metal-organic compounds
Dichlorido(4-{[(quinolin-2-yl)methylidene]amino}phenol-κ2N,N′)mercury(II)
aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
*Correspondence e-mail: psen@iitk.ac.in
In the mononuclear title complex, [HgCl2(C16H12N2O)], synthesized from the phenolic Schiff base 4-[(quinolin-2-ylmethylidene)amino]phenol (QMAP), the coordination geometry around Hg2+ is distorted tetrahedral, comprising two Cl atoms [Hg—Cl = 2.3565 (12) and 2.5219 (12) Å] and two N-atom donors from the QMAP ligand, viz. one imine and the other quinoline [Hg—N = 2.392 (2) and 2.237 (2) Å, respectively]. In the crystal, O—H⋯Cl hydrogen bonds generate a chain structure extending along the c-axis direction. Weak C—H⋯Cl and π–π stacking interactions [minimum ring centroid separation = 3.641 (3) Å] give an overall layered structure lying parallel to (001).
CCDC reference: 994407
Related literature
For applications of 4-[(quinolin-2-ylmethylene)amino]phenol and related structures, see: Das et al. (2013); Jursic et al. (2002). For a related structure, see: Marjani et al. (2009).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).
Supporting information
CCDC reference: 994407
10.1107/S1600536814007077/zs2293sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814007077/zs2293Isup2.hkl
A mixture of 4-(quinolin-2-ylmethylene)aminophenol (QMAP) (0.10 g, 0.40 mmol), mercury(II) chloride (0.11 g, 0.40 mmol) and ethanol (5 ml) were stirred vigorously for 30 min, after which the precipitate was filtered off and dissolved in dimethylformamide. Crystals of the title complex suitable for X-ray analysis was obtained within 2 days by slow evaporation of the DMF solvent.
All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.92–0.93 Å and Uiso(H) = 1.2Ueq(C). The phenolic H-atom as located from a difference-Fourier map was also allowed to ride, with O—H = 0.83 (2) Å and, Uiso(H) = 1.5Ueq(O).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).[HgCl2(C16H12N2O)] | F(000) = 976 |
Mr = 519.77 | Dx = 2.291 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 999 reflections |
a = 7.539 (5) Å | θ = 1.8–25.5° |
b = 18.551 (5) Å | µ = 10.57 mm−1 |
c = 10.806 (5) Å | T = 100 K |
β = 94.380 (5)° | Needle, yellow |
V = 1506.9 (13) Å3 | 0.29 × 0.19 × 0.12 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 2967 independent reflections |
Radiation source: fine-focus sealed tube | 2679 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→9 |
Tmin = 0.143, Tmax = 0.352 | k = −22→22 |
11156 measured reflections | l = −13→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.035 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0146P)2 + 0.8024P] where P = (Fo2 + 2Fc2)/3 |
2967 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 0.65 e Å−3 |
1 restraint | Δρmin = −0.40 e Å−3 |
[HgCl2(C16H12N2O)] | V = 1506.9 (13) Å3 |
Mr = 519.77 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.539 (5) Å | µ = 10.57 mm−1 |
b = 18.551 (5) Å | T = 100 K |
c = 10.806 (5) Å | 0.29 × 0.19 × 0.12 mm |
β = 94.380 (5)° |
Bruker SMART APEX CCD diffractometer | 2967 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2679 reflections with I > 2σ(I) |
Tmin = 0.143, Tmax = 0.352 | Rint = 0.024 |
11156 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | 1 restraint |
wR(F2) = 0.035 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.65 e Å−3 |
2967 reflections | Δρmin = −0.40 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7674 (4) | 1.15360 (15) | −0.3705 (3) | 0.0140 (6) | |
C2 | 0.8429 (4) | 1.17912 (16) | −0.2579 (3) | 0.0147 (6) | |
H2 | 0.8987 | 1.2238 | −0.2535 | 0.018* | |
C3 | 0.8345 (4) | 1.13750 (15) | −0.1520 (3) | 0.0143 (6) | |
H3 | 0.8842 | 1.1548 | −0.0764 | 0.017* | |
C4 | 0.7528 (4) | 1.07023 (15) | −0.1574 (3) | 0.0124 (6) | |
C5 | 0.6783 (4) | 1.04481 (16) | −0.2710 (3) | 0.0141 (6) | |
H5 | 0.6235 | 0.9999 | −0.2757 | 0.017* | |
C6 | 0.6857 (4) | 1.08617 (15) | −0.3766 (3) | 0.0140 (6) | |
H6 | 0.6359 | 1.0689 | −0.4522 | 0.017* | |
C7 | 0.6910 (4) | 0.96599 (16) | −0.0438 (3) | 0.0124 (6) | |
C8 | 0.6931 (4) | 0.92330 (15) | 0.0707 (3) | 0.0120 (6) | |
C9 | 0.6343 (4) | 0.85181 (15) | 0.0639 (3) | 0.0135 (6) | |
H9 | 0.5937 | 0.8318 | −0.0119 | 0.016* | |
C10 | 0.6374 (4) | 0.81183 (16) | 0.1701 (3) | 0.0150 (6) | |
H10 | 0.5981 | 0.7643 | 0.1671 | 0.018* | |
C11 | 0.6999 (4) | 0.84260 (15) | 0.2837 (3) | 0.0132 (6) | |
C12 | 0.7564 (4) | 0.91591 (15) | 0.2848 (3) | 0.0116 (6) | |
C13 | 0.8157 (4) | 0.94846 (16) | 0.3981 (3) | 0.0153 (6) | |
H13 | 0.8537 | 0.9962 | 0.3994 | 0.018* | |
C14 | 0.8176 (4) | 0.91016 (16) | 0.5057 (3) | 0.0176 (7) | |
H14 | 0.8556 | 0.9323 | 0.5803 | 0.021* | |
C15 | 0.7628 (4) | 0.83733 (16) | 0.5061 (3) | 0.0180 (7) | |
H15 | 0.7656 | 0.8119 | 0.5804 | 0.022* | |
C16 | 0.7061 (4) | 0.80451 (16) | 0.3977 (3) | 0.0163 (6) | |
H16 | 0.6709 | 0.7565 | 0.3984 | 0.020* | |
N1 | 0.7487 (3) | 1.03052 (12) | −0.0449 (2) | 0.0113 (5) | |
N2 | 0.7526 (3) | 0.95410 (13) | 0.1765 (2) | 0.0117 (5) | |
O1 | 0.7768 (3) | 1.19596 (11) | −0.47207 (19) | 0.0199 (5) | |
H1 | 0.7324 | 1.1748 | −0.5334 | 0.030* | |
Hg1 | 0.832221 (15) | 1.069766 (6) | 0.162214 (10) | 0.01536 (4) | |
Cl1 | 1.07921 (9) | 1.14792 (4) | 0.18122 (6) | 0.01560 (15) | |
Cl2 | 0.59358 (10) | 1.13188 (4) | 0.27415 (7) | 0.01732 (15) | |
H7 | 0.6500 | 0.9430 | −0.1160 | 0.0140* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0159 (15) | 0.0118 (15) | 0.0148 (14) | 0.0042 (12) | 0.0041 (12) | 0.0050 (12) |
C2 | 0.0147 (15) | 0.0108 (15) | 0.0188 (16) | 0.0003 (12) | 0.0022 (12) | 0.0008 (12) |
C3 | 0.0151 (15) | 0.0153 (15) | 0.0127 (14) | 0.0015 (12) | 0.0023 (12) | −0.0007 (12) |
C4 | 0.0112 (14) | 0.0138 (15) | 0.0123 (14) | 0.0043 (12) | 0.0019 (11) | 0.0004 (12) |
C5 | 0.0157 (15) | 0.0112 (14) | 0.0154 (15) | −0.0003 (12) | 0.0006 (12) | 0.0001 (12) |
C6 | 0.0163 (15) | 0.0153 (16) | 0.0103 (14) | 0.0007 (12) | 0.0008 (12) | −0.0011 (11) |
C7 | 0.0122 (14) | 0.0133 (15) | 0.0116 (14) | 0.0012 (12) | 0.0011 (12) | −0.0029 (12) |
C8 | 0.0099 (13) | 0.0120 (15) | 0.0142 (14) | 0.0011 (12) | 0.0011 (11) | −0.0008 (12) |
C9 | 0.0154 (15) | 0.0129 (15) | 0.0122 (14) | −0.0018 (12) | 0.0000 (12) | −0.0045 (12) |
C10 | 0.0176 (15) | 0.0090 (14) | 0.0191 (15) | −0.0002 (12) | 0.0052 (13) | −0.0016 (12) |
C11 | 0.0132 (14) | 0.0133 (15) | 0.0134 (14) | 0.0022 (12) | 0.0034 (12) | −0.0010 (12) |
C12 | 0.0100 (13) | 0.0138 (15) | 0.0114 (14) | 0.0019 (11) | 0.0033 (11) | 0.0012 (11) |
C13 | 0.0171 (15) | 0.0106 (15) | 0.0180 (15) | −0.0021 (12) | 0.0009 (13) | −0.0001 (12) |
C14 | 0.0237 (16) | 0.0167 (16) | 0.0121 (15) | −0.0006 (13) | −0.0014 (13) | −0.0023 (12) |
C15 | 0.0221 (16) | 0.0180 (16) | 0.0135 (15) | 0.0005 (13) | −0.0003 (13) | 0.0046 (12) |
C16 | 0.0211 (16) | 0.0096 (15) | 0.0183 (16) | −0.0006 (12) | 0.0029 (13) | 0.0019 (12) |
N1 | 0.0116 (12) | 0.0109 (13) | 0.0114 (12) | 0.0011 (10) | 0.0018 (10) | −0.0005 (10) |
N2 | 0.0120 (12) | 0.0088 (12) | 0.0143 (12) | 0.0006 (10) | 0.0008 (10) | 0.0005 (10) |
O1 | 0.0322 (13) | 0.0140 (11) | 0.0134 (10) | −0.0044 (10) | 0.0012 (10) | 0.0040 (9) |
Hg1 | 0.02022 (7) | 0.01239 (6) | 0.01368 (6) | −0.00471 (5) | 0.00259 (4) | −0.00206 (5) |
Cl1 | 0.0152 (3) | 0.0146 (4) | 0.0169 (3) | −0.0022 (3) | 0.0008 (3) | −0.0007 (3) |
Cl2 | 0.0177 (4) | 0.0182 (4) | 0.0161 (4) | 0.0002 (3) | 0.0018 (3) | −0.0042 (3) |
C1—O1 | 1.356 (3) | C10—C11 | 1.402 (4) |
C1—C2 | 1.386 (4) | C10—H10 | 0.9300 |
C1—C6 | 1.394 (4) | C11—C16 | 1.418 (4) |
C2—C3 | 1.386 (4) | C11—C12 | 1.425 (4) |
C2—H2 | 0.9300 | C12—N2 | 1.366 (4) |
C3—C4 | 1.391 (4) | C12—C13 | 1.407 (4) |
C3—H3 | 0.9300 | C13—C14 | 1.363 (4) |
C4—C5 | 1.393 (4) | C13—H13 | 0.9300 |
C4—N1 | 1.424 (4) | C14—C15 | 1.413 (4) |
C5—C6 | 1.379 (4) | C14—H14 | 0.9300 |
C5—H5 | 0.9300 | C15—C16 | 1.360 (4) |
C6—H6 | 0.9300 | C15—H15 | 0.9300 |
C7—N1 | 1.274 (4) | C16—H16 | 0.9300 |
C7—C8 | 1.469 (4) | N1—Hg1 | 2.392 (2) |
C7—H7 | 0.9170 | N2—Hg1 | 2.237 (2) |
C8—N2 | 1.325 (4) | O1—H1 | 0.8200 |
C8—C9 | 1.398 (4) | Hg1—Cl1 | 2.3565 (12) |
C9—C10 | 1.365 (4) | Hg1—Cl2 | 2.5219 (12) |
C9—H9 | 0.9300 | ||
O1—C1—C2 | 118.0 (3) | C10—C11—C12 | 118.4 (3) |
O1—C1—C6 | 122.2 (3) | C16—C11—C12 | 118.6 (3) |
C2—C1—C6 | 119.9 (3) | N2—C12—C13 | 120.5 (3) |
C3—C2—C1 | 119.5 (3) | N2—C12—C11 | 120.1 (3) |
C3—C2—H2 | 120.2 | C13—C12—C11 | 119.5 (3) |
C1—C2—H2 | 120.2 | C14—C13—C12 | 120.1 (3) |
C2—C3—C4 | 120.9 (3) | C14—C13—H13 | 120.0 |
C2—C3—H3 | 119.6 | C12—C13—H13 | 120.0 |
C4—C3—H3 | 119.6 | C13—C14—C15 | 121.1 (3) |
C3—C4—C5 | 119.2 (3) | C13—C14—H14 | 119.4 |
C3—C4—N1 | 117.8 (2) | C15—C14—H14 | 119.4 |
C5—C4—N1 | 122.9 (3) | C16—C15—C14 | 119.9 (3) |
C6—C5—C4 | 120.1 (3) | C16—C15—H15 | 120.1 |
C6—C5—H5 | 119.9 | C14—C15—H15 | 120.1 |
C4—C5—H5 | 119.9 | C15—C16—C11 | 120.8 (3) |
C5—C6—C1 | 120.4 (3) | C15—C16—H16 | 119.6 |
C5—C6—H6 | 119.8 | C11—C16—H16 | 119.6 |
C1—C6—H6 | 119.8 | C7—N1—C4 | 121.6 (2) |
N1—C7—C8 | 122.2 (3) | C7—N1—Hg1 | 110.07 (19) |
N1—C7—H7 | 121.0 | C4—N1—Hg1 | 128.32 (18) |
C8—C7—H7 | 116.0 | C8—N2—C12 | 119.9 (2) |
N2—C8—C9 | 122.6 (3) | C8—N2—Hg1 | 115.40 (19) |
N2—C8—C7 | 118.4 (3) | C12—N2—Hg1 | 124.64 (19) |
C9—C8—C7 | 119.0 (3) | C1—O1—H1 | 109.5 |
C10—C9—C8 | 119.1 (3) | N2—Hg1—Cl1 | 143.01 (6) |
C10—C9—H9 | 120.4 | N2—Hg1—N1 | 73.73 (8) |
C8—C9—H9 | 120.5 | Cl1—Hg1—N1 | 114.76 (6) |
C9—C10—C11 | 119.8 (3) | N2—Hg1—Cl2 | 101.54 (7) |
C9—C10—H10 | 120.1 | Cl1—Hg1—Cl2 | 105.37 (4) |
C11—C10—H10 | 120.1 | N1—Hg1—Cl2 | 116.19 (6) |
C10—C11—C16 | 123.0 (3) | ||
O1—C1—C2—C3 | 179.5 (3) | C12—C11—C16—C15 | 0.7 (4) |
C6—C1—C2—C3 | −0.7 (4) | C8—C7—N1—C4 | 177.3 (3) |
C1—C2—C3—C4 | 0.6 (4) | C8—C7—N1—Hg1 | −4.5 (3) |
C2—C3—C4—C5 | −0.2 (4) | C3—C4—N1—C7 | −173.5 (3) |
C2—C3—C4—N1 | −179.8 (3) | C5—C4—N1—C7 | 6.8 (4) |
C3—C4—C5—C6 | −0.1 (4) | C3—C4—N1—Hg1 | 8.6 (4) |
N1—C4—C5—C6 | 179.5 (3) | C5—C4—N1—Hg1 | −171.1 (2) |
C4—C5—C6—C1 | −0.1 (4) | C9—C8—N2—C12 | −0.6 (4) |
O1—C1—C6—C5 | −179.7 (3) | C7—C8—N2—C12 | 180.0 (2) |
C2—C1—C6—C5 | 0.5 (4) | C9—C8—N2—Hg1 | −178.6 (2) |
N1—C7—C8—N2 | 2.0 (4) | C7—C8—N2—Hg1 | 2.1 (3) |
N1—C7—C8—C9 | −177.4 (3) | C13—C12—N2—C8 | −178.7 (3) |
N2—C8—C9—C10 | 0.2 (4) | C11—C12—N2—C8 | 1.3 (4) |
C7—C8—C9—C10 | 179.5 (3) | C13—C12—N2—Hg1 | −1.0 (4) |
C8—C9—C10—C11 | −0.3 (4) | C11—C12—N2—Hg1 | 178.98 (19) |
C9—C10—C11—C16 | 179.7 (3) | C8—N2—Hg1—Cl1 | −112.83 (19) |
C9—C10—C11—C12 | 0.9 (4) | C12—N2—Hg1—Cl1 | 69.4 (2) |
C10—C11—C12—N2 | −1.4 (4) | C8—N2—Hg1—N1 | −3.10 (19) |
C16—C11—C12—N2 | 179.8 (3) | C12—N2—Hg1—N1 | 179.1 (2) |
C10—C11—C12—C13 | 178.5 (3) | C8—N2—Hg1—Cl2 | 111.08 (19) |
C16—C11—C12—C13 | −0.3 (4) | C12—N2—Hg1—Cl2 | −66.7 (2) |
N2—C12—C13—C14 | 179.4 (3) | C7—N1—Hg1—N2 | 3.94 (18) |
C11—C12—C13—C14 | −0.5 (4) | C4—N1—Hg1—N2 | −178.0 (2) |
C12—C13—C14—C15 | 0.9 (5) | C7—N1—Hg1—Cl1 | 145.35 (17) |
C13—C14—C15—C16 | −0.4 (5) | C4—N1—Hg1—Cl1 | −36.6 (2) |
C14—C15—C16—C11 | −0.4 (5) | C7—N1—Hg1—Cl2 | −91.15 (19) |
C10—C11—C16—C15 | −178.0 (3) | C4—N1—Hg1—Cl2 | 87.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl2i | 0.82 | 2.39 | 3.204 (3) | 171 |
C7—H7···Cl2ii | 0.92 | 2.78 | 3.644 (4) | 156 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl2i | 0.82 | 2.39 | 3.204 (3) | 171 |
C7—H7···Cl2ii | 0.92 | 2.78 | 3.644 (4) | 156 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+2, −z. |
Acknowledgements
The authors are grateful to the Science and Engineering Research Board, Government of India (project No. SR/S11/PC-08/2011.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614. Web of Science CrossRef CAS PubMed Google Scholar
Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365. Web of Science CSD CrossRef CAS Google Scholar
Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinoline derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as antioxidative and anticancer and fluorescent probe agents in industry and in coordination chemistry (Das et al., 2013; Jursic et al., 2002). The synthesis of polymeric complex of mercury(II) using the quinoline aldehyde derivative of the Schiff base 4-(quinolin-2-ylmethylene)aminophenol (QMAP) has not previously been reported. The title HgII complex with QMAP, [Hg(C16H12N2O)Cl2] has been synthesized and the structure is reported herein.
In the title mononuclear complex (Fig. 1) the HgCl2N2 coordination geometry is distorted tetrahedral, comprising two Cl-atoms [Hg1—Cl1 and Hg1—Cl2 = 2.3565 (12) and 2.5219 (12) Å respectively] and two N-atom donors from the QMAP ligand, one imine [Hg1–N1 = 2.392 (2) Å] and the other quinoline [Hg1—N2 = 2.237 (2) Å]. The observed Hg—Cl and Hg—N bond lengths and bond angles are considered normal for this type of HgII complex, e.g., [Hg—N = 2.396 (4) Å] and [Hg—Cl = 2.367 (4) Å] (Marjani et al., 2009). In the crystal, O1—H···Cl2 hydrogen bonds (Table 2) give a one-dimensional chain structure which extends along c (Fig. 2) and weak C7—H···Cl2 hydrogen bonds and π–π ring stacking interactions [minimum ring centroid separation between the inversion related benzene and quinoline rings = 3.641 (3) Å] give an overall two-dimensional layered structure lying parallel to (001) (Fig. 3).