*
C200.55903 (16)0.12931 (9)0.31650 (10)0.0366 (3)
H200.58090.19570.31720.044*
C210.46824 (17)0.09070 (10)0.38127 (9)0.0378 (3)
H210.42840.13090.42650.045*
C220.43529 (15)0.00601 (9)0.38046 (8)0.0318 (2)
H220.37160.03170.42430.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03553 (16)0.02847 (15)0.02699 (14)0.00477 (11)0.01203 (11)0.00210 (10)
O10.0397 (5)0.0347 (5)0.0252 (4)0.0062 (4)0.0050 (3)0.0039 (3)
N10.0272 (4)0.0253 (5)0.0284 (4)0.0026 (4)0.0051 (4)0.0034 (4)
C10.0254 (5)0.0259 (5)0.0248 (5)0.0038 (4)0.0050 (4)0.0017 (4)
C20.0227 (5)0.0255 (5)0.0247 (5)0.0027 (4)0.0048 (4)0.0016 (4)
C30.0234 (5)0.0261 (5)0.0276 (5)0.0023 (4)0.0042 (4)0.0024 (4)
C40.0324 (7)0.0280 (13)0.0370 (12)0.0004 (7)0.0102 (7)0.0051 (9)
C4A0.0324 (7)0.0280 (13)0.0370 (12)0.0004 (7)0.0102 (7)0.0051 (9)
C50.0309 (8)0.0251 (7)0.0393 (9)0.0007 (7)0.0001 (6)0.0055 (6)
C5A0.0309 (8)0.0251 (7)0.0393 (9)0.0007 (7)0.0001 (6)0.0055 (6)
C60.0434 (13)0.0235 (7)0.0396 (11)0.0008 (9)0.0026 (8)0.0002 (7)
C6A0.0434 (13)0.0235 (7)0.0396 (11)0.0008 (9)0.0026 (8)0.0002 (7)
C70.035 (3)0.0269 (9)0.0360 (14)0.0065 (16)0.0068 (14)0.0024 (8)
C7A0.035 (3)0.0269 (9)0.0360 (14)0.0065 (16)0.0068 (14)0.0024 (8)
C80.0272 (5)0.0261 (5)0.0282 (5)0.0038 (4)0.0047 (4)0.0013 (4)
C90.0247 (5)0.0250 (5)0.0258 (5)0.0002 (4)0.0061 (4)0.0006 (4)
C100.0230 (5)0.0275 (5)0.0243 (5)0.0011 (4)0.0057 (4)0.0007 (4)
C110.0327 (6)0.0387 (7)0.0260 (5)0.0081 (5)0.0050 (4)0.0032 (5)
C120.0385 (7)0.0443 (8)0.0359 (6)0.0144 (6)0.0082 (5)0.0059 (5)
C130.0325 (6)0.0449 (8)0.0396 (7)0.0137 (6)0.0048 (5)0.0028 (6)
C140.0290 (6)0.0480 (8)0.0290 (6)0.0081 (5)0.0018 (5)0.0038 (5)
C150.0270 (5)0.0373 (6)0.0252 (5)0.0033 (5)0.0057 (4)0.0012 (4)
C160.0276 (5)0.0260 (5)0.0266 (5)0.0026 (4)0.0050 (4)0.0006 (4)
C170.0243 (5)0.0256 (5)0.0250 (5)0.0016 (4)0.0027 (4)0.0024 (4)
C180.0316 (6)0.0300 (6)0.0277 (5)0.0004 (4)0.0070 (4)0.0009 (4)
C190.0379 (6)0.0329 (6)0.0355 (6)0.0056 (5)0.0082 (5)0.0041 (5)
C200.0447 (7)0.0261 (6)0.0387 (7)0.0029 (5)0.0015 (6)0.0015 (5)
C210.0505 (8)0.0284 (6)0.0356 (6)0.0072 (5)0.0101 (6)0.0013 (5)
C220.0370 (6)0.0292 (6)0.0305 (5)0.0057 (5)0.0108 (5)0.0036 (4)
Geometric parameters (Å, º) top
S1—C11.7485 (11)C7—H7B0.9900
S1—C81.7282 (12)C7—C81.50 (2)
O1—C91.2241 (14)C7A—H7AA0.9900
N1—C11.3815 (15)C7A—H7AB0.9900
N1—C161.2804 (15)C7A—C81.51 (4)
C1—C21.3758 (15)C9—C101.4873 (16)
C2—C31.4323 (16)C10—C111.3978 (16)
C2—C91.4930 (15)C10—C151.3938 (15)
C3—C41.509 (16)C11—H110.9500
C3—C4A1.50 (3)C11—C121.3821 (18)
C3—C81.3651 (16)C12—H120.9500
C4—H4A0.9900C12—C131.3872 (19)
C4—H4B0.9900C13—H130.9500
C4—C51.537 (13)C13—C141.3856 (19)
C4A—H4AA0.9900C14—H140.9500
C4A—H4AB0.9900C14—C151.3868 (17)
C4A—C5A1.52 (3)C15—H150.9500
C5—H5A0.9900C16—H160.9500
C5—H5B0.9900C16—C171.4597 (16)
C5—C61.521 (3)C17—C181.3973 (15)
C5A—H5AA0.9900C17—C221.3978 (16)
C5A—H5AB0.9900C18—H180.9500
C5A—C6A1.524 (6)C18—C191.3874 (18)
C6—H6A0.9900C19—H190.9500
C6—H6B0.9900C19—C201.3860 (19)
C6—C71.521 (15)C20—H200.9500
C6A—H6AA0.9900C20—C211.3883 (19)
C6A—H6AB0.9900C21—H210.9500
C6A—C7A1.56 (3)C21—C221.3852 (18)
C7—H7A0.9900C22—H220.9500
C8—S1—C191.70 (5)C8—C7—H7B109.0
C16—N1—C1121.35 (10)C6A—C7A—H7AA110.7
N1—C1—S1125.59 (8)C6A—C7A—H7AB110.7
C2—C1—S1110.48 (8)H7AA—C7A—H7AB108.8
C2—C1—N1123.77 (10)C8—C7A—C6A105 (2)
C1—C2—C3113.31 (10)C8—C7A—H7AA110.7
C1—C2—C9123.50 (10)C8—C7A—H7AB110.7
C3—C2—C9123.16 (10)C3—C8—S1112.18 (9)
C2—C3—C4127.2 (5)C3—C8—C7124.3 (6)
C2—C3—C4A124.6 (9)C3—C8—C7A128.7 (11)
C8—C3—C2112.26 (10)C7—C8—S1123.5 (6)
C8—C3—C4120.5 (5)C7A—C8—S1119.2 (11)
C8—C3—C4A123.2 (9)O1—C9—C2119.91 (10)
C3—C4—H4A109.1O1—C9—C10120.87 (10)
C3—C4—H4B109.1C10—C9—C2119.12 (9)
C3—C4—C5112.7 (8)C11—C10—C9118.78 (10)
H4A—C4—H4B107.8C15—C10—C9121.96 (10)
C5—C4—H4A109.1C15—C10—C11119.14 (11)
C5—C4—H4B109.1C10—C11—H11119.9
C3—C4A—H4AA110.3C12—C11—C10120.29 (12)
C3—C4A—H4AB110.3C12—C11—H11119.9
C3—C4A—C5A106.9 (16)C11—C12—H12119.9
H4AA—C4A—H4AB108.6C11—C12—C13120.25 (12)
C5A—C4A—H4AA110.3C13—C12—H12119.9
C5A—C4A—H4AB110.3C12—C13—H13120.1
C4—C5—H5A109.5C14—C13—C12119.88 (12)
C4—C5—H5B109.5C14—C13—H13120.1
H5A—C5—H5B108.1C13—C14—H14119.9
C6—C5—C4110.7 (5)C13—C14—C15120.16 (12)
C6—C5—H5A109.5C15—C14—H14119.9
C6—C5—H5B109.5C10—C15—H15119.9
C4A—C5A—H5AA109.2C14—C15—C10120.28 (11)
C4A—C5A—H5AB109.2C14—C15—H15119.9
C4A—C5A—C6A112.1 (11)N1—C16—H16119.0
H5AA—C5A—H5AB107.9N1—C16—C17122.01 (10)
C6A—C5A—H5AA109.2C17—C16—H16119.0
C6A—C5A—H5AB109.2C18—C17—C16119.57 (10)
C5—C6—H6A109.7C18—C17—C22119.32 (11)
C5—C6—H6B109.7C22—C17—C16121.06 (10)
H6A—C6—H6B108.2C17—C18—H18119.9
C7—C6—C5109.6 (7)C19—C18—C17120.19 (11)
C7—C6—H6A109.7C19—C18—H18119.9
C7—C6—H6B109.7C18—C19—H19119.9
C5A—C6A—H6AA108.7C20—C19—C18120.23 (12)
C5A—C6A—H6AB108.7C20—C19—H19119.9
C5A—C6A—C7A114.0 (14)C19—C20—H20120.1
H6AA—C6A—H6AB107.6C19—C20—C21119.79 (12)
C7A—C6A—H6AA108.7C21—C20—H20120.1
C7A—C6A—H6AB108.7C20—C21—H21119.8
C6—C7—H7A109.0C22—C21—C20120.47 (12)
C6—C7—H7B109.0C22—C21—H21119.8
H7A—C7—H7B107.8C17—C22—H22120.0
C8—C7—C6113.0 (11)C21—C22—C17119.98 (11)
C8—C7—H7A109.0C21—C22—H22120.0
S1—C1—C2—C31.73 (12)C4A—C3—C8—C7A2 (2)
S1—C1—C2—C9179.95 (9)C4A—C5A—C6A—C7A65.0 (19)
O1—C9—C10—C1114.66 (17)C5—C6—C7—C844.1 (12)
O1—C9—C10—C15161.26 (12)C5A—C6A—C7A—C839 (2)
N1—C1—C2—C3173.90 (10)C6—C7—C8—S1165.8 (6)
N1—C1—C2—C94.42 (18)C6—C7—C8—C311.9 (15)
N1—C16—C17—C18178.62 (11)C6—C7—C8—C7A164 (23)
N1—C16—C17—C223.83 (18)C6A—C7A—C8—S1169.1 (10)
C1—S1—C8—C31.38 (9)C6A—C7A—C8—C310 (3)
C1—S1—C8—C7176.6 (8)C6A—C7A—C8—C740 (21)
C1—S1—C8—C7A179.6 (15)C8—S1—C1—N1175.30 (10)
C1—N1—C16—C17178.88 (10)C8—S1—C1—C20.23 (9)
C1—C2—C3—C4178.5 (6)C8—C3—C4—C514.7 (10)
C1—C2—C3—C4A176.3 (12)C8—C3—C4A—C5A22.6 (19)
C1—C2—C3—C82.81 (14)C9—C2—C3—C40.2 (6)
C1—C2—C9—O1127.09 (13)C9—C2—C3—C4A2.0 (12)
C1—C2—C9—C1056.53 (15)C9—C2—C3—C8178.86 (10)
C2—C3—C4—C5166.7 (4)C9—C10—C11—C12176.41 (12)
C2—C3—C4A—C5A158.4 (7)C9—C10—C15—C14175.46 (12)
C2—C3—C8—S12.58 (13)C10—C11—C12—C130.7 (2)
C2—C3—C8—C7175.4 (8)C11—C10—C15—C140.45 (18)
C2—C3—C8—C7A178.5 (17)C11—C12—C13—C140.3 (2)
C2—C9—C10—C11169.00 (11)C12—C13—C14—C150.5 (2)
C2—C9—C10—C1515.07 (16)C13—C14—C15—C100.9 (2)
C3—C2—C9—O151.06 (16)C15—C10—C11—C120.37 (19)
C3—C2—C9—C10125.31 (12)C16—N1—C1—S13.22 (17)
C3—C4—C5—C647.5 (9)C16—N1—C1—C2171.74 (11)
C3—C4A—C5A—C6A51.6 (16)C16—C17—C18—C19177.34 (12)
C4—C3—C4A—C5A11 (25)C16—C17—C22—C21176.47 (12)
C4—C3—C8—S1178.7 (6)C17—C18—C19—C200.6 (2)
C4—C3—C8—C73.4 (10)C18—C17—C22—C211.09 (18)
C4—C3—C8—C7A0.3 (18)C18—C19—C20—C210.6 (2)
C4—C5—C6—C762.7 (10)C19—C20—C21—C220.3 (2)
C4A—C3—C4—C5132 (26)C20—C21—C22—C171.1 (2)
C4A—C3—C8—S1176.6 (11)C22—C17—C18—C190.25 (18)
C4A—C3—C8—C75.5 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.453.4034 (15)176
Symmetry code: (i) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O1i0.952.453.4034 (15)176
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

MK is grateful to the CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAsthalatha, B. V., Narayana, B., Vijaya Raj, K. K. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 719–728.  Web of Science PubMed Google Scholar
First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationCannito, A., Perrisin, M., Luu-Duc, C., Huguer, F., Gaultier, C. & Narcisse, G. (1990). Eur. J. Med. Chem. 25, 635–639.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Hetrocycl. Commun. 7, 83–90.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaria, F. D. & Parsania, P. H. (1999). Asian J. Chem. 11, 991–995.  CAS Google Scholar
First citationKubicki, M., Dutkiewicz, G., Yathirajan, H. S., Dawar, P., Ramesha, A. R. & Dayananda, A. S. (2012). Crystals, 2, 1058-1066.  CSD CrossRef CAS Google Scholar
First citationLütjens, H., Zickgraf, A., Figler, H., Linden, J., Olsson, R. A. & Scammells, P. J. (2005). J. Med. Chem. 46, 1870–1877.  Google Scholar
First citationMolvi, K. I., Vasu, K. K., Yerande, S. G., Sudarsanam, V. & Haque, N. (2007). Eur. J. Med. Chem. 42, 1049–1058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNikolakopoulos, G., Figler, H., Linden, J. & Scammells, P. (2006). Bioorg. Med. Chem. 14, 2358–2365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPuterová, Z., Krutošíková, A. & Végh, D. (2010). Arkivoc, i, 209–246.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.  CrossRef CAS Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17 119–122.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 5| May 2014| Pages o507-o508
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds