metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido­(4-{[(quinolin-2-yl)methyl­­idene]amino}phenol-κ2N,N′)mercury(II)

aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
*Correspondence e-mail: psen@iitk.ac.in

(Received 26 March 2014; accepted 30 March 2014; online 9 April 2014)

In the mononuclear title complex, [HgCl2(C16H12N2O)], synthesized from the phenolic Schiff base 4-[(quinolin-2-yl­methyl­idene)amino]­phenol (QMAP), the coordination geometry around Hg2+ is distorted tetra­hedral, comprising two Cl atoms [Hg—Cl = 2.3565 (12) and 2.5219 (12) Å] and two N-atom donors from the QMAP ligand, viz. one imine and the other quinoline [Hg—N = 2.392 (2) and 2.237 (2) Å, respectively]. In the crystal, O—H⋯Cl hydrogen bonds generate a chain structure extending along the c-axis direction. Weak C—H⋯Cl and ππ stacking inter­actions [minimum ring centroid separation = 3.641 (3) Å] give an overall layered structure lying parallel to (001).

Related literature

For applications of 4-[(quinolin-2-ylmethylene)amino]phenol and related structures, see: Das et al. (2013[Das, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604-6614.]); Jursic et al. (2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]). For a related structure, see: Marjani et al. (2009[Marjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633-1637.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C16H12N2O)]

  • Mr = 519.77

  • Monoclinic, P 21 /n

  • a = 7.539 (5) Å

  • b = 18.551 (5) Å

  • c = 10.806 (5) Å

  • β = 94.380 (5)°

  • V = 1506.9 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.57 mm−1

  • T = 100 K

  • 0.29 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.143, Tmax = 0.352

  • 11156 measured reflections

  • 2967 independent reflections

  • 2679 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.035

  • S = 1.05

  • 2967 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2i 0.82 2.39 3.204 (3) 171
C7—H7⋯Cl2ii 0.92 2.78 3.644 (4) 156
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006[Brandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]).

Supporting information


Comment top

Quinoline derivatives of Schiff bases are important building blocks of many important compounds widely used in biological applications such as antioxidative and anticancer and fluorescent probe agents in industry and in coordination chemistry (Das et al., 2013; Jursic et al., 2002). The synthesis of polymeric complex of mercury(II) using the quinoline aldehyde derivative of the Schiff base 4-(quinolin-2-ylmethylene)aminophenol (QMAP) has not previously been reported. The title HgII complex with QMAP, [Hg(C16H12N2O)Cl2] has been synthesized and the structure is reported herein.

In the title mononuclear complex (Fig. 1) the HgCl2N2 coordination geometry is distorted tetrahedral, comprising two Cl-atoms [Hg1—Cl1 and Hg1—Cl2 = 2.3565 (12) and 2.5219 (12) Å respectively] and two N-atom donors from the QMAP ligand, one imine [Hg1–N1 = 2.392 (2) Å] and the other quinoline [Hg1—N2 = 2.237 (2) Å]. The observed Hg—Cl and Hg—N bond lengths and bond angles are considered normal for this type of HgII complex, e.g., [Hg—N = 2.396 (4) Å] and [Hg—Cl = 2.367 (4) Å] (Marjani et al., 2009). In the crystal, O1—H···Cl2 hydrogen bonds (Table 2) give a one-dimensional chain structure which extends along c (Fig. 2) and weak C7—H···Cl2 hydrogen bonds and ππ ring stacking interactions [minimum ring centroid separation between the inversion related benzene and quinoline rings = 3.641 (3) Å] give an overall two-dimensional layered structure lying parallel to (001) (Fig. 3).

Related literature top

For applications of 4-(quinolin-2-ylmethylene)aminophenol and related structures, see: Das et al. (2013); Jursic et al. (2002). For a related structure, see: Marjani et al. (2009).

Experimental top

A mixture of 4-(quinolin-2-ylmethylene)aminophenol (QMAP) (0.10 g, 0.40 mmol), mercury(II) chloride (0.11 g, 0.40 mmol) and ethanol (5 ml) were stirred vigorously for 30 min, after which the precipitate was filtered off and dissolved in dimethylformamide. Crystals of the title complex suitable for X-ray analysis was obtained within 2 days by slow evaporation of the DMF solvent.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.92–0.93 Å and Uiso(H) = 1.2Ueq(C). The phenolic H-atom as located from a difference-Fourier map was also allowed to ride, with O—H = 0.83 (2) Å and, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg & Putz, 2006); software used to prepare material for publication: DIAMOND (Brandenberg & Putz, 2006).

Figures top
[Figure 1] Fig. 1. The molecular conformation and atom-numbering scheme for the title complex with non-H atoms drawn as 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one-dimensional hydrogen-bonded chain structure in the title complex extending along c, with hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. The two-dimensional structure viewed along the a-axial direction.
Dichlorido(4-{[(quinolin-2-yl)methylidene]amino}phenol-κ2N,N')mercury(II) top
Crystal data top
[HgCl2(C16H12N2O)]F(000) = 976
Mr = 519.77Dx = 2.291 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 999 reflections
a = 7.539 (5) Åθ = 1.8–25.5°
b = 18.551 (5) ŵ = 10.57 mm1
c = 10.806 (5) ÅT = 100 K
β = 94.380 (5)°Needle, yellow
V = 1506.9 (13) Å30.29 × 0.19 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2967 independent reflections
Radiation source: fine-focus sealed tube2679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.143, Tmax = 0.352k = 2222
11156 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.035H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0146P)2 + 0.8024P]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.65 e Å3
1 restraintΔρmin = 0.40 e Å3
Crystal data top
[HgCl2(C16H12N2O)]V = 1506.9 (13) Å3
Mr = 519.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.539 (5) ŵ = 10.57 mm1
b = 18.551 (5) ÅT = 100 K
c = 10.806 (5) Å0.29 × 0.19 × 0.12 mm
β = 94.380 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2967 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2679 reflections with I > 2σ(I)
Tmin = 0.143, Tmax = 0.352Rint = 0.024
11156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0161 restraint
wR(F2) = 0.035H-atom parameters constrained
S = 1.05Δρmax = 0.65 e Å3
2967 reflectionsΔρmin = 0.40 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7674 (4)1.15360 (15)0.3705 (3)0.0140 (6)
C20.8429 (4)1.17912 (16)0.2579 (3)0.0147 (6)
H20.89871.22380.25350.018*
C30.8345 (4)1.13750 (15)0.1520 (3)0.0143 (6)
H30.88421.15480.07640.017*
C40.7528 (4)1.07023 (15)0.1574 (3)0.0124 (6)
C50.6783 (4)1.04481 (16)0.2710 (3)0.0141 (6)
H50.62350.99990.27570.017*
C60.6857 (4)1.08617 (15)0.3766 (3)0.0140 (6)
H60.63591.06890.45220.017*
C70.6910 (4)0.96599 (16)0.0438 (3)0.0124 (6)
C80.6931 (4)0.92330 (15)0.0707 (3)0.0120 (6)
C90.6343 (4)0.85181 (15)0.0639 (3)0.0135 (6)
H90.59370.83180.01190.016*
C100.6374 (4)0.81183 (16)0.1701 (3)0.0150 (6)
H100.59810.76430.16710.018*
C110.6999 (4)0.84260 (15)0.2837 (3)0.0132 (6)
C120.7564 (4)0.91591 (15)0.2848 (3)0.0116 (6)
C130.8157 (4)0.94846 (16)0.3981 (3)0.0153 (6)
H130.85370.99620.39940.018*
C140.8176 (4)0.91016 (16)0.5057 (3)0.0176 (7)
H140.85560.93230.58030.021*
C150.7628 (4)0.83733 (16)0.5061 (3)0.0180 (7)
H150.76560.81190.58040.022*
C160.7061 (4)0.80451 (16)0.3977 (3)0.0163 (6)
H160.67090.75650.39840.020*
N10.7487 (3)1.03052 (12)0.0449 (2)0.0113 (5)
N20.7526 (3)0.95410 (13)0.1765 (2)0.0117 (5)
O10.7768 (3)1.19596 (11)0.47207 (19)0.0199 (5)
H10.73241.17480.53340.030*
Hg10.832221 (15)1.069766 (6)0.162214 (10)0.01536 (4)
Cl11.07921 (9)1.14792 (4)0.18122 (6)0.01560 (15)
Cl20.59358 (10)1.13188 (4)0.27415 (7)0.01732 (15)
H70.65000.94300.11600.0140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0159 (15)0.0118 (15)0.0148 (14)0.0042 (12)0.0041 (12)0.0050 (12)
C20.0147 (15)0.0108 (15)0.0188 (16)0.0003 (12)0.0022 (12)0.0008 (12)
C30.0151 (15)0.0153 (15)0.0127 (14)0.0015 (12)0.0023 (12)0.0007 (12)
C40.0112 (14)0.0138 (15)0.0123 (14)0.0043 (12)0.0019 (11)0.0004 (12)
C50.0157 (15)0.0112 (14)0.0154 (15)0.0003 (12)0.0006 (12)0.0001 (12)
C60.0163 (15)0.0153 (16)0.0103 (14)0.0007 (12)0.0008 (12)0.0011 (11)
C70.0122 (14)0.0133 (15)0.0116 (14)0.0012 (12)0.0011 (12)0.0029 (12)
C80.0099 (13)0.0120 (15)0.0142 (14)0.0011 (12)0.0011 (11)0.0008 (12)
C90.0154 (15)0.0129 (15)0.0122 (14)0.0018 (12)0.0000 (12)0.0045 (12)
C100.0176 (15)0.0090 (14)0.0191 (15)0.0002 (12)0.0052 (13)0.0016 (12)
C110.0132 (14)0.0133 (15)0.0134 (14)0.0022 (12)0.0034 (12)0.0010 (12)
C120.0100 (13)0.0138 (15)0.0114 (14)0.0019 (11)0.0033 (11)0.0012 (11)
C130.0171 (15)0.0106 (15)0.0180 (15)0.0021 (12)0.0009 (13)0.0001 (12)
C140.0237 (16)0.0167 (16)0.0121 (15)0.0006 (13)0.0014 (13)0.0023 (12)
C150.0221 (16)0.0180 (16)0.0135 (15)0.0005 (13)0.0003 (13)0.0046 (12)
C160.0211 (16)0.0096 (15)0.0183 (16)0.0006 (12)0.0029 (13)0.0019 (12)
N10.0116 (12)0.0109 (13)0.0114 (12)0.0011 (10)0.0018 (10)0.0005 (10)
N20.0120 (12)0.0088 (12)0.0143 (12)0.0006 (10)0.0008 (10)0.0005 (10)
O10.0322 (13)0.0140 (11)0.0134 (10)0.0044 (10)0.0012 (10)0.0040 (9)
Hg10.02022 (7)0.01239 (6)0.01368 (6)0.00471 (5)0.00259 (4)0.00206 (5)
Cl10.0152 (3)0.0146 (4)0.0169 (3)0.0022 (3)0.0008 (3)0.0007 (3)
Cl20.0177 (4)0.0182 (4)0.0161 (4)0.0002 (3)0.0018 (3)0.0042 (3)
Geometric parameters (Å, º) top
C1—O11.356 (3)C10—C111.402 (4)
C1—C21.386 (4)C10—H100.9300
C1—C61.394 (4)C11—C161.418 (4)
C2—C31.386 (4)C11—C121.425 (4)
C2—H20.9300C12—N21.366 (4)
C3—C41.391 (4)C12—C131.407 (4)
C3—H30.9300C13—C141.363 (4)
C4—C51.393 (4)C13—H130.9300
C4—N11.424 (4)C14—C151.413 (4)
C5—C61.379 (4)C14—H140.9300
C5—H50.9300C15—C161.360 (4)
C6—H60.9300C15—H150.9300
C7—N11.274 (4)C16—H160.9300
C7—C81.469 (4)N1—Hg12.392 (2)
C7—H70.9170N2—Hg12.237 (2)
C8—N21.325 (4)O1—H10.8200
C8—C91.398 (4)Hg1—Cl12.3565 (12)
C9—C101.365 (4)Hg1—Cl22.5219 (12)
C9—H90.9300
O1—C1—C2118.0 (3)C10—C11—C12118.4 (3)
O1—C1—C6122.2 (3)C16—C11—C12118.6 (3)
C2—C1—C6119.9 (3)N2—C12—C13120.5 (3)
C3—C2—C1119.5 (3)N2—C12—C11120.1 (3)
C3—C2—H2120.2C13—C12—C11119.5 (3)
C1—C2—H2120.2C14—C13—C12120.1 (3)
C2—C3—C4120.9 (3)C14—C13—H13120.0
C2—C3—H3119.6C12—C13—H13120.0
C4—C3—H3119.6C13—C14—C15121.1 (3)
C3—C4—C5119.2 (3)C13—C14—H14119.4
C3—C4—N1117.8 (2)C15—C14—H14119.4
C5—C4—N1122.9 (3)C16—C15—C14119.9 (3)
C6—C5—C4120.1 (3)C16—C15—H15120.1
C6—C5—H5119.9C14—C15—H15120.1
C4—C5—H5119.9C15—C16—C11120.8 (3)
C5—C6—C1120.4 (3)C15—C16—H16119.6
C5—C6—H6119.8C11—C16—H16119.6
C1—C6—H6119.8C7—N1—C4121.6 (2)
N1—C7—C8122.2 (3)C7—N1—Hg1110.07 (19)
N1—C7—H7121.0C4—N1—Hg1128.32 (18)
C8—C7—H7116.0C8—N2—C12119.9 (2)
N2—C8—C9122.6 (3)C8—N2—Hg1115.40 (19)
N2—C8—C7118.4 (3)C12—N2—Hg1124.64 (19)
C9—C8—C7119.0 (3)C1—O1—H1109.5
C10—C9—C8119.1 (3)N2—Hg1—Cl1143.01 (6)
C10—C9—H9120.4N2—Hg1—N173.73 (8)
C8—C9—H9120.5Cl1—Hg1—N1114.76 (6)
C9—C10—C11119.8 (3)N2—Hg1—Cl2101.54 (7)
C9—C10—H10120.1Cl1—Hg1—Cl2105.37 (4)
C11—C10—H10120.1N1—Hg1—Cl2116.19 (6)
C10—C11—C16123.0 (3)
O1—C1—C2—C3179.5 (3)C12—C11—C16—C150.7 (4)
C6—C1—C2—C30.7 (4)C8—C7—N1—C4177.3 (3)
C1—C2—C3—C40.6 (4)C8—C7—N1—Hg14.5 (3)
C2—C3—C4—C50.2 (4)C3—C4—N1—C7173.5 (3)
C2—C3—C4—N1179.8 (3)C5—C4—N1—C76.8 (4)
C3—C4—C5—C60.1 (4)C3—C4—N1—Hg18.6 (4)
N1—C4—C5—C6179.5 (3)C5—C4—N1—Hg1171.1 (2)
C4—C5—C6—C10.1 (4)C9—C8—N2—C120.6 (4)
O1—C1—C6—C5179.7 (3)C7—C8—N2—C12180.0 (2)
C2—C1—C6—C50.5 (4)C9—C8—N2—Hg1178.6 (2)
N1—C7—C8—N22.0 (4)C7—C8—N2—Hg12.1 (3)
N1—C7—C8—C9177.4 (3)C13—C12—N2—C8178.7 (3)
N2—C8—C9—C100.2 (4)C11—C12—N2—C81.3 (4)
C7—C8—C9—C10179.5 (3)C13—C12—N2—Hg11.0 (4)
C8—C9—C10—C110.3 (4)C11—C12—N2—Hg1178.98 (19)
C9—C10—C11—C16179.7 (3)C8—N2—Hg1—Cl1112.83 (19)
C9—C10—C11—C120.9 (4)C12—N2—Hg1—Cl169.4 (2)
C10—C11—C12—N21.4 (4)C8—N2—Hg1—N13.10 (19)
C16—C11—C12—N2179.8 (3)C12—N2—Hg1—N1179.1 (2)
C10—C11—C12—C13178.5 (3)C8—N2—Hg1—Cl2111.08 (19)
C16—C11—C12—C130.3 (4)C12—N2—Hg1—Cl266.7 (2)
N2—C12—C13—C14179.4 (3)C7—N1—Hg1—N23.94 (18)
C11—C12—C13—C140.5 (4)C4—N1—Hg1—N2178.0 (2)
C12—C13—C14—C150.9 (5)C7—N1—Hg1—Cl1145.35 (17)
C13—C14—C15—C160.4 (5)C4—N1—Hg1—Cl136.6 (2)
C14—C15—C16—C110.4 (5)C7—N1—Hg1—Cl291.15 (19)
C10—C11—C16—C15178.0 (3)C4—N1—Hg1—Cl287.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.822.393.204 (3)171
C7—H7···Cl2ii0.922.783.644 (4)156
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.822.393.204 (3)171
C7—H7···Cl2ii0.922.783.644 (4)156
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z.
 

Acknowledgements

The authors are grateful to the Science and Engineering Research Board, Government of India (project No. SR/S11/PC-08/2011.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenberg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, P., Mandal, A. K., Reddy, G. U., Baidya, M., Ghosh, S. K. & Das, A. (2013). Org. Biomol. Chem. 11, 6604–6614.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarjani, K., Asgarian, J., Mousavi, M. & Amani, V. (2009). Z. Anorg. Allg. Chem. 635, 1633–1637.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds