research communications
Crystal structures of (μ2-η2,η2-4-hydroxybut-2-yn-1-yl 2-bromo-2-methylpropanoate-κ4C2,C3:C2,C3)bis[tricarbonylcobalt(II)](Co—Co) and [μ2-η2,η2-but-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate)-κ4C2,C3:C2,C3]bis[tricarbonylcobalt(II)](Co—Co)
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
The title compounds, [Co2(C8H11BrO3)(CO)6], (1), and [Co2(C12H16Br2O4)(CO)6], (2), result from the replacement of two carbonyl ligands from dicobalt octacarbonyl by the 4-hydroxybut-2-ynyl 2-bromo-2-methylpropanoate and but-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate), respectively. Both molecules have classic tetrahedral C2Co2 cluster cores with the CoII atoms in a highly distorted octahedral coordination geometry. The alkyne ligands both adopt a cis-bent conformation on coordination. In the of (1), classical O—H⋯O and non-classical C—H⋯O contacts form inversion dimers. These combine with weak O⋯O and Br⋯O contacts to stack the molecules into interconnected columns along the b-axis direction. C—H⋯O and C—H⋯Br contacts stabilize the packing for (2), and a weak Br⋯O contact is also observed. Interconnected columns of molecules again form along the b-axis direction.
1. Chemical context
In 1954 et al., 1954). The novelty of these compounds, together with their close isolobal relationship to other members of the `tetrahedrane series' (Hoffmann, 1982), spawned enormous interest in both the hexacarbonyls and their substituted derivatives. Applications include use in organic synthesis (Melikyan et al., 2012), as biological probes (Salmain & Jaouen, 1993) and in the stabilization of high-performance energetic materials (Windler et al., 2012). Their diverse redox properties (Robinson & Simpson, 1989) have also been exploited in the development of molecular wires (McAdam et al., 1996; Hore et al., 2000; Xie et al., 2012) where alkyne-hexacarbonyl-dicobalt cores are separated by electronically conducting spacers or connecting groups. Our recent interest in incorporating redox-active organometallic species into polymer materials (Dana et al., 2007; McAdam et al., 2008) prompted us to investigate the synthesis of alkyne-hexacarbonyl-dicobalt complexes with potential ATRP initiator functionality by the incorporation of one or more known initiator substrates, such as 2-halo-2-methyl propanoyl (Wang & Matyjaszewski, 1995; Laurent & Grayson, 2006), into the alkyne system. The structures of two such molecules with 2-bromo-2-methylpropanoate substituents are reported here.
were found to act as ligands and displace two carbonyl groups from dicobalt octacarbonyl to form alkyne-hexacarbonyl-dicobalt complexes (Sternberg2. Structural commentary
The molecular structures of (1) and (2) are illustrated in Figs. 1 and 2. Both compounds are classic alkyne dicobalt cluster systems incorporating the triple bonds of 4-hydroxybut-2-ynyl 2-bromo-2-methylpropanoate for (1) and but-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate) for (2) into the tetrahedral C2Co2 core of the alkyne dicobalt cluster unit. The coordination geometry around each cobalt atom is distorted octahedral. Each cobalt atom carries one pseudo-axial and two pseudo-equatorial carbonyl substituents. The C2 and C3 atoms of the alkyne ligand for (1) and the corresponding C1 and C2 atoms for (2) are also pseudo-equatorial, with the bonds to the second Co atoms completing the highly distorted coordination spheres in pseudo-axial sites.
This combination of coordination spheres results in classical `sawhorse' structures (Arewgoda et al., 1983) for each molecule. The CH2OH and 2-bromo-2-ethylpropanoate substituents for (1) and the two 2-bromo-2-ethylpropanoate groups for (2), adopt a cis-bent configuration similar to the of an alkyne system (Dickson & Fraser, 1974). Furthermore, the C11—Co1—Co2—C21 and C1—C2—C3—C4 planes for (1) and C15—Co1—Co2—C18 and C3—C2—C1—C8 planes for (2) are close to orthogonal with interplanar angles of 89.65 (7) and 85.91 (7)°, respectively. The Co1—Co2 bond lengths are 2.4723 (7) Å for (1) and 2.4759 (10) Å for (2) with corresponding C2—C3 and C1—C2 distances of 1.344 (5) and 1.343 (3) Å (Tables 1 and 2). These are not unusual in comparison to those found for the 480 C2Co2 alkyne dicobalt clusters with 6 CO ligands found in the Cambridge Structural Database (Allen, 2002). For these, the mean Co—Co and C—C distances are found to be 2.47 (1) and 1.337 (15) Å, respectively. The eight Co—Calkyne distances average 1.958 (7) Å, again comparable to the mean value of 1.965 (5) Å found previously.
|
|
The C=O groups of the 2-bromo-2-methylpropanoate units point away from the cluster cores in both molecules. The two carbonyl groups in (2) each lie on the same side of the molecule, with the 2-bromo-2-methylpropanoate units arranged symmetrically with respect to the central C2Co2 unit. Bond lengths (Allen et al., 1987) and angles in the –OC(O)–C(CH3)2Br chains are not unusual and are similar in both molecules.
3. Supramolecular features
In the ) are augmented by two C—H⋯O contacts that link adjacent molecules into inversion dimers generating R22(10), R22(18)and R22(20) rings (Bernstein et al., 1995). Two additional inversion dimers also result from weaker C1—H1A⋯O1 and C8—H8A⋯O12 hydrogen bonds (Fig. 3). These contacts, together with weak O2⋯O21, [2.965 (4) Å; 1 + x, y, z) and Br1⋯O1 [3.307 (3) Å; −x, 1 − y, 2 − z] contacts stack the molecules into interconnected columns along the b-axis direction (Fig. 4).
of (1), classical O1—H1⋯O3 hydrogen bonds (Table 3Hydrogen bonding also figures prominently in the structure of (2), although in this molecule no classical hydrogen bonds are possible. Bifurcated C3—H3B⋯O2 and C8–H8A⋯O2 contacts (Table 4) produce R21(7) rings while inversion-related C8—H8B⋯O4 hydrogen bonds form R22(10) rings (Fig. 5). The other significant contacts involve C—H⋯Br hydrogen bonds. C12—H12C⋯Br1 contacts link molecules into C22(14) chains approximately parallel to [110] while C6—H6A⋯Br2 interactions, bolstered by short O1⋯Br2 contacts [3.296 (2) Å, x, −1 + y, z], form C22(12) chains parallel to [010] (Fig. 6). The net result of these contacts is a series of interconnected columns of molecules stacked along the b-axis direction (Fig. 7).
|
4. Database survey
The first structure, of dicobalt hexacarbonyl diphenylacetylene, was reported using film data (Sly, 1959). The current database (Version 5.35, November 2013 with 1 update) details 480 hexacarbonyl structures. However, this number rises to 730 if the search is extended to cover dicobalt alkyne compounds in which one or more carbonyl group has been substituted, mainly by phosphine ligands. Interestingly there are no current examples of similar 4-hydroxybut-2-ynyl carboxylate derivatives and only one but-2-yne-1,4-diyl diacetate complex [(4-diacetoxybut-2-yne)-hexacarbonyl-dicobalt; Soleilhavoup et al., 2002] among this plethora of structures, underlining the novelty of the compounds reported here.
5. Synthesis and crystallization
In typical preparations, 1:1 molar quantities of 4-hydroxybut-2-ynyl 2-bromo-2-methylpropanoate for (1) or a 2:1 molar ratio of but-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate) for (2) with Co2(CO)8 were allowed to react at room temperature for 1 h in CH2Cl2 under nitrogen. The reaction mixtures were filtered through silica gel to remove any insoluble impurities and the filtrates taken to dryness in vacuo. The complexes were then purified by recrystallization from hexane at 273 K. Yields were in the range 70–80%. Complexation was confirmed by the absence of a band at 1860 cm−1 in the infrared spectrum, attributable to the μ2 (bridging) carbonyl groups of the dicobalt octacarbonyl starting material. In addition, a of approximately 30 cm−1 of the remaining carbonyl stretching frequencies is seen, due to the decrease in electron density at the metal atoms upon coordination of these Characteristic IR spectra were recorded for both products as follows: IR (ν, cm−1): (1): 3300 (broad, OH), ν(C≡O) 2099, 2062, 2032, ν(C=O) 1735; (2): ν(C≡O) 2096, 2058, 2031, ν(C=O) 1734.
6. Refinement
All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.99 Å, Uiso = 1.2Ueq (C) for CH2, 0.98 Å, Uiso = 1.5Ueq (C) for CH3 atoms. In the final two reflections from the data for (2) with Fo << Fc were omitted from the refinement.
|
Supporting information
https://doi.org/10.1107/S1600536814009659/hb0001sup1.cif
contains datablocks global, 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S1600536814009659/hb00011sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S1600536814009659/hb00012sup3.hkl
For both compounds, data collection: APEX2 (Bruker, 2011); cell
APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).[Co2(C8H11BrO3)(CO)6] | Z = 2 |
Mr = 521.00 | F(000) = 512 |
Triclinic, P1 | Dx = 1.888 Mg m−3 |
a = 7.3887 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.1147 (12) Å | Cell parameters from 3089 reflections |
c = 11.7274 (13) Å | θ = 4.7–51.2° |
α = 78.583 (6)° | µ = 4.03 mm−1 |
β = 85.239 (6)° | T = 91 K |
γ = 76.342 (6)° | Irregular fragment, orange-red |
V = 916.67 (18) Å3 | 0.39 × 0.16 × 0.04 mm |
Bruker APEXII CCD area-detector diffractometer | 3713 independent reflections |
Radiation source: fine-focus sealed tube | 2966 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.055 |
ω scans | θmax = 26.5°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −8→9 |
Tmin = 0.302, Tmax = 0.855 | k = −13→13 |
11686 measured reflections | l = −14→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0486P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3713 reflections | Δρmax = 0.83 e Å−3 |
238 parameters | Δρmin = −0.73 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.0205 (4) | 0.8525 (2) | 1.0602 (2) | 0.0210 (6) | |
H1 | −0.0387 | 0.7844 | 1.1000 | 0.032* | |
C1 | −0.1326 (5) | 0.8873 (4) | 0.9601 (3) | 0.0159 (8) | |
H1A | −0.1616 | 0.9800 | 0.9357 | 0.019* | |
H1B | −0.2517 | 0.8605 | 0.9803 | 0.019* | |
C2 | −0.0346 (4) | 0.8277 (3) | 0.8618 (3) | 0.0137 (7) | |
C3 | 0.0896 (4) | 0.7232 (3) | 0.8429 (3) | 0.0135 (7) | |
C4 | 0.1996 (5) | 0.6065 (3) | 0.9107 (3) | 0.0131 (7) | |
H4A | 0.2813 | 0.6282 | 0.9626 | 0.016* | |
H4B | 0.1144 | 0.5594 | 0.9600 | 0.016* | |
O2 | 0.3132 (3) | 0.5272 (2) | 0.8345 (2) | 0.0160 (5) | |
C5 | 0.2596 (5) | 0.4240 (3) | 0.8234 (3) | 0.0147 (8) | |
O3 | 0.1198 (4) | 0.3939 (2) | 0.8680 (2) | 0.0220 (6) | |
C6 | 0.3981 (5) | 0.3471 (3) | 0.7453 (3) | 0.0185 (8) | |
C7 | 0.3045 (6) | 0.2640 (4) | 0.6933 (3) | 0.0254 (9) | |
H7A | 0.2510 | 0.2089 | 0.7560 | 0.038* | |
H7B | 0.3967 | 0.2127 | 0.6472 | 0.038* | |
H7C | 0.2052 | 0.3169 | 0.6431 | 0.038* | |
C8 | 0.5019 (6) | 0.4259 (4) | 0.6532 (3) | 0.0274 (9) | |
H8A | 0.5921 | 0.3703 | 0.6097 | 0.041* | |
H8B | 0.5676 | 0.4733 | 0.6910 | 0.041* | |
H8C | 0.4126 | 0.4847 | 0.5995 | 0.041* | |
Br1 | 0.58507 (6) | 0.23943 (4) | 0.85597 (4) | 0.02956 (14) | |
Co1 | 0.14649 (6) | 0.86999 (5) | 0.73644 (4) | 0.01350 (13) | |
C11 | 0.3041 (5) | 0.9142 (3) | 0.8218 (3) | 0.0153 (8) | |
O11 | 0.4032 (3) | 0.9404 (3) | 0.8748 (2) | 0.0216 (6) | |
C12 | 0.3119 (5) | 0.7980 (4) | 0.6321 (3) | 0.0188 (8) | |
O12 | 0.4169 (4) | 0.7477 (3) | 0.5703 (2) | 0.0299 (7) | |
C13 | 0.0360 (5) | 1.0278 (4) | 0.6608 (3) | 0.0235 (9) | |
O13 | −0.0335 (4) | 1.1244 (3) | 0.6144 (3) | 0.0358 (8) | |
Co2 | −0.11056 (6) | 0.76340 (5) | 0.73243 (4) | 0.01475 (14) | |
C21 | −0.2640 (5) | 0.6741 (4) | 0.8176 (3) | 0.0216 (9) | |
O21 | −0.3575 (4) | 0.6190 (3) | 0.8772 (3) | 0.0327 (7) | |
C22 | −0.0153 (5) | 0.6651 (4) | 0.6246 (3) | 0.0216 (9) | |
O22 | 0.0493 (4) | 0.6009 (3) | 0.5607 (3) | 0.0342 (7) | |
C23 | −0.2750 (5) | 0.8974 (4) | 0.6540 (3) | 0.0216 (8) | |
O23 | −0.3745 (4) | 0.9823 (3) | 0.6055 (2) | 0.0293 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0248 (14) | 0.0207 (15) | 0.0180 (14) | −0.0051 (12) | −0.0019 (11) | −0.0039 (11) |
C1 | 0.0151 (17) | 0.0157 (19) | 0.0168 (19) | −0.0025 (15) | 0.0022 (14) | −0.0049 (15) |
C2 | 0.0112 (17) | 0.0148 (19) | 0.0147 (18) | −0.0052 (14) | 0.0024 (13) | −0.0003 (15) |
C3 | 0.0114 (16) | 0.0169 (19) | 0.0132 (18) | −0.0063 (14) | 0.0017 (13) | −0.0020 (15) |
C4 | 0.0151 (17) | 0.0108 (18) | 0.0135 (18) | −0.0024 (14) | 0.0019 (14) | −0.0040 (14) |
O2 | 0.0163 (12) | 0.0133 (13) | 0.0174 (13) | −0.0020 (10) | 0.0043 (10) | −0.0041 (11) |
C5 | 0.0173 (18) | 0.0119 (18) | 0.0126 (18) | −0.0001 (14) | −0.0014 (14) | −0.0002 (14) |
O3 | 0.0244 (14) | 0.0199 (15) | 0.0229 (15) | −0.0087 (12) | 0.0082 (11) | −0.0059 (12) |
C6 | 0.0210 (19) | 0.0128 (19) | 0.0185 (19) | 0.0021 (15) | −0.0010 (15) | −0.0025 (16) |
C7 | 0.030 (2) | 0.025 (2) | 0.023 (2) | −0.0080 (18) | 0.0048 (17) | −0.0107 (18) |
C8 | 0.036 (2) | 0.023 (2) | 0.020 (2) | −0.0042 (18) | 0.0098 (18) | −0.0042 (18) |
Br1 | 0.0302 (2) | 0.0259 (2) | 0.0255 (2) | 0.00937 (17) | −0.00436 (17) | −0.00550 (18) |
Co1 | 0.0140 (2) | 0.0128 (3) | 0.0133 (3) | −0.00413 (19) | 0.00139 (18) | −0.0009 (2) |
C11 | 0.0146 (17) | 0.0111 (18) | 0.0171 (19) | 0.0004 (14) | 0.0047 (15) | −0.0014 (15) |
O11 | 0.0190 (13) | 0.0231 (15) | 0.0241 (15) | −0.0054 (11) | −0.0014 (11) | −0.0065 (12) |
C12 | 0.023 (2) | 0.019 (2) | 0.0168 (19) | −0.0116 (16) | 0.0023 (16) | −0.0030 (16) |
O12 | 0.0360 (17) | 0.0303 (17) | 0.0251 (16) | −0.0105 (14) | 0.0129 (13) | −0.0111 (14) |
C13 | 0.024 (2) | 0.027 (2) | 0.024 (2) | −0.0126 (18) | −0.0019 (17) | −0.0033 (18) |
O13 | 0.0362 (17) | 0.0196 (17) | 0.046 (2) | −0.0045 (14) | −0.0146 (15) | 0.0100 (15) |
Co2 | 0.0140 (2) | 0.0139 (3) | 0.0161 (3) | −0.00375 (19) | −0.00161 (19) | −0.0012 (2) |
C21 | 0.0197 (19) | 0.023 (2) | 0.021 (2) | −0.0035 (17) | −0.0066 (16) | −0.0010 (17) |
O21 | 0.0254 (15) | 0.0375 (19) | 0.0351 (18) | −0.0164 (14) | −0.0022 (13) | 0.0050 (15) |
C22 | 0.0204 (19) | 0.020 (2) | 0.025 (2) | −0.0062 (16) | −0.0066 (16) | −0.0017 (18) |
O22 | 0.0389 (18) | 0.0333 (18) | 0.0346 (18) | −0.0058 (14) | −0.0004 (14) | −0.0193 (15) |
C23 | 0.0174 (19) | 0.025 (2) | 0.025 (2) | −0.0101 (17) | 0.0015 (16) | −0.0041 (18) |
O23 | 0.0240 (15) | 0.0204 (16) | 0.0382 (18) | −0.0019 (13) | −0.0105 (13) | 0.0068 (13) |
O1—C1 | 1.430 (4) | C7—H7A | 0.9800 |
O1—H1 | 0.8400 | C7—H7B | 0.9800 |
C1—C2 | 1.493 (5) | C7—H7C | 0.9800 |
C1—H1A | 0.9900 | C8—H8A | 0.9800 |
C1—H1B | 0.9900 | C8—H8B | 0.9800 |
C2—C3 | 1.344 (5) | C8—H8C | 0.9800 |
Co1—Co2 | 2.4723 (7) | Co1—C11 | 1.805 (4) |
C2—Co1 | 1.967 (3) | Co1—C12 | 1.819 (4) |
C2—Co2 | 1.972 (3) | Co1—C13 | 1.833 (4) |
C3—C4 | 1.476 (5) | C11—O11 | 1.121 (4) |
C3—Co1 | 1.956 (4) | C12—O12 | 1.141 (5) |
C3—Co2 | 1.960 (3) | C13—O13 | 1.125 (5) |
C4—O2 | 1.455 (4) | Co2—C21 | 1.794 (4) |
C4—H4A | 0.9900 | Co2—C22 | 1.824 (4) |
C4—H4B | 0.9900 | Co2—C23 | 1.825 (4) |
O2—C5 | 1.331 (4) | C21—O21 | 1.136 (5) |
C5—O3 | 1.207 (4) | C22—O22 | 1.135 (5) |
C5—C6 | 1.535 (5) | C23—O23 | 1.132 (4) |
C6—C7 | 1.516 (5) | Br1—O1i | 3.307 (3) |
C6—C8 | 1.526 (5) | O2—O21ii | 2.965 (4) |
C6—Br1 | 1.981 (3) | ||
C1—O1—H1 | 109.5 | C6—C8—H8A | 109.5 |
O1—C1—C2 | 111.1 (3) | C6—C8—H8B | 109.5 |
O1—C1—H1A | 109.4 | H8A—C8—H8B | 109.5 |
C2—C1—H1A | 109.4 | C6—C8—H8C | 109.5 |
O1—C1—H1B | 109.4 | H8A—C8—H8C | 109.5 |
C2—C1—H1B | 109.4 | H8B—C8—H8C | 109.5 |
H1A—C1—H1B | 108.0 | C6—Br1—O1iii | 68.68 (12) |
C3—C2—C1 | 140.2 (3) | C11—Co1—C12 | 99.92 (16) |
C3—C2—Co1 | 69.5 (2) | C11—Co1—C13 | 98.37 (16) |
C1—C2—Co1 | 135.5 (3) | C12—Co1—C13 | 106.52 (17) |
C3—C2—Co2 | 69.5 (2) | C11—Co1—C3 | 100.69 (15) |
C1—C2—Co2 | 135.7 (2) | C12—Co1—C3 | 102.34 (16) |
Co1—C2—Co2 | 77.75 (13) | C13—Co1—C3 | 141.85 (16) |
C2—C3—C4 | 138.8 (3) | C11—Co1—C2 | 98.44 (15) |
C2—C3—Co1 | 70.4 (2) | C12—Co1—C2 | 140.87 (16) |
C4—C3—Co1 | 135.6 (2) | C13—Co1—C2 | 104.58 (16) |
C2—C3—Co2 | 70.5 (2) | C3—Co1—C2 | 40.06 (14) |
C4—C3—Co2 | 135.3 (3) | C11—Co1—Co2 | 148.11 (11) |
Co1—C3—Co2 | 78.29 (13) | C12—Co1—Co2 | 100.47 (12) |
O2—C4—C3 | 111.1 (3) | C13—Co1—Co2 | 99.02 (12) |
O2—C4—H4A | 109.4 | C3—Co1—Co2 | 50.92 (10) |
C3—C4—H4A | 109.4 | C2—Co1—Co2 | 51.21 (10) |
O2—C4—H4B | 109.4 | O11—C11—Co1 | 179.3 (3) |
C3—C4—H4B | 109.4 | O12—C12—Co1 | 176.8 (3) |
H4A—C4—H4B | 108.0 | O13—C13—Co1 | 179.3 (3) |
C5—O2—C4 | 117.6 (3) | C21—Co2—C22 | 101.27 (18) |
C5—O2—O21ii | 142.6 (2) | C21—Co2—C23 | 101.86 (17) |
C4—O2—O21ii | 89.70 (19) | C22—Co2—C23 | 104.94 (17) |
O3—C5—O2 | 124.9 (3) | C21—Co2—C3 | 98.31 (15) |
O3—C5—C6 | 123.7 (3) | C22—Co2—C3 | 103.15 (15) |
O2—C5—C6 | 111.4 (3) | C23—Co2—C3 | 141.17 (17) |
C7—C6—C8 | 112.2 (3) | C21—Co2—C2 | 96.59 (16) |
C7—C6—C5 | 110.8 (3) | C22—Co2—C2 | 141.37 (15) |
C8—C6—C5 | 114.1 (3) | C23—Co2—C2 | 104.47 (16) |
C7—C6—Br1 | 109.1 (3) | C3—Co2—C2 | 39.97 (14) |
C8—C6—Br1 | 107.0 (3) | C21—Co2—Co1 | 145.74 (12) |
C5—C6—Br1 | 103.0 (2) | C22—Co2—Co1 | 100.40 (12) |
C6—C7—H7A | 109.5 | C23—Co2—Co1 | 97.76 (12) |
C6—C7—H7B | 109.5 | C3—Co2—Co1 | 50.79 (10) |
H7A—C7—H7B | 109.5 | C2—Co2—Co1 | 51.04 (10) |
C6—C7—H7C | 109.5 | O21—C21—Co2 | 176.0 (3) |
H7A—C7—H7C | 109.5 | O22—C22—Co2 | 177.1 (3) |
H7B—C7—H7C | 109.5 | O23—C23—Co2 | 178.5 (3) |
O1—C1—C2—C3 | 30.5 (6) | C3—C4—O2—C5 | −106.2 (3) |
O1—C1—C2—Co1 | −85.6 (4) | C3—C4—O2—O21ii | 100.4 (3) |
O1—C1—C2—Co2 | 147.0 (3) | C4—O2—C5—O3 | 3.2 (5) |
C1—C2—C3—C4 | 0.4 (8) | O21ii—O2—C5—O3 | 135.5 (3) |
Co1—C2—C3—C4 | 138.1 (5) | C4—O2—C5—C6 | −177.1 (3) |
Co2—C2—C3—C4 | −137.7 (5) | O21ii—O2—C5—C6 | −44.8 (5) |
C1—C2—C3—Co1 | −137.7 (5) | O3—C5—C6—C7 | 22.8 (5) |
Co2—C2—C3—Co1 | 84.12 (10) | O2—C5—C6—C7 | −156.8 (3) |
C1—C2—C3—Co2 | 138.1 (5) | O3—C5—C6—C8 | 150.7 (4) |
Co1—C2—C3—Co2 | −84.12 (10) | O2—C5—C6—C8 | −29.0 (4) |
C2—C3—C4—O2 | 179.8 (4) | O3—C5—C6—Br1 | −93.7 (4) |
Co1—C3—C4—O2 | −64.1 (4) | O2—C5—C6—Br1 | 86.6 (3) |
Co2—C3—C4—O2 | 64.1 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y, z; (iii) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3iii | 0.84 | 2.16 | 2.946 (4) | 156 |
C4—H4B···O3iii | 0.99 | 2.60 | 3.360 (4) | 134 |
C7—H7A···O1iii | 0.98 | 2.71 | 3.637 (5) | 157 |
C1—H1A···O1iv | 0.99 | 2.55 | 3.307 (5) | 133 |
C8—H8A···O12v | 0.98 | 2.71 | 3.485 (5) | 136 |
Symmetry codes: (iii) −x, −y+1, −z+2; (iv) −x, −y+2, −z+2; (v) −x+1, −y+1, −z+1. |
[Co2(C12H16Br2O4)(CO)6] | Z = 2 |
Mr = 669.99 | F(000) = 656 |
Triclinic, P1 | Dx = 1.851 Mg m−3 |
a = 9.392 (5) Å | Mo Kα radiation, λ = 0.71069 Å |
b = 10.710 (5) Å | Cell parameters from 5837 reflections |
c = 13.269 (5) Å | θ = 2.3–30.9° |
α = 71.314 (5)° | µ = 4.75 mm−1 |
β = 71.973 (5)° | T = 91 K |
γ = 84.630 (5)° | Rod, dark red |
V = 1202.3 (10) Å3 | 0.25 × 0.11 × 0.06 mm |
Bruker APEXII CCD area-detector diffractometer | 6040 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.037 |
ω scans | θmax = 32.3°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2011) | h = −14→12 |
Tmin = 0.611, Tmax = 1.000 | k = −16→16 |
21546 measured reflections | l = −19→18 |
8127 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters constrained |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.0311P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max = 0.008 |
8127 reflections | Δρmax = 1.43 e Å−3 |
293 parameters | Δρmin = −1.06 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.75011 (2) | 0.49577 (2) | 0.81786 (2) | 0.02064 (5) | |
C7 | 0.6143 (2) | 0.74032 (18) | 0.72699 (17) | 0.0192 (4) | |
H7A | 0.5332 | 0.7891 | 0.6996 | 0.029* | |
H7B | 0.7079 | 0.7554 | 0.6657 | 0.029* | |
H7C | 0.6260 | 0.7708 | 0.7862 | 0.029* | |
C6 | 0.4399 (2) | 0.56200 (19) | 0.87435 (16) | 0.0167 (4) | |
H6A | 0.3511 | 0.6010 | 0.8526 | 0.025* | |
H6B | 0.4533 | 0.5981 | 0.9300 | 0.025* | |
H6C | 0.4270 | 0.4662 | 0.9061 | 0.025* | |
C5 | 0.5769 (2) | 0.59405 (18) | 0.77269 (16) | 0.0140 (4) | |
C4 | 0.5703 (2) | 0.54055 (17) | 0.68077 (16) | 0.0134 (4) | |
O2 | 0.63231 (16) | 0.58983 (13) | 0.58281 (11) | 0.0182 (3) | |
O1 | 0.48633 (15) | 0.43066 (12) | 0.72283 (11) | 0.0140 (3) | |
C3 | 0.4766 (2) | 0.36816 (18) | 0.64290 (15) | 0.0143 (4) | |
H3A | 0.5769 | 0.3390 | 0.6063 | 0.017* | |
H3B | 0.4373 | 0.4311 | 0.5848 | 0.017* | |
C2 | 0.3747 (2) | 0.25397 (17) | 0.70430 (15) | 0.0126 (4) | |
C1 | 0.3246 (2) | 0.15033 (18) | 0.68869 (15) | 0.0123 (4) | |
C8 | 0.3382 (2) | 0.09321 (18) | 0.59884 (16) | 0.0147 (4) | |
H8A | 0.3121 | 0.1598 | 0.5358 | 0.018* | |
H8B | 0.4424 | 0.0644 | 0.5715 | 0.018* | |
O3 | 0.23609 (15) | −0.01940 (12) | 0.64364 (11) | 0.0149 (3) | |
C9 | 0.2214 (2) | −0.07240 (18) | 0.56873 (16) | 0.0142 (4) | |
O4 | 0.28657 (18) | −0.03238 (14) | 0.47087 (12) | 0.0232 (3) | |
C10 | 0.1107 (2) | −0.18786 (18) | 0.62156 (17) | 0.0151 (4) | |
C11 | 0.0394 (3) | −0.2029 (2) | 0.53826 (19) | 0.0235 (5) | |
H11A | −0.0159 | −0.2866 | 0.5690 | 0.035* | |
H11B | 0.1175 | −0.2021 | 0.4690 | 0.035* | |
H11C | −0.0297 | −0.1298 | 0.5228 | 0.035* | |
C12 | −0.0002 (3) | −0.1871 (2) | 0.7318 (2) | 0.0316 (6) | |
H12A | −0.0649 | −0.1099 | 0.7201 | 0.047* | |
H12B | 0.0541 | −0.1835 | 0.7832 | 0.047* | |
H12C | −0.0615 | −0.2675 | 0.7636 | 0.047* | |
Br2 | 0.24396 (3) | −0.34166 (2) | 0.65043 (2) | 0.03253 (7) | |
Co1 | 0.37507 (3) | 0.09639 (2) | 0.82922 (2) | 0.01282 (6) | |
C13 | 0.2937 (2) | −0.0691 (2) | 0.89243 (17) | 0.0205 (4) | |
O13 | 0.2402 (2) | −0.17088 (14) | 0.92908 (14) | 0.0318 (4) | |
C14 | 0.3706 (2) | 0.15581 (19) | 0.94411 (17) | 0.0204 (4) | |
O14 | 0.3689 (2) | 0.19624 (15) | 1.01387 (13) | 0.0319 (4) | |
C15 | 0.5735 (3) | 0.06630 (19) | 0.78595 (17) | 0.0192 (4) | |
O15 | 0.69906 (18) | 0.05518 (17) | 0.75817 (14) | 0.0304 (4) | |
Co2 | 0.16116 (3) | 0.22826 (2) | 0.78080 (2) | 0.01303 (6) | |
C16 | 0.0196 (2) | 0.0985 (2) | 0.84785 (17) | 0.0179 (4) | |
O16 | −0.06494 (18) | 0.01443 (15) | 0.88945 (13) | 0.0269 (4) | |
C17 | 0.1197 (2) | 0.3291 (2) | 0.87509 (19) | 0.0214 (4) | |
O17 | 0.0949 (2) | 0.39023 (17) | 0.93381 (15) | 0.0367 (4) | |
C18 | 0.0866 (2) | 0.3323 (2) | 0.67223 (18) | 0.0203 (4) | |
O18 | 0.0423 (2) | 0.39556 (16) | 0.60153 (14) | 0.0316 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01709 (11) | 0.02490 (11) | 0.02151 (11) | −0.00005 (8) | −0.00881 (8) | −0.00622 (8) |
C7 | 0.0267 (12) | 0.0152 (9) | 0.0180 (10) | −0.0055 (8) | −0.0077 (8) | −0.0054 (8) |
C6 | 0.0178 (10) | 0.0187 (9) | 0.0128 (9) | −0.0030 (8) | −0.0027 (7) | −0.0047 (7) |
C5 | 0.0169 (10) | 0.0136 (8) | 0.0136 (9) | −0.0020 (7) | −0.0076 (7) | −0.0034 (7) |
C4 | 0.0150 (10) | 0.0116 (8) | 0.0143 (9) | −0.0023 (7) | −0.0058 (7) | −0.0031 (7) |
O2 | 0.0226 (8) | 0.0179 (7) | 0.0127 (7) | −0.0087 (6) | −0.0023 (6) | −0.0031 (5) |
O1 | 0.0181 (7) | 0.0130 (6) | 0.0118 (6) | −0.0078 (5) | −0.0031 (5) | −0.0041 (5) |
C3 | 0.0191 (10) | 0.0138 (8) | 0.0114 (9) | −0.0060 (7) | −0.0036 (7) | −0.0051 (7) |
C2 | 0.0122 (9) | 0.0124 (8) | 0.0128 (9) | −0.0011 (7) | −0.0033 (7) | −0.0035 (7) |
C1 | 0.0105 (9) | 0.0135 (8) | 0.0124 (9) | −0.0008 (7) | −0.0026 (7) | −0.0038 (7) |
C8 | 0.0146 (10) | 0.0147 (8) | 0.0136 (9) | −0.0066 (7) | −0.0006 (7) | −0.0043 (7) |
O3 | 0.0168 (7) | 0.0145 (6) | 0.0134 (7) | −0.0068 (5) | −0.0011 (5) | −0.0056 (5) |
C9 | 0.0129 (9) | 0.0141 (8) | 0.0190 (10) | 0.0017 (7) | −0.0070 (7) | −0.0077 (7) |
O4 | 0.0279 (9) | 0.0270 (8) | 0.0163 (7) | −0.0110 (7) | −0.0035 (6) | −0.0086 (6) |
C10 | 0.0140 (10) | 0.0123 (8) | 0.0207 (10) | 0.0002 (7) | −0.0067 (8) | −0.0059 (7) |
C11 | 0.0216 (12) | 0.0227 (10) | 0.0312 (12) | −0.0052 (9) | −0.0156 (9) | −0.0059 (9) |
C12 | 0.0267 (13) | 0.0314 (12) | 0.0347 (13) | −0.0165 (10) | 0.0075 (10) | −0.0190 (11) |
Br2 | 0.03671 (15) | 0.01571 (10) | 0.05628 (17) | 0.00796 (9) | −0.03120 (13) | −0.01135 (10) |
Co1 | 0.01475 (14) | 0.01102 (12) | 0.01208 (12) | −0.00128 (10) | −0.00391 (10) | −0.00241 (9) |
C13 | 0.0217 (11) | 0.0184 (10) | 0.0198 (10) | 0.0038 (8) | −0.0049 (8) | −0.0061 (8) |
O13 | 0.0383 (10) | 0.0140 (7) | 0.0350 (9) | −0.0047 (7) | −0.0020 (8) | −0.0037 (7) |
C14 | 0.0262 (12) | 0.0153 (9) | 0.0186 (10) | −0.0013 (8) | −0.0096 (9) | −0.0005 (8) |
O14 | 0.0538 (12) | 0.0281 (8) | 0.0198 (8) | 0.0015 (8) | −0.0169 (8) | −0.0103 (7) |
C15 | 0.0238 (12) | 0.0183 (9) | 0.0152 (9) | 0.0005 (8) | −0.0089 (8) | −0.0019 (8) |
O15 | 0.0179 (9) | 0.0433 (10) | 0.0290 (9) | 0.0048 (7) | −0.0082 (7) | −0.0100 (7) |
Co2 | 0.01267 (13) | 0.01312 (12) | 0.01367 (13) | −0.00069 (10) | −0.00305 (10) | −0.00523 (10) |
C16 | 0.0151 (10) | 0.0245 (10) | 0.0152 (9) | 0.0001 (8) | −0.0015 (8) | −0.0102 (8) |
O16 | 0.0219 (9) | 0.0329 (9) | 0.0241 (8) | −0.0118 (7) | 0.0022 (7) | −0.0117 (7) |
C17 | 0.0194 (11) | 0.0220 (10) | 0.0252 (11) | 0.0015 (8) | −0.0068 (9) | −0.0108 (9) |
O17 | 0.0380 (11) | 0.0400 (10) | 0.0421 (11) | 0.0063 (8) | −0.0098 (8) | −0.0299 (9) |
C18 | 0.0180 (11) | 0.0202 (10) | 0.0251 (11) | 0.0012 (8) | −0.0053 (9) | −0.0114 (8) |
O18 | 0.0359 (10) | 0.0342 (9) | 0.0285 (9) | 0.0105 (7) | −0.0173 (8) | −0.0102 (7) |
Br1—C5 | 1.998 (2) | O3—C9 | 1.338 (2) |
C7—C5 | 1.519 (3) | C9—O4 | 1.202 (2) |
C7—H7A | 0.9800 | C9—C10 | 1.528 (3) |
C7—H7B | 0.9800 | C10—C11 | 1.513 (3) |
C7—H7C | 0.9800 | C10—C12 | 1.513 (3) |
C6—C5 | 1.518 (3) | C10—Br2 | 1.983 (2) |
C6—H6A | 0.9800 | C11—H11A | 0.9800 |
C6—H6B | 0.9800 | C11—H11B | 0.9800 |
C6—H6C | 0.9800 | C11—H11C | 0.9800 |
C5—C4 | 1.524 (3) | C12—H12A | 0.9800 |
C4—O2 | 1.207 (2) | C12—H12B | 0.9800 |
C4—O1 | 1.341 (2) | C12—H12C | 0.9800 |
O1—C3 | 1.452 (2) | Co1—C15 | 1.803 (2) |
C3—C2 | 1.474 (3) | Co1—C14 | 1.819 (2) |
C3—H3A | 0.9900 | Co1—C13 | 1.826 (2) |
C3—H3B | 0.9900 | C13—O13 | 1.135 (2) |
C1—C2 | 1.343 (3) | C14—O14 | 1.136 (3) |
Co1—Co2 | 2.4759 (10) | C15—O15 | 1.128 (3) |
C1—Co1 | 1.960 (2) | Co2—C18 | 1.805 (2) |
C1—Co2 | 1.949 (2) | Co2—C16 | 1.820 (2) |
C2—Co1 | 1.9508 (19) | Co2—C17 | 1.835 (2) |
C2—Co2 | 1.948 (2) | C16—O16 | 1.136 (2) |
C1—C8 | 1.473 (3) | C17—O17 | 1.130 (3) |
C8—O3 | 1.460 (2) | C18—O18 | 1.137 (3) |
C8—H8A | 0.9900 | O1—Br2i | 3.2960 (18) |
C8—H8B | 0.9900 | ||
C5—C7—H7A | 109.5 | C11—C10—C9 | 110.93 (16) |
C5—C7—H7B | 109.5 | C12—C10—C9 | 114.10 (17) |
H7A—C7—H7B | 109.5 | C11—C10—Br2 | 106.58 (14) |
C5—C7—H7C | 109.5 | C12—C10—Br2 | 107.91 (15) |
H7A—C7—H7C | 109.5 | C9—C10—Br2 | 102.33 (13) |
H7B—C7—H7C | 109.5 | C10—C11—H11A | 109.5 |
C5—C6—H6A | 109.5 | C10—C11—H11B | 109.5 |
C5—C6—H6B | 109.5 | H11A—C11—H11B | 109.5 |
H6A—C6—H6B | 109.5 | C10—C11—H11C | 109.5 |
C5—C6—H6C | 109.5 | H11A—C11—H11C | 109.5 |
H6A—C6—H6C | 109.5 | H11B—C11—H11C | 109.5 |
H6B—C6—H6C | 109.5 | C10—C12—H12A | 109.5 |
C6—C5—C7 | 112.32 (17) | C10—C12—H12B | 109.5 |
C6—C5—C4 | 114.29 (16) | H12A—C12—H12B | 109.5 |
C7—C5—C4 | 111.00 (15) | C10—C12—H12C | 109.5 |
C6—C5—Br1 | 107.83 (13) | H12A—C12—H12C | 109.5 |
C7—C5—Br1 | 108.67 (14) | H12B—C12—H12C | 109.5 |
C4—C5—Br1 | 102.04 (13) | C15—Co1—C14 | 97.61 (10) |
O2—C4—O1 | 124.07 (18) | C15—Co1—C13 | 103.39 (10) |
O2—C4—C5 | 124.81 (17) | C14—Co1—C13 | 106.12 (9) |
O1—C4—C5 | 111.12 (15) | C15—Co1—C2 | 96.50 (8) |
C4—O1—C3 | 115.91 (14) | C14—Co1—C2 | 105.58 (9) |
C4—O1—Br2i | 78.24 (11) | C13—Co1—C2 | 139.62 (9) |
C3—O1—Br2i | 91.57 (10) | C15—Co1—C1 | 102.92 (9) |
O1—C3—C2 | 107.52 (15) | C14—Co1—C1 | 141.32 (9) |
O1—C3—H3A | 110.2 | C13—Co1—C1 | 100.56 (9) |
C2—C3—H3A | 110.2 | C2—Co1—C1 | 40.16 (8) |
O1—C3—H3B | 110.2 | C15—Co1—Co2 | 146.69 (6) |
C2—C3—H3B | 110.2 | C14—Co1—Co2 | 96.39 (7) |
H3A—C3—H3B | 108.5 | C13—Co1—Co2 | 101.48 (8) |
C1—C2—C3 | 140.49 (18) | C2—Co1—Co2 | 50.52 (6) |
C1—C2—Co2 | 69.89 (11) | C1—Co1—Co2 | 50.50 (6) |
C3—C2—Co2 | 135.87 (14) | O13—C13—Co1 | 177.5 (2) |
C1—C2—Co1 | 70.29 (11) | O14—C14—Co1 | 178.14 (18) |
C3—C2—Co1 | 133.59 (14) | O15—C15—Co1 | 175.85 (19) |
Co2—C2—Co1 | 78.85 (7) | C18—Co2—C16 | 100.32 (10) |
C2—C1—C8 | 139.74 (17) | C18—Co2—C17 | 100.21 (10) |
C2—C1—Co2 | 69.80 (12) | C16—Co2—C17 | 104.28 (10) |
C8—C1—Co2 | 134.45 (14) | C18—Co2—C2 | 99.95 (9) |
C2—C1—Co1 | 69.55 (11) | C16—Co2—C2 | 140.82 (9) |
C8—C1—Co1 | 136.33 (14) | C17—Co2—C2 | 104.64 (9) |
Co2—C1—Co1 | 78.60 (8) | C18—Co2—C1 | 98.17 (9) |
O3—C8—C1 | 108.09 (15) | C16—Co2—C1 | 103.58 (9) |
O3—C8—H8A | 110.1 | C17—Co2—C1 | 143.05 (9) |
C1—C8—H8A | 110.1 | C2—Co2—C1 | 40.31 (8) |
O3—C8—H8B | 110.1 | C18—Co2—Co1 | 147.24 (7) |
C1—C8—H8B | 110.1 | C16—Co2—Co1 | 97.95 (8) |
H8A—C8—H8B | 108.4 | C17—Co2—Co1 | 101.33 (7) |
C9—O3—C8 | 115.40 (14) | C2—Co2—Co1 | 50.63 (6) |
O4—C9—O3 | 123.67 (18) | C1—Co2—Co1 | 50.90 (6) |
O4—C9—C10 | 124.03 (18) | O16—C16—Co2 | 177.62 (19) |
O3—C9—C10 | 112.30 (16) | O17—C17—Co2 | 179.3 (2) |
C11—C10—C12 | 113.98 (19) | O18—C18—Co2 | 177.7 (2) |
C6—C5—C4—O2 | 151.45 (19) | Co1—C2—C1—C8 | −139.0 (3) |
C7—C5—C4—O2 | 23.2 (3) | C3—C2—C1—Co2 | −139.2 (3) |
Br1—C5—C4—O2 | −92.5 (2) | Co1—C2—C1—Co2 | 84.98 (6) |
C6—C5—C4—O1 | −28.7 (2) | C3—C2—C1—Co1 | 135.8 (3) |
C7—C5—C4—O1 | −156.98 (16) | Co2—C2—C1—Co1 | −84.98 (6) |
Br1—C5—C4—O1 | 87.39 (16) | C2—C1—C8—O3 | −174.7 (2) |
O2—C4—O1—C3 | 2.0 (3) | Co2—C1—C8—O3 | −60.5 (2) |
C5—C4—O1—C3 | −177.82 (15) | Co1—C1—C8—O3 | 68.3 (2) |
O2—C4—O1—Br2i | −83.95 (19) | C1—C8—O3—C9 | 172.04 (16) |
C5—C4—O1—Br2i | 96.19 (14) | C8—O3—C9—O4 | 0.2 (3) |
C4—O1—C3—C2 | −177.40 (15) | C8—O3—C9—C10 | −178.94 (15) |
Br2i—O1—C3—C2 | −99.72 (14) | O4—C9—C10—C11 | −26.6 (3) |
O1—C3—C2—C1 | −173.2 (2) | O3—C9—C10—C11 | 152.47 (17) |
O1—C3—C2—Co2 | 68.6 (2) | O4—C9—C10—C12 | −157.0 (2) |
O1—C3—C2—Co1 | −58.2 (2) | O3—C9—C10—C12 | 22.1 (2) |
C3—C2—C1—C8 | −3.2 (5) | O4—C9—C10—Br2 | 86.7 (2) |
Co2—C2—C1—C8 | 136.1 (3) | O3—C9—C10—Br2 | −94.18 (16) |
Symmetry code: (i) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12C···Br1ii | 0.98 | 2.99 | 3.961 (3) | 170 |
C6—H6A···Br2i | 0.98 | 3.01 | 3.788 (2) | 137 |
C8—H8B···O4iii | 0.99 | 2.45 | 3.411 (3) | 165 |
C3—H3B···O2iv | 0.99 | 2.58 | 3.341 (3) | 133 |
C8—H8A···O2iv | 0.99 | 2.64 | 3.454 (3) | 139 |
Symmetry codes: (i) x, y+1, z; (ii) x−1, y−1, z; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Arewgoda, C. M., Robinson, B. H. & Simpson, J. (1983). J. Am. Chem. Soc. 105, 1893–1903. CSD CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547–559. Web of Science CrossRef CAS Google Scholar
Dickson, R. S. & Fraser, P. J. (1974). Adv. Organomet. Chem. 12, 323–377. CAS Google Scholar
Hoffmann, R. (1982). Angew. Chem. Int. Ed. Engl. 21, 711–724. CrossRef Web of Science Google Scholar
Hore, L.-A., McAdam, C. J., Kerr, J. L., Duffy, N. W., Robinson, B. H. & Simpson, J. (2000). Organometallics, 19, 5039–5048. Web of Science CSD CrossRef CAS Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Laurent, B. A. & Grayson, S. M. (2006). J. Am. Chem. Soc. 128, 4238–4239. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McAdam, C. J., Duffy, N. W., Robinson, B. H. & Simpson, J. (1996). Organometallics, 15, 3935–3943. CSD CrossRef CAS Web of Science Google Scholar
McAdam, C. J., Moratti, S. C., Robinson, B. H. & Simpson, J. (2008). J. Organomet. Chem. 693, 2715–2722. Web of Science CSD CrossRef CAS Google Scholar
Melikyan, G. G., Rivas, B., Harutyunyan, S., Carlson, L. & Sepanian, R. (2012). Organometallics, 31, 1653–1663. Web of Science CSD CrossRef CAS Google Scholar
Robinson, B. H. & Simpson, J. (1989). Paramagnetic Organometallic Species in Activation, Selectivity and Catalysis, edited by M. Chanon, M. Julliard & J. C. Poite, pp. 357–374. Dordrecht: Kluwer. Google Scholar
Salmain, M. & Jaouen, G. (1993). J. Organomet. Chem. 445, 237–243. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sly, W. G. (1959). J. Am. Chem. Soc. 81, 18–20. CSD CrossRef CAS Web of Science Google Scholar
Soleilhavoup, M., Saccavini, C., Lepetit, C., Lavigne, G., Maurette, L., Donnadieu, B. & Chauvin, R. (2002). Organometallics, 21, 871–883. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sternberg, H. W., Greenfield, H., Friedel, R. A., Wotiz, J., Markby, R. & Wender, I. (1954). J. Am. Chem. Soc. 76, 1457–1458. CrossRef CAS Web of Science Google Scholar
Wang, J.-S. & Matyjaszewski, K. (1995). Macromolecules, 28, 7901–7910. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Windler, G. K., Zhang, M.-Z., Zitterbart, R., Pagoria, P. F. & Vollhardt, K. P. C. (2012). Chem. Eur. J. 18, 6588–6603. Web of Science CSD CrossRef CAS PubMed Google Scholar
Xie, R.-J., Han, L.-M., Zhu, N., Hong, H.-L., Suo, Q.-L. & Fu, P. (2012). Polyhedron, 38, 7–14. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.