organic compounds
2-[2,6-Bis(propan-2-yl)phenyl]-1,3-dicyclohexylguanidine
aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
*Correspondence e-mail: zdenka.padelkova@upce.cz
In the title asymmetric dicyclohexylphenylguanidine, C25H41N3, the central guanidine C atom deviates by only 0.004 (2) Å from the central plane defined by the three N atoms. The benzene and the cyclohexyl rings are rotated out of the central plane of the N3C unit by 85.63 (12)° (benzene) and 51.52 (9) and 49.37 (12)° (cyclohexyl). The crystal packing features only by van der Waals interactions.
CCDC reference: 1004128
Related literature
For similar structures of various related compounds, see: Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007); Brazeau et al. (2012); Han & Huynh (2009); Tanatani et al. (1998); Zhang et al. (2009); Boere et al. (2000). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1004128
https://doi.org/10.1107/S1600536814011611/kp2469sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536814011611/kp2469Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536814011611/kp2469Isup3.cml
All the hydrogens were discernible in the difference
However, all the hydrogens were situated into idealized positions and refined riding on their parent C or N atoms, with N–H = 0.86 Å, C–H = 0.93 Å for aromatic H atoms, with U(H) = 1.2Ueq(C/N) for the NH group and U(H) = 1.5Ueq(C/N) for other H atoms, respectively.The determination of the structure of title compound (Fig. 1) was carried out in order to compare the essential structural parametes of this type of guanidine with other structures which will be isolated from its reactivity investigation e.g. both protonation and deprotonation reactions leading presumably to guanidinium, guanidinate(-) or guanidinate(2-) salts. The guanidinium salts and guanidinates are common species in nowadays chemistry and can be used as versatile ligands. Guanidine can be used as a precursor of the desired products by reactions with an acid or a base. Asymmetric guanidinates or guanidinium salts which are frequently tested for mentioned applications contain usually one or more phenyl rings facilitating crystallization of products. Except of three examples of phenyl substituted benzimidazol π-electrons and thus the presence of so-called Y-aromaticity described for protonated or deprotonated guanidines is not taking part in these compounds. The degree of multiple C–N bonds localization is strongly dependent to the steric as well as electronic feature of all three substituents of the fundamental N–C(N)–N skeleton. The C=N double bond in I is localized on the connection of the central skeleton with the Dipp substituent with interatomic distance of 1.289 (2) Å and the rest of C–N bonds from the centre of the structure can be attributed to regular C–N single bonds ((Allen et al. (1987)). The same structural arrangements were found by Brazeau et al. (2012) for 1-(2,6-diisopropylphenyl)-2,3-dimesitylguanidine, Han et al. (2009) for N,N',N''-tris(2,6-dimethylphenyl)guanidine, Tanatani et al. (1998) for N''-methyl-N,N'-diphenylguanidine and Zhang et al. (2009) for 1-cyclohexyl-2,3-diphenylguanidine. On the contrary, the central motif of highly stericaly crowded (Boere et al. (2000)), N,N',N''-tris(2,6-di-isopropylphenyl)guanidine reveals much lower π-electron delocalization than I and other reported species due to steric demands of Dipp substituents. The central N3C skeleton is approaching the ideally planar arrangement similarly as in the cases of the rest of phenylguanidinates mentioned above. The N–C–N angles in all compounds are close to 120° with the small deviation of the interatomic angles of NH-C-NH fragment - in the case of I the angle N2–C1–N3 being about 4° sharper. There are no close contacts within the monoclinic C2/c of I.
(Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007)), there are five examples of acyclic phenyl substituted guanidines (see below). In this series the title compound, bis(cyclohexyl-2,6-(diisopropyl)phenyl (Dipp) substituted guanidine, is together with N''-methyl-N,N'-diphenylguanidine (Tanatani et al. (1998)) and 1-cyclohexyl-2,3-diphenylguanidine (Zhang et al. (2009)) the only representative of asymmetric species reported so far. The delocalization ofFor similar structures of various related compounds, see: Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007); Brazeau et al. (2012); Han & Huynh (2009); Tanatani et al. (1998); Zhang et al. (2009). The central motif of highly sterically crowded N,N',N''-tris(2,6-di-isopropylphenyl)guanidine reveals much lower π-electron delocalization than the title compound, see: Boere et al. (2000). For standard bond lengths, see: Allen et al. (1987).
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell
COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. View of the title compound with the displacement ellipsoids shown at the 50% probability level. The H atoms are shown with arbitrary radii. |
C25H41N3 | F(000) = 1696 |
Mr = 383.61 | Dx = 1.092 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 40662 reflections |
a = 30.9001 (3) Å | θ = 1–27.5° |
b = 9.9442 (5) Å | µ = 0.06 mm−1 |
c = 18.5260 (3) Å | T = 150 K |
β = 124.962 (3)° | Needle, colourless |
V = 4665.3 (3) Å3 | 0.45 × 0.18 × 0.18 mm |
Z = 8 |
Bruker–Nonius KappaCCD area-detector diffractometer | 5336 independent reflections |
Radiation source: fine-focus sealed tube | 3272 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.098 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.2° |
φ and ω scans to fill the Ewald sphere | h = −40→37 |
Absorption correction: gaussian (Coppens, 1970) | k = −12→12 |
Tmin = 0.982, Tmax = 0.991 | l = −24→24 |
40512 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0373P)2 + 6.0132P] where P = (Fo2 + 2Fc2)/3 |
5336 reflections | (Δ/σ)max < 0.001 |
253 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C25H41N3 | V = 4665.3 (3) Å3 |
Mr = 383.61 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 30.9001 (3) Å | µ = 0.06 mm−1 |
b = 9.9442 (5) Å | T = 150 K |
c = 18.5260 (3) Å | 0.45 × 0.18 × 0.18 mm |
β = 124.962 (3)° |
Bruker–Nonius KappaCCD area-detector diffractometer | 5336 independent reflections |
Absorption correction: gaussian (Coppens, 1970) | 3272 reflections with I > 2σ(I) |
Tmin = 0.982, Tmax = 0.991 | Rint = 0.098 |
40512 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 0 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.41 e Å−3 |
5336 reflections | Δρmin = −0.37 e Å−3 |
253 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.85963 (6) | −0.00660 (16) | 0.09390 (11) | 0.0249 (4) | |
N2 | 0.91824 (6) | 0.12199 (17) | 0.22129 (11) | 0.0272 (4) | |
H2 | 0.9424 | 0.1231 | 0.2117 | 0.033* | |
C1 | 0.87631 (7) | 0.03532 (18) | 0.17160 (13) | 0.0230 (4) | |
N3 | 0.85204 (6) | −0.00799 (17) | 0.21031 (11) | 0.0281 (4) | |
H3 | 0.8618 | 0.0247 | 0.2605 | 0.034* | |
C7 | 0.86512 (7) | 0.1607 (2) | 0.00225 (13) | 0.0259 (4) | |
C2 | 0.88288 (7) | 0.0413 (2) | 0.05185 (13) | 0.0242 (4) | |
C3 | 0.92155 (7) | −0.0387 (2) | 0.05466 (13) | 0.0268 (4) | |
C4 | 0.93881 (8) | −0.0019 (2) | 0.00274 (14) | 0.0335 (5) | |
H4 | 0.9635 | −0.0554 | 0.0027 | 0.040* | |
C20 | 0.81023 (8) | −0.10825 (19) | 0.16858 (13) | 0.0246 (4) | |
H20 | 0.7872 | −0.0884 | 0.1054 | 0.029* | |
C25 | 0.77745 (8) | −0.0977 (2) | 0.20611 (14) | 0.0292 (5) | |
H25A | 0.8000 | −0.1130 | 0.2692 | 0.035* | |
H25B | 0.7628 | −0.0079 | 0.1960 | 0.035* | |
C8 | 0.94246 (8) | −0.1630 (2) | 0.11264 (14) | 0.0305 (5) | |
H8 | 0.9429 | −0.1434 | 0.1649 | 0.037* | |
C19 | 0.97612 (8) | 0.2886 (2) | 0.32971 (14) | 0.0347 (5) | |
H19A | 0.9757 | 0.3364 | 0.2837 | 0.042* | |
H19B | 1.0052 | 0.2252 | 0.3564 | 0.042* | |
C15 | 0.87852 (8) | 0.3080 (2) | 0.25502 (14) | 0.0309 (5) | |
H15A | 0.8737 | 0.3595 | 0.2064 | 0.037* | |
H15B | 0.8465 | 0.2567 | 0.2329 | 0.037* | |
C11 | 0.82506 (8) | 0.2511 (2) | 0.00116 (14) | 0.0284 (5) | |
H11 | 0.8238 | 0.2248 | 0.0509 | 0.034* | |
C14 | 0.92473 (7) | 0.2116 (2) | 0.28959 (13) | 0.0266 (4) | |
H14 | 0.9274 | 0.1562 | 0.3357 | 0.032* | |
C21 | 0.83129 (9) | −0.2505 (2) | 0.17984 (16) | 0.0347 (5) | |
H21A | 0.8517 | −0.2565 | 0.1551 | 0.042* | |
H21B | 0.8545 | −0.2718 | 0.2421 | 0.042* | |
C10 | 0.99868 (9) | −0.2004 (2) | 0.14496 (16) | 0.0408 (6) | |
H10A | 0.9990 | −0.2301 | 0.0960 | 0.049* | |
H10B | 1.0112 | −0.2714 | 0.1876 | 0.049* | |
H10C | 1.0212 | −0.1233 | 0.1716 | 0.049* | |
C6 | 0.88416 (8) | 0.1932 (2) | −0.04814 (14) | 0.0337 (5) | |
H6 | 0.8726 | 0.2715 | −0.0817 | 0.040* | |
C5 | 0.91994 (8) | 0.1121 (2) | −0.04892 (14) | 0.0368 (5) | |
H5 | 0.9314 | 0.1341 | −0.0842 | 0.044* | |
C16 | 0.88758 (9) | 0.4038 (2) | 0.32643 (15) | 0.0374 (5) | |
H16A | 0.8582 | 0.4660 | 0.3017 | 0.045* | |
H16B | 0.8893 | 0.3532 | 0.3728 | 0.045* | |
C24 | 0.73288 (8) | −0.2005 (2) | 0.16355 (16) | 0.0394 (6) | |
H24A | 0.7143 | −0.1963 | 0.1915 | 0.047* | |
H24B | 0.7080 | −0.1777 | 0.1019 | 0.047* | |
C12 | 0.77015 (9) | 0.2305 (3) | −0.08243 (16) | 0.0453 (6) | |
H12A | 0.7456 | 0.2881 | −0.0812 | 0.054* | |
H12B | 0.7597 | 0.1384 | −0.0861 | 0.054* | |
H12C | 0.7703 | 0.2521 | −0.1328 | 0.054* | |
C23 | 0.75267 (10) | −0.3431 (2) | 0.17037 (17) | 0.0425 (6) | |
H23A | 0.7228 | −0.4035 | 0.1373 | 0.051* | |
H23B | 0.7734 | −0.3713 | 0.2315 | 0.051* | |
C9 | 0.90576 (10) | −0.2825 (2) | 0.06648 (16) | 0.0441 (6) | |
H9A | 0.9059 | −0.3079 | 0.0166 | 0.053* | |
H9B | 0.8706 | −0.2579 | 0.0470 | 0.053* | |
H9C | 0.9175 | −0.3569 | 0.1066 | 0.053* | |
C13 | 0.84053 (10) | 0.3987 (2) | 0.01292 (19) | 0.0496 (7) | |
H13A | 0.8382 | 0.4305 | −0.0381 | 0.059* | |
H13B | 0.8761 | 0.4088 | 0.0640 | 0.059* | |
H13C | 0.8171 | 0.4499 | 0.0206 | 0.059* | |
C17 | 0.93828 (9) | 0.4821 (2) | 0.36433 (16) | 0.0429 (6) | |
H17A | 0.9351 | 0.5393 | 0.3191 | 0.052* | |
H17B | 0.9442 | 0.5394 | 0.4116 | 0.052* | |
C18 | 0.98491 (9) | 0.3882 (3) | 0.39960 (15) | 0.0427 (6) | |
H18A | 0.9908 | 0.3394 | 0.4499 | 0.051* | |
H18B | 1.0163 | 0.4410 | 0.4196 | 0.051* | |
C22 | 0.78632 (10) | −0.3517 (2) | 0.13444 (18) | 0.0435 (6) | |
H22A | 0.8005 | −0.4419 | 0.1432 | 0.052* | |
H22B | 0.7645 | −0.3338 | 0.0717 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0297 (9) | 0.0247 (9) | 0.0258 (9) | −0.0024 (7) | 0.0191 (8) | −0.0014 (7) |
N2 | 0.0262 (9) | 0.0324 (9) | 0.0287 (9) | −0.0067 (8) | 0.0190 (8) | −0.0076 (8) |
C1 | 0.0243 (10) | 0.0210 (10) | 0.0273 (11) | 0.0013 (8) | 0.0169 (9) | 0.0007 (8) |
N3 | 0.0362 (9) | 0.0287 (9) | 0.0271 (9) | −0.0093 (8) | 0.0225 (8) | −0.0058 (8) |
C7 | 0.0235 (10) | 0.0299 (11) | 0.0242 (10) | −0.0055 (9) | 0.0136 (9) | −0.0031 (9) |
C2 | 0.0236 (10) | 0.0288 (10) | 0.0224 (10) | −0.0069 (8) | 0.0145 (8) | −0.0039 (8) |
C3 | 0.0268 (10) | 0.0314 (11) | 0.0235 (11) | −0.0056 (9) | 0.0152 (9) | −0.0063 (9) |
C4 | 0.0311 (11) | 0.0449 (13) | 0.0316 (12) | −0.0006 (10) | 0.0222 (10) | −0.0034 (10) |
C20 | 0.0301 (10) | 0.0234 (10) | 0.0252 (10) | −0.0020 (9) | 0.0188 (9) | 0.0010 (8) |
C25 | 0.0328 (11) | 0.0293 (11) | 0.0335 (12) | 0.0028 (9) | 0.0238 (10) | 0.0015 (9) |
C8 | 0.0369 (12) | 0.0305 (11) | 0.0309 (12) | 0.0002 (9) | 0.0234 (10) | −0.0032 (9) |
C19 | 0.0282 (11) | 0.0446 (13) | 0.0317 (12) | −0.0083 (10) | 0.0175 (10) | −0.0073 (10) |
C15 | 0.0283 (11) | 0.0333 (12) | 0.0286 (12) | −0.0046 (9) | 0.0148 (9) | −0.0051 (9) |
C11 | 0.0334 (11) | 0.0262 (10) | 0.0280 (11) | −0.0024 (9) | 0.0190 (10) | 0.0007 (9) |
C14 | 0.0281 (11) | 0.0310 (11) | 0.0225 (10) | −0.0043 (9) | 0.0155 (9) | −0.0029 (9) |
C21 | 0.0452 (13) | 0.0269 (11) | 0.0485 (14) | −0.0009 (10) | 0.0366 (12) | −0.0002 (10) |
C10 | 0.0408 (13) | 0.0436 (14) | 0.0407 (14) | 0.0086 (11) | 0.0248 (11) | 0.0031 (11) |
C6 | 0.0318 (11) | 0.0399 (12) | 0.0285 (12) | −0.0044 (10) | 0.0168 (10) | 0.0046 (10) |
C5 | 0.0343 (12) | 0.0545 (14) | 0.0312 (12) | −0.0054 (11) | 0.0244 (10) | 0.0010 (11) |
C16 | 0.0398 (12) | 0.0374 (12) | 0.0375 (13) | −0.0019 (10) | 0.0237 (11) | −0.0060 (10) |
C24 | 0.0296 (11) | 0.0474 (14) | 0.0449 (14) | −0.0018 (11) | 0.0236 (11) | 0.0057 (11) |
C12 | 0.0345 (13) | 0.0515 (15) | 0.0456 (15) | 0.0038 (11) | 0.0205 (12) | −0.0053 (12) |
C23 | 0.0496 (14) | 0.0355 (12) | 0.0530 (15) | −0.0130 (11) | 0.0357 (13) | −0.0007 (11) |
C9 | 0.0550 (15) | 0.0369 (13) | 0.0448 (15) | −0.0077 (12) | 0.0313 (13) | −0.0082 (11) |
C13 | 0.0585 (16) | 0.0332 (13) | 0.0658 (18) | −0.0030 (12) | 0.0408 (15) | −0.0041 (12) |
C17 | 0.0500 (14) | 0.0388 (13) | 0.0402 (14) | −0.0123 (12) | 0.0260 (12) | −0.0155 (11) |
C18 | 0.0353 (12) | 0.0523 (15) | 0.0336 (13) | −0.0167 (11) | 0.0156 (11) | −0.0158 (11) |
C22 | 0.0659 (16) | 0.0254 (11) | 0.0565 (16) | −0.0099 (11) | 0.0451 (14) | −0.0074 (11) |
N1—C1 | 1.289 (2) | C14—H14 | 0.9798 |
N1—C2 | 1.411 (2) | C21—C22 | 1.521 (3) |
N2—C1 | 1.379 (2) | C21—H21A | 0.9702 |
N2—C14 | 1.465 (2) | C21—H21B | 0.9699 |
N2—H2 | 0.8602 | C10—H10A | 0.9599 |
C1—N3 | 1.370 (2) | C10—H10B | 0.9600 |
N3—C20 | 1.455 (2) | C10—H10C | 0.9601 |
N3—H3 | 0.8599 | C6—C5 | 1.375 (3) |
C7—C6 | 1.397 (3) | C6—H6 | 0.9299 |
C7—C2 | 1.406 (3) | C5—H5 | 0.9301 |
C7—C11 | 1.521 (3) | C16—C17 | 1.515 (3) |
C2—C3 | 1.412 (3) | C16—H16A | 0.9700 |
C3—C4 | 1.390 (3) | C16—H16B | 0.9701 |
C3—C8 | 1.518 (3) | C24—C23 | 1.520 (3) |
C4—C5 | 1.380 (3) | C24—H24A | 0.9698 |
C4—H4 | 0.9299 | C24—H24B | 0.9699 |
C20—C21 | 1.521 (3) | C12—H12A | 0.9598 |
C20—C25 | 1.526 (3) | C12—H12B | 0.9601 |
C20—H20 | 0.9799 | C12—H12C | 0.9601 |
C25—C24 | 1.523 (3) | C23—C22 | 1.525 (3) |
C25—H25A | 0.9700 | C23—H23A | 0.9701 |
C25—H25B | 0.9701 | C23—H23B | 0.9700 |
C8—C9 | 1.522 (3) | C9—H9A | 0.9597 |
C8—C10 | 1.524 (3) | C9—H9B | 0.9602 |
C8—H8 | 0.9798 | C9—H9C | 0.9601 |
C19—C14 | 1.519 (3) | C13—H13A | 0.9600 |
C19—C18 | 1.526 (3) | C13—H13B | 0.9601 |
C19—H19A | 0.9700 | C13—H13C | 0.9600 |
C19—H19B | 0.9699 | C17—C18 | 1.515 (3) |
C15—C16 | 1.521 (3) | C17—H17A | 0.9699 |
C15—C14 | 1.523 (3) | C17—H17B | 0.9701 |
C15—H15A | 0.9700 | C18—H18A | 0.9700 |
C15—H15B | 0.9700 | C18—H18B | 0.9702 |
C11—C12 | 1.519 (3) | C22—H22A | 0.9700 |
C11—C13 | 1.520 (3) | C22—H22B | 0.9700 |
C11—H11 | 0.9801 | ||
C1—N1—C2 | 120.19 (16) | C20—C21—H21B | 109.4 |
C1—N2—C14 | 124.63 (16) | H21A—C21—H21B | 108.1 |
C1—N2—H2 | 117.7 | C8—C10—H10A | 109.3 |
C14—N2—H2 | 117.7 | C8—C10—H10B | 109.5 |
N1—C1—N3 | 119.62 (17) | H10A—C10—H10B | 109.5 |
N1—C1—N2 | 124.68 (17) | C8—C10—H10C | 109.6 |
N3—C1—N2 | 115.69 (17) | H10A—C10—H10C | 109.5 |
C1—N3—C20 | 121.52 (16) | H10B—C10—H10C | 109.5 |
C1—N3—H3 | 119.3 | C5—C6—C7 | 121.4 (2) |
C20—N3—H3 | 119.2 | C5—C6—H6 | 119.2 |
C6—C7—C2 | 118.41 (18) | C7—C6—H6 | 119.4 |
C6—C7—C11 | 120.38 (19) | C6—C5—C4 | 119.83 (19) |
C2—C7—C11 | 121.19 (17) | C6—C5—H5 | 120.1 |
C7—C2—N1 | 120.96 (17) | C4—C5—H5 | 120.0 |
C7—C2—C3 | 120.35 (17) | C17—C16—C15 | 110.58 (18) |
N1—C2—C3 | 118.49 (17) | C17—C16—H16A | 109.3 |
C4—C3—C2 | 118.59 (19) | C15—C16—H16A | 109.4 |
C4—C3—C8 | 121.83 (18) | C17—C16—H16B | 109.8 |
C2—C3—C8 | 119.57 (17) | C15—C16—H16B | 109.6 |
C5—C4—C3 | 121.3 (2) | H16A—C16—H16B | 108.1 |
C5—C4—H4 | 119.3 | C23—C24—C25 | 112.42 (18) |
C3—C4—H4 | 119.4 | C23—C24—H24A | 109.2 |
N3—C20—C21 | 112.63 (16) | C25—C24—H24A | 109.3 |
N3—C20—C25 | 109.28 (16) | C23—C24—H24B | 109.0 |
C21—C20—C25 | 110.17 (16) | C25—C24—H24B | 108.9 |
N3—C20—H20 | 108.2 | H24A—C24—H24B | 107.9 |
C21—C20—H20 | 108.2 | C11—C12—H12A | 109.3 |
C25—C20—H20 | 108.2 | C11—C12—H12B | 109.5 |
C24—C25—C20 | 110.97 (17) | H12A—C12—H12B | 109.5 |
C24—C25—H25A | 109.3 | C11—C12—H12C | 109.6 |
C20—C25—H25A | 109.4 | H12A—C12—H12C | 109.5 |
C24—C25—H25B | 109.5 | H12B—C12—H12C | 109.5 |
C20—C25—H25B | 109.5 | C24—C23—C22 | 111.05 (18) |
H25A—C25—H25B | 108.1 | C24—C23—H23A | 109.5 |
C3—C8—C9 | 111.11 (18) | C22—C23—H23A | 109.2 |
C3—C8—C10 | 113.82 (17) | C24—C23—H23B | 109.4 |
C9—C8—C10 | 110.19 (18) | C22—C23—H23B | 109.6 |
C3—C8—H8 | 107.2 | H23A—C23—H23B | 108.1 |
C9—C8—H8 | 107.1 | C8—C9—H9A | 109.5 |
C10—C8—H8 | 107.1 | C8—C9—H9B | 109.3 |
C14—C19—C18 | 111.73 (17) | H9A—C9—H9B | 109.5 |
C14—C19—H19A | 109.5 | C8—C9—H9C | 109.6 |
C18—C19—H19A | 109.5 | H9A—C9—H9C | 109.5 |
C14—C19—H19B | 109.0 | H9B—C9—H9C | 109.4 |
C18—C19—H19B | 109.1 | C11—C13—H13A | 109.7 |
H19A—C19—H19B | 107.9 | C11—C13—H13B | 109.3 |
C16—C15—C14 | 111.56 (17) | H13A—C13—H13B | 109.5 |
C16—C15—H15A | 109.3 | C11—C13—H13C | 109.4 |
C14—C15—H15A | 109.3 | H13A—C13—H13C | 109.5 |
C16—C15—H15B | 109.4 | H13B—C13—H13C | 109.5 |
C14—C15—H15B | 109.3 | C16—C17—C18 | 111.0 (2) |
H15A—C15—H15B | 107.9 | C16—C17—H17A | 109.6 |
C12—C11—C13 | 110.6 (2) | C18—C17—H17A | 109.5 |
C12—C11—C7 | 111.03 (17) | C16—C17—H17B | 109.3 |
C13—C11—C7 | 112.47 (17) | C18—C17—H17B | 109.4 |
C12—C11—H11 | 107.5 | H17A—C17—H17B | 108.0 |
C13—C11—H11 | 107.6 | C17—C18—C19 | 111.79 (19) |
C7—C11—H11 | 107.4 | C17—C18—H18A | 109.4 |
N2—C14—C19 | 108.47 (16) | C19—C18—H18A | 109.5 |
N2—C14—C15 | 112.84 (16) | C17—C18—H18B | 109.0 |
C19—C14—C15 | 110.73 (17) | C19—C18—H18B | 109.1 |
N2—C14—H14 | 108.2 | H18A—C18—H18B | 107.9 |
C19—C14—H14 | 108.3 | C21—C22—C23 | 110.91 (19) |
C15—C14—H14 | 108.1 | C21—C22—H22A | 109.7 |
C22—C21—C20 | 110.87 (18) | C23—C22—H22A | 109.6 |
C22—C21—H21A | 109.4 | C21—C22—H22B | 109.2 |
C20—C21—H21A | 109.6 | C23—C22—H22B | 109.4 |
C22—C21—H21B | 109.4 | H22A—C22—H22B | 108.0 |
Experimental details
Crystal data | |
Chemical formula | C25H41N3 |
Mr | 383.61 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 150 |
a, b, c (Å) | 30.9001 (3), 9.9442 (5), 18.5260 (3) |
β (°) | 124.962 (3) |
V (Å3) | 4665.3 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.45 × 0.18 × 0.18 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD area-detector |
Absorption correction | Gaussian (Coppens, 1970) |
Tmin, Tmax | 0.982, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 40512, 5336, 3272 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.137, 1.06 |
No. of reflections | 5336 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.41, −0.37 |
Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
The authors would like to thank the Technology Agency of the Czech Republic (project No. TA02020466) for financial support of this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Boere, R. E., Boere, R. T., Masuda, J. & Wolmershauser, G. (2000). Can. J. Chem. 78, 1613–1619. CAS Google Scholar
Brazeau, A. L., Hanninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398–5414. Web of Science CSD CrossRef CAS PubMed Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Ghosh, H., Yella, R., Nath, J. & Patel, B. K. (2008). Eur. J. Org. Chem. pp. 6189–6196. Web of Science CSD CrossRef Google Scholar
Han, Y. & Huynh, H. V. (2009). Dalton Trans. pp. 2201–2209. Web of Science CSD CrossRef Google Scholar
Hooft, R. W. (1998). COLLECT. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, H., Wang, Y. & Xie, Z. (2011). Org. Lett. 13, 4562–4565. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433–6442. Web of Science CSD CrossRef CAS Google Scholar
Yıldırım, S. Ö., Akkurt, M., Servi, S., Şekerci, M. & Heinemann, F. W. (2007). Acta Cryst. E63, o2130–o2132. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, W.-X., Li, D., Wang, Z. & Xi, Z. (2009). Organometallics, 28, 882–887. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The determination of the structure of title compound (Fig. 1) was carried out in order to compare the essential structural parametes of this type of guanidine with other structures which will be isolated from its reactivity investigation e.g. both protonation and deprotonation reactions leading presumably to guanidinium, guanidinate(-) or guanidinate(2-) salts. The guanidinium salts and guanidinates are common species in nowadays chemistry and can be used as versatile ligands. Guanidine can be used as a precursor of the desired products by reactions with an acid or a base. Asymmetric guanidinates or guanidinium salts which are frequently tested for mentioned applications contain usually one or more phenyl rings facilitating crystallization of products. Except of three examples of phenyl substituted benzimidazol amines (Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007)), there are five examples of acyclic phenyl substituted guanidines (see below). In this series the title compound, bis(cyclohexyl-2,6-(diisopropyl)phenyl (Dipp) substituted guanidine, is together with N''-methyl-N,N'-diphenylguanidine (Tanatani et al. (1998)) and 1-cyclohexyl-2,3-diphenylguanidine (Zhang et al. (2009)) the only representative of asymmetric species reported so far. The delocalization of π-electrons and thus the presence of so-called Y-aromaticity described for protonated or deprotonated guanidines is not taking part in these compounds. The degree of multiple C–N bonds localization is strongly dependent to the steric as well as electronic feature of all three substituents of the fundamental N–C(N)–N skeleton. The C=N double bond in I is localized on the connection of the central skeleton with the Dipp substituent with interatomic distance of 1.289 (2) Å and the rest of C–N bonds from the centre of the structure can be attributed to regular C–N single bonds ((Allen et al. (1987)). The same structural arrangements were found by Brazeau et al. (2012) for 1-(2,6-diisopropylphenyl)-2,3-dimesitylguanidine, Han et al. (2009) for N,N',N''-tris(2,6-dimethylphenyl)guanidine, Tanatani et al. (1998) for N''-methyl-N,N'-diphenylguanidine and Zhang et al. (2009) for 1-cyclohexyl-2,3-diphenylguanidine. On the contrary, the central motif of highly stericaly crowded (Boere et al. (2000)), N,N',N''-tris(2,6-di-isopropylphenyl)guanidine reveals much lower π-electron delocalization than I and other reported species due to steric demands of Dipp substituents. The central N3C skeleton is approaching the ideally planar arrangement similarly as in the cases of the rest of phenylguanidinates mentioned above. The N–C–N angles in all compounds are close to 120° with the small deviation of the interatomic angles of NH-C-NH fragment - in the case of I the angle N2–C1–N3 being about 4° sharper. There are no close contacts within the monoclinic C2/c unit cell of I.