organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4,6-Tri­amino-N-phenyl­thieno[2,3-b]pyridine-2-carboxamide

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 27 May 2014; accepted 14 June 2014; online 25 June 2014)

In the title compound, C14H13N5OS, the dihedral angle between the fused ring system (r.m.s. deviation = 0.028 Å) and the phenyl ring is 48.24 (4)°. The mol­ecule features both an intra­molecular N—H⋯O and an N—H⋯N hydrogen bond. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, generating a three-dimensional network. A weak N—H⋯π inter­action is also observed.

Keywords: crystal structure.

Related literature

For background to thieno­pyridine-containing compounds, see: Boschelli et al. (2008[Boschelli, D. H., Wu, B., Barrios, S. A. C., Chen, J., Asselin, M., Cole, D. C., Lee, J., Yang, X. & Chaudhary, D. (2008). Bioorg. Med. Chem. Lett. 18, 2850-2853.]); Bakhite et al. (2002[Bakhite, E. A., Abdel-Rahman, A. E., Mohamed, O. S. & Thabet, E. A. (2002). Bull. Korean Chem. Soc. 23, 1709-1714.]); Schnute et al. (2007[Schnute, M. E., Anderson, D. J., Brideau, R. J., Ciske, F. L. & Collier, S. A. (2007). Bioorg. Med. Chem. Lett. 17, 3349-3353.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N5OS

  • Mr = 299.36

  • Monoclinic, P 21 /n

  • a = 5.2732 (7) Å

  • b = 21.028 (3) Å

  • c = 11.9777 (16) Å

  • β = 93.969 (2)°

  • V = 1325.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 K

  • 0.21 × 0.13 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.98

  • 24103 measured reflections

  • 3500 independent reflections

  • 3017 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.06

  • 3500 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9–C14 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N4i 0.91 2.52 3.2226 (17) 134
N3—H3A⋯N1ii 0.91 2.07 2.9398 (17) 161
N3—H3B⋯N4 0.91 2.38 2.9802 (17) 124
N3—H3B⋯N2iii 0.91 2.41 3.2034 (16) 146
N4—H4B⋯O1 0.91 2.15 2.8387 (16) 132
N4—H4B⋯O1iv 0.91 2.32 2.9991 (16) 132
N2—H2BCg3v 0.91 2.56 3.4662 (14) 173
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thienopyridines and their analogs are an interesting class of molecules due to their extensive spectrum of pharmacological properties, for example anti-inflammatory (Boschelli et al., 2008), anti-microbial (Bakhite et al., 2002) and anti-viral (Schnute et al., 2007) activities. As part of our program in the development of new heterocyclic molecules with potential bioactivities, we report in this study the synthesis and crystal structure determination of the title compound.

In the title compound, the fused ring system is nearly planar with an r.m.s. deviation of 0.028 Å and makes a dihedral angle of 48.24 (4)° with the terminal phenyl group. The conformation of the carboxamide group is partially determined by the intramolecular N4—H4B···O1 hydrogen bond (Fig. 1 and Table 1). In the solid, the molecules associate through pairwise intermolecular N4—H4B···O1 and single N3—H3a···N1 hydrogen bonds to form a three-dimensional network (Figs. 2 and 3 and Table 1). A weak N—H···π interaction is observed between the NH2 group (N2—H2B) and the centroid of the C9–C14 phenyl ring.

Related literature top

For background to thienopyridine-containing compounds, see: Boschelli et al. (2008); Bakhite et al. (2002); Schnute et al. (2007).

Experimental top

A mixture of 2.7 mmol (500 mg) of 4,6-diamino-2-mercaptonicotinonitrile, 2.7 mmol (150 mg) potassium hydroxide and 1.86 mmol (320 mg) in 30 ml e thanol was stirred and refluxed for 3 h. The excess solvent was evaporated under vacuum and the resulting solid product was filtered off, washed with cold ethanol and recrystallized from ethanol to furnish colourless crystals (730 mg; 87% yield). Mp. 531 – 533 K.

IR (νmax, cm-1): 3462, 3402, 3352, (3NH2), 3213 (NH), 1645 (C=O), 1614 (C=N); 1HNMR (DMSO-d6), δ, p.p.m.: 8.88 (s, 1H, NH exchanged by D2O), 7.65–7.63 (d, J = 8 Hz, 2H, arom), 7.29–7.25 (t, J = 8 Hz, 2H, arom), 7.02–6.99 (m,, 3H, arom+ NH2 exchanged by D2O), 6.11 (s, 2H, NH2 exchanged by D2O), 6.02 (s, 2H, NH2 exchanged by D2O), 5.59 (s, 1H, CH pyridyl).

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to nitrogen were placed in locations derived from a difference map and their coordinates adjusted to give N—H = 0.91 Å following an initial round of refinement to check the validity of the peak assignments. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Structure description top

Thienopyridines and their analogs are an interesting class of molecules due to their extensive spectrum of pharmacological properties, for example anti-inflammatory (Boschelli et al., 2008), anti-microbial (Bakhite et al., 2002) and anti-viral (Schnute et al., 2007) activities. As part of our program in the development of new heterocyclic molecules with potential bioactivities, we report in this study the synthesis and crystal structure determination of the title compound.

In the title compound, the fused ring system is nearly planar with an r.m.s. deviation of 0.028 Å and makes a dihedral angle of 48.24 (4)° with the terminal phenyl group. The conformation of the carboxamide group is partially determined by the intramolecular N4—H4B···O1 hydrogen bond (Fig. 1 and Table 1). In the solid, the molecules associate through pairwise intermolecular N4—H4B···O1 and single N3—H3a···N1 hydrogen bonds to form a three-dimensional network (Figs. 2 and 3 and Table 1). A weak N—H···π interaction is observed between the NH2 group (N2—H2B) and the centroid of the C9–C14 phenyl ring.

For background to thienopyridine-containing compounds, see: Boschelli et al. (2008); Bakhite et al. (2002); Schnute et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Bruker, 2013); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with 50% probability ellipsoids and with intramolecular hydrogen bonds shown as dotted lines.
[Figure 2] Fig. 2. Packing viewed down the a axis showing a portion of the zigzag sheet with the intermolecular hydrogen bonds depicted by dotted lines.
[Figure 3] Fig. 3. Packing viewed parallel to (101).
3,4,6-Triamino-N-phenylthieno[2,3-b]pyridine-2-carboxamide top
Crystal data top
C14H13N5OSF(000) = 624
Mr = 299.36Dx = 1.501 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9996 reflections
a = 5.2732 (7) Åθ = 2.6–29.1°
b = 21.028 (3) ŵ = 0.25 mm1
c = 11.9777 (16) ÅT = 150 K
β = 93.969 (2)°Block, colourless
V = 1325.0 (3) Å30.21 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3500 independent reflections
Radiation source: fine-focus sealed tube3017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.3660 pixels mm-1θmax = 29.1°, θmin = 1.9°
φ and ω scansh = 67
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 2828
Tmin = 0.85, Tmax = 0.98l = 1616
24103 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.5972P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3500 reflectionsΔρmax = 0.42 e Å3
190 parametersΔρmin = 0.25 e Å3
Crystal data top
C14H13N5OSV = 1325.0 (3) Å3
Mr = 299.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.2732 (7) ŵ = 0.25 mm1
b = 21.028 (3) ÅT = 150 K
c = 11.9777 (16) Å0.21 × 0.13 × 0.09 mm
β = 93.969 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3500 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3017 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.98Rint = 0.046
24103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
3500 reflectionsΔρmin = 0.25 e Å3
190 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.40493 (6)0.35471 (2)0.83539 (3)0.0168 (1)
O10.6615 (2)0.47538 (5)0.61593 (8)0.0249 (3)
N10.0339 (2)0.26672 (5)0.82888 (9)0.0169 (3)
N20.2636 (2)0.18599 (6)0.82055 (10)0.0230 (3)
N30.1968 (2)0.31627 (6)0.49527 (10)0.0220 (3)
N40.2168 (2)0.41258 (6)0.52579 (9)0.0209 (3)
N50.7313 (2)0.47187 (6)0.80636 (10)0.0196 (3)
C10.1541 (3)0.23617 (6)0.76882 (11)0.0168 (3)
C20.2385 (3)0.25273 (6)0.65898 (11)0.0170 (3)
C30.1212 (3)0.30131 (6)0.60362 (11)0.0161 (3)
C40.0807 (2)0.33451 (6)0.66470 (10)0.0150 (3)
C50.1430 (2)0.31391 (6)0.77427 (10)0.0149 (3)
C60.2455 (3)0.38441 (6)0.63091 (11)0.0157 (3)
C70.4308 (3)0.40001 (6)0.71359 (10)0.0163 (3)
C80.6148 (3)0.45111 (6)0.70611 (11)0.0172 (3)
C90.9058 (3)0.52266 (6)0.82104 (11)0.0178 (3)
C101.0866 (3)0.53587 (7)0.74444 (12)0.0199 (4)
C111.2629 (3)0.58416 (7)0.76735 (14)0.0245 (4)
C121.2616 (3)0.61978 (7)0.86512 (14)0.0261 (4)
C131.0791 (3)0.60708 (7)0.94063 (13)0.0236 (4)
C140.9013 (3)0.55895 (7)0.91876 (12)0.0207 (4)
H20.377100.230500.622200.0200*
H2A0.177400.169400.882300.0280*
H2B0.360300.158200.777900.0280*
H3A0.290500.285600.458100.0260*
H3B0.072700.333300.455300.0260*
H4A0.052800.423700.506700.0250*
H4B0.334100.443200.514300.0250*
H5A0.663400.458400.870100.0230*
H101.089300.512000.677100.0240*
H111.386200.593000.715300.0290*
H121.383900.652400.880200.0310*
H131.075800.631401.007400.0280*
H140.776500.550700.970400.0250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0174 (2)0.0186 (2)0.0138 (2)0.0032 (1)0.0034 (1)0.0018 (1)
O10.0273 (6)0.0270 (5)0.0196 (5)0.0099 (4)0.0033 (4)0.0059 (4)
N10.0165 (6)0.0174 (5)0.0167 (5)0.0011 (4)0.0000 (4)0.0018 (4)
N20.0234 (6)0.0229 (6)0.0223 (6)0.0066 (5)0.0008 (5)0.0051 (5)
N30.0243 (6)0.0263 (6)0.0147 (5)0.0084 (5)0.0037 (4)0.0006 (5)
N40.0256 (6)0.0215 (6)0.0151 (5)0.0059 (5)0.0027 (5)0.0044 (4)
N50.0211 (6)0.0193 (6)0.0180 (5)0.0064 (4)0.0012 (4)0.0003 (4)
C10.0152 (6)0.0166 (6)0.0187 (6)0.0005 (5)0.0028 (5)0.0001 (5)
C20.0155 (6)0.0177 (6)0.0175 (6)0.0021 (5)0.0001 (5)0.0016 (5)
C30.0162 (6)0.0173 (6)0.0145 (6)0.0001 (5)0.0003 (5)0.0015 (5)
C40.0168 (6)0.0149 (6)0.0131 (6)0.0007 (5)0.0006 (5)0.0002 (4)
C50.0141 (6)0.0156 (6)0.0145 (6)0.0001 (4)0.0016 (5)0.0011 (4)
C60.0178 (6)0.0151 (6)0.0140 (5)0.0009 (5)0.0003 (5)0.0005 (4)
C70.0181 (6)0.0163 (6)0.0142 (6)0.0020 (5)0.0004 (5)0.0019 (5)
C80.0160 (6)0.0165 (6)0.0188 (6)0.0012 (5)0.0018 (5)0.0004 (5)
C90.0162 (6)0.0147 (6)0.0218 (6)0.0004 (5)0.0044 (5)0.0019 (5)
C100.0169 (6)0.0184 (6)0.0242 (7)0.0010 (5)0.0008 (5)0.0001 (5)
C110.0158 (7)0.0237 (7)0.0338 (8)0.0020 (5)0.0003 (6)0.0045 (6)
C120.0206 (7)0.0187 (7)0.0375 (8)0.0043 (5)0.0079 (6)0.0019 (6)
C130.0246 (7)0.0184 (7)0.0264 (7)0.0003 (5)0.0081 (6)0.0020 (5)
C140.0201 (7)0.0200 (6)0.0214 (6)0.0009 (5)0.0030 (5)0.0000 (5)
Geometric parameters (Å, º) top
S1—C51.7435 (12)C2—C31.3866 (19)
S1—C71.7555 (13)C3—C41.4312 (19)
O1—C81.2348 (17)C4—C61.4383 (18)
N1—C11.3470 (18)C4—C51.3994 (17)
N1—C51.3400 (16)C6—C71.382 (2)
N2—C11.3712 (18)C7—C81.455 (2)
N3—C31.3677 (18)C9—C101.396 (2)
N4—C61.3902 (17)C9—C141.399 (2)
N5—C81.3812 (18)C10—C111.391 (2)
N5—C91.4128 (18)C11—C121.391 (2)
N2—H2B0.9100C12—C131.391 (2)
N2—H2A0.9100C13—C141.392 (2)
N3—H3B0.9100C2—H20.9500
N3—H3A0.9100C10—H100.9500
N4—H4A0.9100C11—H110.9500
N4—H4B0.9100C12—H120.9500
N5—H5A0.9100C13—H130.9500
C1—C21.4033 (19)C14—H140.9500
C5—S1—C791.32 (6)N4—C6—C7125.12 (13)
C1—N1—C5114.68 (11)C4—C6—C7112.50 (11)
C8—N5—C9126.43 (12)C6—C7—C8124.95 (12)
C1—N2—H2B119.00S1—C7—C6112.03 (10)
H2A—N2—H2B116.00S1—C7—C8122.86 (10)
C1—N2—H2A117.00O1—C8—N5121.75 (13)
C3—N3—H3B115.00O1—C8—C7122.24 (12)
H3A—N3—H3B114.00N5—C8—C7116.00 (11)
C3—N3—H3A114.00C10—C9—C14119.56 (13)
C6—N4—H4B114.00N5—C9—C10122.49 (12)
H4A—N4—H4B115.00N5—C9—C14117.90 (13)
C6—N4—H4A112.00C9—C10—C11119.54 (13)
C9—N5—H5A115.00C10—C11—C12121.14 (15)
C8—N5—H5A117.00C11—C12—C13119.21 (14)
N1—C1—C2123.80 (12)C12—C13—C14120.29 (14)
N2—C1—C2119.90 (13)C9—C14—C13120.26 (14)
N1—C1—N2116.30 (12)C1—C2—H2120.00
C1—C2—C3120.54 (13)C3—C2—H2120.00
N3—C3—C4122.04 (12)C9—C10—H10120.00
N3—C3—C2120.86 (13)C11—C10—H10120.00
C2—C3—C4117.10 (12)C10—C11—H11119.00
C5—C4—C6112.49 (11)C12—C11—H11119.00
C3—C4—C6130.89 (12)C11—C12—H12120.00
C3—C4—C5116.52 (11)C13—C12—H12120.00
S1—C5—C4111.67 (9)C12—C13—H13120.00
N1—C5—C4127.31 (11)C14—C13—H13120.00
S1—C5—N1120.92 (9)C9—C14—H14120.00
N4—C6—C4122.39 (12)C13—C14—H14120.00
C7—S1—C5—N1176.86 (11)C6—C4—C5—S10.75 (14)
C7—S1—C5—C40.24 (10)C6—C4—C5—N1177.10 (12)
C5—S1—C7—C60.35 (11)C3—C4—C6—N44.6 (2)
C5—S1—C7—C8175.81 (12)C3—C4—C6—C7175.08 (13)
C5—N1—C1—N2177.57 (11)C5—C4—C6—N4179.26 (12)
C5—N1—C1—C21.99 (19)C5—C4—C6—C71.02 (16)
C1—N1—C5—S1175.21 (10)N4—C6—C7—S1179.46 (11)
C1—N1—C5—C40.84 (18)N4—C6—C7—C84.1 (2)
C9—N5—C8—O12.2 (2)C4—C6—C7—S10.83 (15)
C9—N5—C8—C7176.62 (13)C4—C6—C7—C8176.18 (13)
C8—N5—C9—C1036.6 (2)S1—C7—C8—O1167.43 (11)
C8—N5—C9—C14146.03 (14)S1—C7—C8—N513.78 (18)
N1—C1—C2—C32.8 (2)C6—C7—C8—O117.7 (2)
N2—C1—C2—C3176.78 (13)C6—C7—C8—N5161.09 (14)
C1—C2—C3—N3177.76 (13)N5—C9—C10—C11176.08 (14)
C1—C2—C3—C42.1 (2)C14—C9—C10—C111.2 (2)
N3—C3—C4—C5178.88 (12)N5—C9—C14—C13176.12 (13)
N3—C3—C4—C62.9 (2)C10—C9—C14—C131.3 (2)
C2—C3—C4—C51.00 (18)C9—C10—C11—C120.3 (2)
C2—C3—C4—C6176.98 (14)C10—C11—C12—C130.6 (2)
C3—C4—C5—S1175.96 (9)C11—C12—C13—C140.5 (2)
C3—C4—C5—N10.39 (19)C12—C13—C14—C90.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.912.523.2226 (17)134
N3—H3A···N1ii0.912.072.9398 (17)161
N3—H3B···N40.912.382.9802 (17)124
N3—H3B···N2iii0.912.413.2034 (16)146
N4—H4B···O10.912.152.8387 (16)132
N4—H4B···O1iv0.912.322.9991 (16)132
N2—H2B···Cg3v0.912.563.4662 (14)173
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9–C14 phenyl ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.912.523.2226 (17)134
N3—H3A···N1ii0.912.072.9398 (17)161
N3—H3B···N40.912.382.9802 (17)124
N3—H3B···N2iii0.912.413.2034 (16)146
N4—H4B···O10.912.152.8387 (16)132
N4—H4B···O1iv0.912.322.9991 (16)132
N2—H2B···Cg3v0.912.563.4662 (14)173
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x+1/2, y1/2, z+3/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBakhite, E. A., Abdel-Rahman, A. E., Mohamed, O. S. & Thabet, E. A. (2002). Bull. Korean Chem. Soc. 23, 1709–1714.  CAS Google Scholar
First citationBoschelli, D. H., Wu, B., Barrios, S. A. C., Chen, J., Asselin, M., Cole, D. C., Lee, J., Yang, X. & Chaudhary, D. (2008). Bioorg. Med. Chem. Lett. 18, 2850–2853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSchnute, M. E., Anderson, D. J., Brideau, R. J., Ciske, F. L. & Collier, S. A. (2007). Bioorg. Med. Chem. Lett. 17, 3349–3353.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds