metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido­(5,10,15,20-tetra­phenyl­porphyrinato-κ4N)anti­mony(V) hexa­chlorido­anti­monate(V)

aLaboratoire de Physico-Chimie des Matériaux, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bSpectropole, Université d'Aix-Marseille, Faculté des Science, St-Jérôme, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
*Correspondence e-mail: salah_belkiria@yahoo.com

(Received 5 April 2014; accepted 30 May 2014; online 11 June 2014)

The asymmetric unit of the title compound, [Sb(C44H28N4)Cl2][SbCl6], consists of one half of an anti­mony(V) tetra­phenyl­porphyrin complex cation and one half of an hexa­chlorido­anti­monate(V) anion. In the complex cation, the SbV atom lies on an inversion center and is octa­hedrally coordinated by four N atoms from a macrocyclic tetra­phenyl­porphyrinate ligand and two chloride ions. The complex cation has approximately a planar core with a maximum deviation of 0.018 (5) Å from the porphyrin mean plane. The average Sb—N distance is 2.062 (11) Å, while the Sb—Cl distance is 2.355 (1) Å. The SbV atom of the anion is also located on an inversion center. The [SbCl6] octa­hedron exhibits rhombic distortion characterized by the Sb—Cl bond lengths [2.311 (3), 2.374 (2) and 2.393 (4) Å]. In the crystal, the cations and anions are linked C—H⋯ Cl hydrogen bonds, forming a layer parallel to (211).

Related literature

For general background and the synthesis, see: Liu et al. (1996[Liu, I.-C., Chen, J.-H., Wang, S.-S. & Wang, J.-C. (1996). Polyhedron, 15, 3947-3954.]). For related structures, see: Tsunami et al. (2008[Tsunami, S.-I., Tanaka, K., Matsumoto, J., Shiragami, T. & Yasuda, M. (2008). Bull. Chem. Soc. Jpn, 81, 583-589.]); Soury et al. (2012[Soury, R., Belkhiria, M. S., Nasri, H. & Parvez, M. (2012). Acta Cryst. E68, m717-m718.]).

[Scheme 1]

Experimental

Crystal data
  • [Sb(C44H28N4)Cl2][SbCl6]

  • Mr = 1139.80

  • Triclinic, [P \overline 1]

  • a = 10.2044 (4) Å

  • b = 11.1242 (4) Å

  • c = 11.3901 (4) Å

  • α = 70.685 (2)°

  • β = 83.398 (2)°

  • γ = 63.050 (3)°

  • V = 1086.73 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.77 mm−1

  • T = 223 K

  • 0.2 × 0.16 × 0.12 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.723, Tmax = 0.773

  • 19871 measured reflections

  • 4749 independent reflections

  • 4433 reflections with I > 2σ(I)

  • Rint = 0.124

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.173

  • S = 1.13

  • 4749 reflections

  • 266 parameters

  • H-atom parameters constrained

  • Δρmax = 2.55 e Å−3

  • Δρmin = −1.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl3i 0.94 2.76 3.490 (8) 135
C8—H8⋯Cl4 0.94 2.74 3.593 (8) 151
C12—H12⋯Cl3ii 0.94 2.69 3.539 (8) 151
Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y, z-1.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our continuing studies of antimony porphyrin complexes (Soury et al., 2012), we report here the synthesis and crystal structure of the tiltle compound [Sb(tpp)Cl2][SbCl6] which appears to be the eleventh X-ray structure of an antimony porphyrin complex in the literature.

The molecular structures of the antimony(V) porphyrin cation [Sb(tpp)Cl2]+ and the hexachloridoantimonate(V) [SbCl6]- anion of the title compound are given in Figure 1. The Sb atom of the porphyrin complex lies on an inversion center and at the same time in the porphyrin mean plane (C24N4). The average Sb—N distance and the Sb—Cl distance values, respectively equal to 2.062 (4) Å and 2.355 (1) Å, agree very well with those reported in literature (Liu et al., 1996; Tsunami et al., 2008). The Sb atom of the counter-anion is located on an inversion center and has a rhombic distorted octahedral environment with three values of Sb—Cl bond lengths [2.311 (3), 2.374 (2) and 2.393 (4) Å]. Such bond distances are comparable to those observed for similar porphyrin complexes (Soury et al., 2012). The cohesion of the structure is ensured by C—H··· Cl hydrogen bond interactions (Table 1). The crystal packing of compound [Sb(tpp)Cl2][SbCl6] is presented in Figure 2.

Related literature top

For general background and the synthesis, see: Liu et al. (1996). For related structures, see: Tsunami et al. (2008); Soury et al. (2012).

Experimental top

The title compound [Sb(tpp)Cl2][SbCl6] synthesis was performed under argon atmosphere. SbCl5 (3–4 cm3) was added to a solution of tetraphenylporphyrin (H2tpp) (500 mg, 0.814 mmol) in pyridine (25 cm3) and the resulting mixture was refluxed for 1 h. After removing pyridine and excess antimony pentachloride by rotary evaporation, the purple solid obtained was dissolved in dichloromethane and chromatographed on silica gel 60 (100 g, neutral, activity I). The reaction mixture was firstly eluted with CH2C12 to eliminate any free H2tpp present and then the title compound was eluted as a purple band using CH2C12-methanol (2%). Single red crystals of the title complex, suitable for X-ray diffraction, have been obtained by diffusion of hexanes in dichloromethane solution.

Refinement top

All H atoms were refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

As part of our continuing studies of antimony porphyrin complexes (Soury et al., 2012), we report here the synthesis and crystal structure of the tiltle compound [Sb(tpp)Cl2][SbCl6] which appears to be the eleventh X-ray structure of an antimony porphyrin complex in the literature.

The molecular structures of the antimony(V) porphyrin cation [Sb(tpp)Cl2]+ and the hexachloridoantimonate(V) [SbCl6]- anion of the title compound are given in Figure 1. The Sb atom of the porphyrin complex lies on an inversion center and at the same time in the porphyrin mean plane (C24N4). The average Sb—N distance and the Sb—Cl distance values, respectively equal to 2.062 (4) Å and 2.355 (1) Å, agree very well with those reported in literature (Liu et al., 1996; Tsunami et al., 2008). The Sb atom of the counter-anion is located on an inversion center and has a rhombic distorted octahedral environment with three values of Sb—Cl bond lengths [2.311 (3), 2.374 (2) and 2.393 (4) Å]. Such bond distances are comparable to those observed for similar porphyrin complexes (Soury et al., 2012). The cohesion of the structure is ensured by C—H··· Cl hydrogen bond interactions (Table 1). The crystal packing of compound [Sb(tpp)Cl2][SbCl6] is presented in Figure 2.

For general background and the synthesis, see: Liu et al. (1996). For related structures, see: Tsunami et al. (2008); Soury et al. (2012).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound viewed along the b axis.
Dichlorido(5,10,15,20-tetraphenylporphyrinato-κ4N)antimony(V) hexachloridoantimonate(V) top
Crystal data top
[Sb(C44H28N4)Cl2][SbCl6]Z = 1
Mr = 1139.80F(000) = 558
Triclinic, P1Dx = 1.742 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2044 (4) ÅCell parameters from 22201 reflections
b = 11.1242 (4) Åθ = 1.9–30.1°
c = 11.3901 (4) ŵ = 1.77 mm1
α = 70.685 (2)°T = 223 K
β = 83.398 (2)°Prism, red
γ = 63.050 (3)°0.2 × 0.16 × 0.12 mm
V = 1086.73 (7) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4749 independent reflections
Radiation source: fine-focus sealed tube4433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
φ & ω scansθmax = 27.1°, θmin = 1.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1313
Tmin = 0.723, Tmax = 0.773k = 1414
19871 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.0507P)2 + 7.0167P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
4749 reflectionsΔρmax = 2.55 e Å3
266 parametersΔρmin = 1.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (4)
Crystal data top
[Sb(C44H28N4)Cl2][SbCl6]γ = 63.050 (3)°
Mr = 1139.80V = 1086.73 (7) Å3
Triclinic, P1Z = 1
a = 10.2044 (4) ÅMo Kα radiation
b = 11.1242 (4) ŵ = 1.77 mm1
c = 11.3901 (4) ÅT = 223 K
α = 70.685 (2)°0.2 × 0.16 × 0.12 mm
β = 83.398 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4749 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4433 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.773Rint = 0.124
19871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.13Δρmax = 2.55 e Å3
4749 reflectionsΔρmin = 1.45 e Å3
266 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.50000.00000.50000.0226 (2)
N10.4725 (5)0.1913 (5)0.3693 (4)0.0259 (9)
N20.3841 (5)0.1056 (5)0.6238 (4)0.0261 (9)
Cl10.28107 (16)0.02557 (17)0.42325 (15)0.0368 (4)
C10.5256 (6)0.2093 (6)0.2499 (5)0.0278 (11)
C20.4834 (7)0.3574 (7)0.1912 (6)0.0358 (13)
H20.50470.39940.10980.043*
C30.4073 (7)0.4267 (6)0.2732 (5)0.0317 (12)
H30.36690.52510.25890.038*
C40.3993 (6)0.3234 (6)0.3857 (5)0.0270 (11)
C50.3287 (6)0.3531 (5)0.4932 (5)0.0265 (11)
C60.3224 (6)0.2509 (6)0.6023 (5)0.0273 (11)
C70.2497 (6)0.2797 (6)0.7118 (6)0.0312 (12)
H70.19870.36960.72290.037*
C80.2678 (7)0.1537 (7)0.7969 (6)0.0341 (13)
H80.23100.14160.87740.041*
C90.3518 (7)0.0429 (6)0.7440 (5)0.0292 (11)
C100.3941 (6)0.1013 (6)0.8037 (5)0.0286 (11)
C110.2526 (6)0.5050 (6)0.4938 (5)0.0287 (11)
C120.1165 (7)0.5944 (6)0.4362 (6)0.0322 (12)
H120.07450.56360.38990.039*
C130.0393 (7)0.7315 (7)0.4458 (7)0.0396 (14)
H130.05490.79460.40820.047*
C140.1080 (8)0.7667 (9)0.5117 (6)0.0467 (17)
H140.05660.85830.51920.056*
C150.2426 (8)0.6865 (7)0.5688 (8)0.0437 (16)
H150.28410.72120.61140.052*
C160.3165 (8)0.5489 (7)0.5611 (7)0.0427 (15)
H160.40930.48650.60150.051*
C170.3501 (6)0.1422 (6)0.9394 (6)0.0314 (12)
C180.2256 (10)0.1633 (11)0.9654 (7)0.059 (2)
H180.17460.16510.90280.070*
C190.1769 (11)0.1821 (12)1.0868 (8)0.070 (3)
H190.09110.19491.10670.084*
C200.2564 (10)0.1816 (8)1.1781 (7)0.054 (2)
H200.22310.19221.25960.064*
C210.3802 (12)0.1662 (12)1.1503 (7)0.068 (3)
H210.43480.16981.21360.081*
C220.4296 (10)0.1447 (11)1.0289 (7)0.054 (2)
H220.51560.13231.00960.065*
Sb20.00000.50001.00000.0698 (4)
Cl20.2299 (3)0.5140 (4)1.0805 (3)0.0961 (11)
Cl30.0724 (3)0.4837 (5)1.1918 (3)0.1218 (17)
Cl40.0999 (5)0.2463 (5)1.0692 (4)0.1156 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0246 (3)0.0192 (3)0.0262 (3)0.0102 (2)0.00596 (18)0.01060 (19)
N10.031 (2)0.020 (2)0.029 (2)0.0120 (19)0.0057 (18)0.0106 (17)
N20.030 (2)0.021 (2)0.028 (2)0.0111 (19)0.0079 (18)0.0115 (17)
Cl10.0294 (7)0.0389 (8)0.0467 (8)0.0157 (6)0.0003 (6)0.0178 (6)
C10.030 (3)0.026 (3)0.027 (2)0.012 (2)0.007 (2)0.009 (2)
C20.044 (3)0.031 (3)0.032 (3)0.020 (3)0.007 (2)0.007 (2)
C30.035 (3)0.021 (3)0.036 (3)0.011 (2)0.001 (2)0.007 (2)
C40.027 (3)0.023 (2)0.031 (3)0.010 (2)0.005 (2)0.010 (2)
C50.027 (3)0.018 (2)0.036 (3)0.008 (2)0.003 (2)0.013 (2)
C60.029 (3)0.023 (2)0.033 (3)0.011 (2)0.004 (2)0.013 (2)
C70.032 (3)0.027 (3)0.036 (3)0.010 (2)0.011 (2)0.020 (2)
C80.039 (3)0.034 (3)0.033 (3)0.016 (3)0.014 (2)0.020 (2)
C90.031 (3)0.031 (3)0.029 (3)0.014 (2)0.011 (2)0.016 (2)
C100.031 (3)0.026 (3)0.031 (3)0.014 (2)0.007 (2)0.012 (2)
C110.030 (3)0.027 (3)0.032 (3)0.014 (2)0.008 (2)0.013 (2)
C120.028 (3)0.025 (3)0.042 (3)0.007 (2)0.001 (2)0.014 (2)
C130.027 (3)0.029 (3)0.060 (4)0.005 (2)0.002 (3)0.021 (3)
C140.034 (3)0.064 (5)0.043 (3)0.032 (3)0.002 (3)0.003 (3)
C150.037 (3)0.032 (3)0.070 (5)0.012 (3)0.003 (3)0.030 (3)
C160.039 (3)0.030 (3)0.062 (4)0.010 (3)0.008 (3)0.021 (3)
C170.026 (3)0.022 (2)0.046 (3)0.008 (2)0.003 (2)0.016 (2)
C180.061 (5)0.096 (7)0.046 (4)0.056 (5)0.021 (4)0.029 (4)
C190.056 (5)0.093 (7)0.054 (5)0.040 (5)0.025 (4)0.013 (5)
C200.072 (5)0.045 (4)0.035 (3)0.025 (4)0.023 (3)0.012 (3)
C210.090 (7)0.098 (8)0.034 (4)0.055 (6)0.015 (4)0.028 (4)
C220.055 (5)0.088 (6)0.038 (3)0.048 (5)0.013 (3)0.023 (4)
Sb20.0346 (4)0.1176 (8)0.0807 (6)0.0245 (4)0.0141 (4)0.0767 (6)
Cl20.0491 (13)0.171 (3)0.110 (2)0.0501 (17)0.0332 (13)0.103 (2)
Cl30.0586 (15)0.222 (5)0.119 (2)0.039 (2)0.0162 (15)0.133 (3)
Cl40.116 (3)0.121 (3)0.112 (3)0.034 (2)0.039 (2)0.075 (2)
Geometric parameters (Å, º) top
Sb1—N2i2.054 (4)C11—C161.379 (9)
Sb1—N22.054 (4)C12—C131.400 (8)
Sb1—N12.070 (4)C12—H120.9400
Sb1—N1i2.070 (4)C13—C141.332 (10)
Sb1—Cl1i2.3547 (14)C13—H130.9400
Sb1—Cl12.3547 (14)C14—C151.347 (10)
N1—C41.380 (7)C14—H140.9400
N1—C11.390 (7)C15—C161.396 (9)
N2—C61.386 (7)C15—H150.9400
N2—C91.394 (7)C16—H160.9400
C1—C10i1.402 (8)C17—C221.359 (10)
C1—C21.429 (8)C17—C181.377 (10)
C2—C31.356 (9)C18—C191.395 (11)
C2—H20.9400C18—H180.9400
C3—C41.434 (8)C19—C201.394 (14)
C3—H30.9400C19—H190.9400
C4—C51.406 (8)C20—C211.339 (13)
C5—C61.398 (8)C20—H200.9400
C5—C111.508 (7)C21—C221.398 (10)
C6—C71.430 (8)C21—H210.9400
C7—C81.359 (9)C22—H220.9400
C7—H70.9400Sb2—Cl32.311 (3)
C8—C91.426 (8)Sb2—Cl3ii2.311 (3)
C8—H80.9400Sb2—Cl2ii2.374 (2)
C9—C101.393 (8)Sb2—Cl22.374 (2)
C10—C1i1.402 (8)Sb2—Cl42.393 (4)
C10—C171.536 (8)Sb2—Cl4ii2.393 (4)
C11—C121.369 (8)
N2i—Sb1—N2180.00 (16)C12—C11—C16120.6 (6)
N2i—Sb1—N190.19 (18)C12—C11—C5120.1 (5)
N2—Sb1—N189.81 (18)C16—C11—C5119.1 (5)
N2i—Sb1—N1i89.81 (18)C11—C12—C13120.5 (6)
N2—Sb1—N1i90.19 (18)C11—C12—H12119.8
N1—Sb1—N1i180.0 (2)C13—C12—H12119.8
N2i—Sb1—Cl1i90.57 (14)C14—C13—C12115.6 (7)
N2—Sb1—Cl1i89.43 (14)C14—C13—H13122.2
N1—Sb1—Cl1i89.98 (14)C12—C13—H13122.2
N1i—Sb1—Cl1i90.02 (14)C13—C14—C15127.7 (8)
N2i—Sb1—Cl189.43 (14)C13—C14—H14116.2
N2—Sb1—Cl190.57 (14)C15—C14—H14116.2
N1—Sb1—Cl190.02 (14)C14—C15—C16116.0 (7)
N1i—Sb1—Cl189.98 (14)C14—C15—H15122.0
Cl1i—Sb1—Cl1180.0C16—C15—H15122.0
C4—N1—C1108.0 (4)C11—C16—C15119.6 (6)
C4—N1—Sb1126.0 (4)C11—C16—H16120.2
C1—N1—Sb1126.0 (4)C15—C16—H16120.2
C6—N2—C9108.0 (4)C22—C17—C18122.1 (6)
C6—N2—Sb1126.3 (4)C22—C17—C10118.2 (6)
C9—N2—Sb1125.6 (4)C18—C17—C10119.5 (6)
N1—C1—C10i126.1 (5)C17—C18—C19118.5 (8)
N1—C1—C2107.9 (5)C17—C18—H18120.7
C10i—C1—C2126.0 (5)C19—C18—H18120.7
C3—C2—C1108.1 (5)C20—C19—C18119.4 (8)
C3—C2—H2125.9C20—C19—H19120.3
C1—C2—H2125.9C18—C19—H19120.3
C2—C3—C4107.9 (5)C21—C20—C19120.4 (7)
C2—C3—H3126.0C21—C20—H20119.8
C4—C3—H3126.0C19—C20—H20119.8
N1—C4—C5126.6 (5)C20—C21—C22121.1 (8)
N1—C4—C3108.1 (5)C20—C21—H21119.4
C5—C4—C3125.4 (5)C22—C21—H21119.4
C6—C5—C4124.6 (5)C17—C22—C21118.4 (7)
C6—C5—C11116.2 (5)C17—C22—H22120.8
C4—C5—C11119.2 (5)C21—C22—H22120.8
N2—C6—C5126.6 (5)Cl3—Sb2—Cl3ii180.000 (1)
N2—C6—C7108.1 (5)Cl3—Sb2—Cl2ii90.36 (11)
C5—C6—C7125.3 (5)Cl3ii—Sb2—Cl2ii89.64 (11)
C8—C7—C6107.7 (5)Cl3—Sb2—Cl289.64 (11)
C8—C7—H7126.2Cl3ii—Sb2—Cl290.36 (11)
C6—C7—H7126.2Cl2ii—Sb2—Cl2180.0
C7—C8—C9108.7 (5)Cl3—Sb2—Cl487.99 (16)
C7—C8—H8125.7Cl3ii—Sb2—Cl492.01 (16)
C9—C8—H8125.7Cl2ii—Sb2—Cl490.45 (14)
C10—C9—N2127.0 (5)Cl2—Sb2—Cl489.55 (14)
C10—C9—C8125.5 (5)Cl3—Sb2—Cl4ii92.01 (16)
N2—C9—C8107.5 (5)Cl3ii—Sb2—Cl4ii87.99 (16)
C9—C10—C1i125.1 (5)Cl2ii—Sb2—Cl4ii89.55 (14)
C9—C10—C17116.2 (5)Cl2—Sb2—Cl4ii90.45 (14)
C1i—C10—C17118.7 (5)Cl4—Sb2—Cl4ii180.000 (1)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl3ii0.942.763.490 (8)135
C8—H8···Cl40.942.743.593 (8)151
C12—H12···Cl3iii0.942.693.539 (8)151
Symmetry codes: (ii) x, y+1, z+2; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl3i0.942.763.490 (8)135
C8—H8···Cl40.942.743.593 (8)151
C12—H12···Cl3ii0.942.693.539 (8)151
Symmetry codes: (i) x, y+1, z+2; (ii) x, y, z1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, I.-C., Chen, J.-H., Wang, S.-S. & Wang, J.-C. (1996). Polyhedron, 15, 3947–3954.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoury, R., Belkhiria, M. S., Nasri, H. & Parvez, M. (2012). Acta Cryst. E68, m717–m718.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTsunami, S.-I., Tanaka, K., Matsumoto, J., Shiragami, T. & Yasuda, M. (2008). Bull. Chem. Soc. Jpn, 81, 583–589.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds