organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2,6-Bis(propan-2-yl)phen­yl]-1,3-di­cyclo­hexyl­guanidine

aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
*Correspondence e-mail: zdenka.padelkova@upce.cz

(Received 15 April 2014; accepted 20 May 2014; online 18 June 2014)

In the title asymmetric di­cyclo­hexyl­phenyl­guanidine, C25H41N3, the central guanidine C atom deviates by only 0.004 (2) Å from the central plane defined by the three N atoms. The benzene and the cyclo­hexyl rings are rotated out of the central plane of the N3C unit by 85.63 (12)° (benzene) and 51.52 (9) and 49.37 (12)° (cyclohexyl). The crystal packing features only by van der Waals inter­actions.

Related literature

For similar structures of various related compounds, see: Shen et al. (2011[Shen, H., Wang, Y. & Xie, Z. (2011). Org. Lett. 13, 4562-4565.]); Ghosh et al. (2008[Ghosh, H., Yella, R., Nath, J. & Patel, B. K. (2008). Eur. J. Org. Chem. pp. 6189-6196.]); Yıldırım et al. (2007[Yıldırım, S. Ö., Akkurt, M., Servi, S., Şekerci, M. & Heinemann, F. W. (2007). Acta Cryst. E63, o2130-o2132.]); Brazeau et al. (2012[Brazeau, A. L., Hanninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398-5414.]); Han & Huynh (2009[Han, Y. & Huynh, H. V. (2009). Dalton Trans. pp. 2201-2209.]); Tanatani et al. (1998[Tanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433-6442.]); Zhang et al. (2009[Zhang, W.-X., Li, D., Wang, Z. & Xi, Z. (2009). Organometallics, 28, 882-887.]); Boere et al. (2000[Boere, R. E., Boere, R. T., Masuda, J. & Wolmershauser, G. (2000). Can. J. Chem. 78, 1613-1619.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H41N3

  • Mr = 383.61

  • Monoclinic, C 2/c

  • a = 30.9001 (3) Å

  • b = 9.9442 (5) Å

  • c = 18.5260 (3) Å

  • β = 124.962 (3)°

  • V = 4665.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 150 K

  • 0.45 × 0.18 × 0.18 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.982, Tmax = 0.991

  • 40512 measured reflections

  • 5336 independent reflections

  • 3272 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.137

  • S = 1.06

  • 5336 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT. Enraf-Nonius, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The determination of the structure of title compound (Fig. 1) was carried out in order to compare the essential structural parametes of this type of guanidine with other structures which will be isolated from its reactivity investigation e.g. both protonation and deprotonation reactions leading presumably to guanidinium, guanidinate(-) or guanidinate(2-) salts. The guanidinium salts and guanidinates are common species in nowadays chemistry and can be used as versatile ligands. Guanidine can be used as a precursor of the desired products by reactions with an acid or a base. Asymmetric guanidinates or guanidinium salts which are frequently tested for mentioned applications contain usually one or more phenyl rings facilitating crystallization of products. Except of three examples of phenyl substituted benzimidazol amines (Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007)), there are five examples of acyclic phenyl substituted guanidines (see below). In this series the title compound, bis(cyclohexyl-2,6-(diisopropyl)phenyl (Dipp) substituted guanidine, is together with N''-methyl-N,N'-diphenylguanidine (Tanatani et al. (1998)) and 1-cyclohexyl-2,3-diphenylguanidine (Zhang et al. (2009)) the only representative of asymmetric species reported so far. The delocalization of π-electrons and thus the presence of so-called Y-aromaticity described for protonated or deprotonated guanidines is not taking part in these compounds. The degree of multiple C–N bonds localization is strongly dependent to the steric as well as electronic feature of all three substituents of the fundamental N–C(N)–N skeleton. The C=N double bond in I is localized on the connection of the central skeleton with the Dipp substituent with interatomic distance of 1.289 (2) Å and the rest of C–N bonds from the centre of the structure can be attributed to regular C–N single bonds ((Allen et al. (1987)). The same structural arrangements were found by Brazeau et al. (2012) for 1-(2,6-diisopropylphenyl)-2,3-dimesitylguanidine, Han et al. (2009) for N,N',N''-tris(2,6-dimethylphenyl)guanidine, Tanatani et al. (1998) for N''-methyl-N,N'-diphenylguanidine and Zhang et al. (2009) for 1-cyclohexyl-2,3-diphenylguanidine. On the contrary, the central motif of highly stericaly crowded (Boere et al. (2000)), N,N',N''-tris(2,6-di-isopropylphenyl)guanidine reveals much lower π-electron delocalization than I and other reported species due to steric demands of Dipp substituents. The central N3C skeleton is approaching the ideally planar arrangement similarly as in the cases of the rest of phenylguanidinates mentioned above. The N–C–N angles in all compounds are close to 120° with the small deviation of the interatomic angles of NH-C-NH fragment - in the case of I the angle N2–C1–N3 being about 4° sharper. There are no close contacts within the monoclinic C2/c unit cell of I.

Related literature top

For similar structures of various related compounds, see: Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007); Brazeau et al. (2012); Han & Huynh (2009); Tanatani et al. (1998); Zhang et al. (2009). The central motif of highly sterically crowded N,N',N''-tris(2,6-di-isopropylphenyl)guanidine reveals much lower π-electron delocalization than the title compound, see: Boere et al. (2000). For standard bond lengths, see: Allen et al. (1987).

Refinement top

All the hydrogens were discernible in the difference electron density map. However, all the hydrogens were situated into idealized positions and refined riding on their parent C or N atoms, with N–H = 0.86 Å, C–H = 0.93 Å for aromatic H atoms, with U(H) = 1.2Ueq(C/N) for the NH group and U(H) = 1.5Ueq(C/N) for other H atoms, respectively.

Structure description top

The determination of the structure of title compound (Fig. 1) was carried out in order to compare the essential structural parametes of this type of guanidine with other structures which will be isolated from its reactivity investigation e.g. both protonation and deprotonation reactions leading presumably to guanidinium, guanidinate(-) or guanidinate(2-) salts. The guanidinium salts and guanidinates are common species in nowadays chemistry and can be used as versatile ligands. Guanidine can be used as a precursor of the desired products by reactions with an acid or a base. Asymmetric guanidinates or guanidinium salts which are frequently tested for mentioned applications contain usually one or more phenyl rings facilitating crystallization of products. Except of three examples of phenyl substituted benzimidazol amines (Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007)), there are five examples of acyclic phenyl substituted guanidines (see below). In this series the title compound, bis(cyclohexyl-2,6-(diisopropyl)phenyl (Dipp) substituted guanidine, is together with N''-methyl-N,N'-diphenylguanidine (Tanatani et al. (1998)) and 1-cyclohexyl-2,3-diphenylguanidine (Zhang et al. (2009)) the only representative of asymmetric species reported so far. The delocalization of π-electrons and thus the presence of so-called Y-aromaticity described for protonated or deprotonated guanidines is not taking part in these compounds. The degree of multiple C–N bonds localization is strongly dependent to the steric as well as electronic feature of all three substituents of the fundamental N–C(N)–N skeleton. The C=N double bond in I is localized on the connection of the central skeleton with the Dipp substituent with interatomic distance of 1.289 (2) Å and the rest of C–N bonds from the centre of the structure can be attributed to regular C–N single bonds ((Allen et al. (1987)). The same structural arrangements were found by Brazeau et al. (2012) for 1-(2,6-diisopropylphenyl)-2,3-dimesitylguanidine, Han et al. (2009) for N,N',N''-tris(2,6-dimethylphenyl)guanidine, Tanatani et al. (1998) for N''-methyl-N,N'-diphenylguanidine and Zhang et al. (2009) for 1-cyclohexyl-2,3-diphenylguanidine. On the contrary, the central motif of highly stericaly crowded (Boere et al. (2000)), N,N',N''-tris(2,6-di-isopropylphenyl)guanidine reveals much lower π-electron delocalization than I and other reported species due to steric demands of Dipp substituents. The central N3C skeleton is approaching the ideally planar arrangement similarly as in the cases of the rest of phenylguanidinates mentioned above. The N–C–N angles in all compounds are close to 120° with the small deviation of the interatomic angles of NH-C-NH fragment - in the case of I the angle N2–C1–N3 being about 4° sharper. There are no close contacts within the monoclinic C2/c unit cell of I.

For similar structures of various related compounds, see: Shen et al. (2011); Ghosh et al. (2008); Yıldırım et al. (2007); Brazeau et al. (2012); Han & Huynh (2009); Tanatani et al. (1998); Zhang et al. (2009). The central motif of highly sterically crowded N,N',N''-tris(2,6-di-isopropylphenyl)guanidine reveals much lower π-electron delocalization than the title compound, see: Boere et al. (2000). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the displacement ellipsoids shown at the 50% probability level. The H atoms are shown with arbitrary radii.
2-[2,6-Bis(propan-2-yl)phenyl]-1,3-dicyclohexylguanidine top
Crystal data top
C25H41N3F(000) = 1696
Mr = 383.61Dx = 1.092 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 40662 reflections
a = 30.9001 (3) Åθ = 1–27.5°
b = 9.9442 (5) ŵ = 0.06 mm1
c = 18.5260 (3) ÅT = 150 K
β = 124.962 (3)°Needle, colourless
V = 4665.3 (3) Å30.45 × 0.18 × 0.18 mm
Z = 8
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
5336 independent reflections
Radiation source: fine-focus sealed tube3272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.2°
φ and ω scans to fill the Ewald sphereh = 4037
Absorption correction: gaussian
(Coppens, 1970)
k = 1212
Tmin = 0.982, Tmax = 0.991l = 2424
40512 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0373P)2 + 6.0132P]
where P = (Fo2 + 2Fc2)/3
5336 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C25H41N3V = 4665.3 (3) Å3
Mr = 383.61Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.9001 (3) ŵ = 0.06 mm1
b = 9.9442 (5) ÅT = 150 K
c = 18.5260 (3) Å0.45 × 0.18 × 0.18 mm
β = 124.962 (3)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
5336 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
3272 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.991Rint = 0.098
40512 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
5336 reflectionsΔρmin = 0.37 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.85963 (6)0.00660 (16)0.09390 (11)0.0249 (4)
N20.91824 (6)0.12199 (17)0.22129 (11)0.0272 (4)
H20.94240.12310.21170.033*
C10.87631 (7)0.03532 (18)0.17160 (13)0.0230 (4)
N30.85204 (6)0.00799 (17)0.21031 (11)0.0281 (4)
H30.86180.02470.26050.034*
C70.86512 (7)0.1607 (2)0.00225 (13)0.0259 (4)
C20.88288 (7)0.0413 (2)0.05185 (13)0.0242 (4)
C30.92155 (7)0.0387 (2)0.05466 (13)0.0268 (4)
C40.93881 (8)0.0019 (2)0.00274 (14)0.0335 (5)
H40.96350.05540.00270.040*
C200.81023 (8)0.10825 (19)0.16858 (13)0.0246 (4)
H200.78720.08840.10540.029*
C250.77745 (8)0.0977 (2)0.20611 (14)0.0292 (5)
H25A0.80000.11300.26920.035*
H25B0.76280.00790.19600.035*
C80.94246 (8)0.1630 (2)0.11264 (14)0.0305 (5)
H80.94290.14340.16490.037*
C190.97612 (8)0.2886 (2)0.32971 (14)0.0347 (5)
H19A0.97570.33640.28370.042*
H19B1.00520.22520.35640.042*
C150.87852 (8)0.3080 (2)0.25502 (14)0.0309 (5)
H15A0.87370.35950.20640.037*
H15B0.84650.25670.23290.037*
C110.82506 (8)0.2511 (2)0.00116 (14)0.0284 (5)
H110.82380.22480.05090.034*
C140.92473 (7)0.2116 (2)0.28959 (13)0.0266 (4)
H140.92740.15620.33570.032*
C210.83129 (9)0.2505 (2)0.17984 (16)0.0347 (5)
H21A0.85170.25650.15510.042*
H21B0.85450.27180.24210.042*
C100.99868 (9)0.2004 (2)0.14496 (16)0.0408 (6)
H10A0.99900.23010.09600.049*
H10B1.01120.27140.18760.049*
H10C1.02120.12330.17160.049*
C60.88416 (8)0.1932 (2)0.04814 (14)0.0337 (5)
H60.87260.27150.08170.040*
C50.91994 (8)0.1121 (2)0.04892 (14)0.0368 (5)
H50.93140.13410.08420.044*
C160.88758 (9)0.4038 (2)0.32643 (15)0.0374 (5)
H16A0.85820.46600.30170.045*
H16B0.88930.35320.37280.045*
C240.73288 (8)0.2005 (2)0.16355 (16)0.0394 (6)
H24A0.71430.19630.19150.047*
H24B0.70800.17770.10190.047*
C120.77015 (9)0.2305 (3)0.08243 (16)0.0453 (6)
H12A0.74560.28810.08120.054*
H12B0.75970.13840.08610.054*
H12C0.77030.25210.13280.054*
C230.75267 (10)0.3431 (2)0.17037 (17)0.0425 (6)
H23A0.72280.40350.13730.051*
H23B0.77340.37130.23150.051*
C90.90576 (10)0.2825 (2)0.06648 (16)0.0441 (6)
H9A0.90590.30790.01660.053*
H9B0.87060.25790.04700.053*
H9C0.91750.35690.10660.053*
C130.84053 (10)0.3987 (2)0.01292 (19)0.0496 (7)
H13A0.83820.43050.03810.059*
H13B0.87610.40880.06400.059*
H13C0.81710.44990.02060.059*
C170.93828 (9)0.4821 (2)0.36433 (16)0.0429 (6)
H17A0.93510.53930.31910.052*
H17B0.94420.53940.41160.052*
C180.98491 (9)0.3882 (3)0.39960 (15)0.0427 (6)
H18A0.99080.33940.44990.051*
H18B1.01630.44100.41960.051*
C220.78632 (10)0.3517 (2)0.13444 (18)0.0435 (6)
H22A0.80050.44190.14320.052*
H22B0.76450.33380.07170.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0297 (9)0.0247 (9)0.0258 (9)0.0024 (7)0.0191 (8)0.0014 (7)
N20.0262 (9)0.0324 (9)0.0287 (9)0.0067 (8)0.0190 (8)0.0076 (8)
C10.0243 (10)0.0210 (10)0.0273 (11)0.0013 (8)0.0169 (9)0.0007 (8)
N30.0362 (9)0.0287 (9)0.0271 (9)0.0093 (8)0.0225 (8)0.0058 (8)
C70.0235 (10)0.0299 (11)0.0242 (10)0.0055 (9)0.0136 (9)0.0031 (9)
C20.0236 (10)0.0288 (10)0.0224 (10)0.0069 (8)0.0145 (8)0.0039 (8)
C30.0268 (10)0.0314 (11)0.0235 (11)0.0056 (9)0.0152 (9)0.0063 (9)
C40.0311 (11)0.0449 (13)0.0316 (12)0.0006 (10)0.0222 (10)0.0034 (10)
C200.0301 (10)0.0234 (10)0.0252 (10)0.0020 (9)0.0188 (9)0.0010 (8)
C250.0328 (11)0.0293 (11)0.0335 (12)0.0028 (9)0.0238 (10)0.0015 (9)
C80.0369 (12)0.0305 (11)0.0309 (12)0.0002 (9)0.0234 (10)0.0032 (9)
C190.0282 (11)0.0446 (13)0.0317 (12)0.0083 (10)0.0175 (10)0.0073 (10)
C150.0283 (11)0.0333 (12)0.0286 (12)0.0046 (9)0.0148 (9)0.0051 (9)
C110.0334 (11)0.0262 (10)0.0280 (11)0.0024 (9)0.0190 (10)0.0007 (9)
C140.0281 (11)0.0310 (11)0.0225 (10)0.0043 (9)0.0155 (9)0.0029 (9)
C210.0452 (13)0.0269 (11)0.0485 (14)0.0009 (10)0.0366 (12)0.0002 (10)
C100.0408 (13)0.0436 (14)0.0407 (14)0.0086 (11)0.0248 (11)0.0031 (11)
C60.0318 (11)0.0399 (12)0.0285 (12)0.0044 (10)0.0168 (10)0.0046 (10)
C50.0343 (12)0.0545 (14)0.0312 (12)0.0054 (11)0.0244 (10)0.0010 (11)
C160.0398 (12)0.0374 (12)0.0375 (13)0.0019 (10)0.0237 (11)0.0060 (10)
C240.0296 (11)0.0474 (14)0.0449 (14)0.0018 (11)0.0236 (11)0.0057 (11)
C120.0345 (13)0.0515 (15)0.0456 (15)0.0038 (11)0.0205 (12)0.0053 (12)
C230.0496 (14)0.0355 (12)0.0530 (15)0.0130 (11)0.0357 (13)0.0007 (11)
C90.0550 (15)0.0369 (13)0.0448 (15)0.0077 (12)0.0313 (13)0.0082 (11)
C130.0585 (16)0.0332 (13)0.0658 (18)0.0030 (12)0.0408 (15)0.0041 (12)
C170.0500 (14)0.0388 (13)0.0402 (14)0.0123 (12)0.0260 (12)0.0155 (11)
C180.0353 (12)0.0523 (15)0.0336 (13)0.0167 (11)0.0156 (11)0.0158 (11)
C220.0659 (16)0.0254 (11)0.0565 (16)0.0099 (11)0.0451 (14)0.0074 (11)
Geometric parameters (Å, º) top
N1—C11.289 (2)C14—H140.9798
N1—C21.411 (2)C21—C221.521 (3)
N2—C11.379 (2)C21—H21A0.9702
N2—C141.465 (2)C21—H21B0.9699
N2—H20.8602C10—H10A0.9599
C1—N31.370 (2)C10—H10B0.9600
N3—C201.455 (2)C10—H10C0.9601
N3—H30.8599C6—C51.375 (3)
C7—C61.397 (3)C6—H60.9299
C7—C21.406 (3)C5—H50.9301
C7—C111.521 (3)C16—C171.515 (3)
C2—C31.412 (3)C16—H16A0.9700
C3—C41.390 (3)C16—H16B0.9701
C3—C81.518 (3)C24—C231.520 (3)
C4—C51.380 (3)C24—H24A0.9698
C4—H40.9299C24—H24B0.9699
C20—C211.521 (3)C12—H12A0.9598
C20—C251.526 (3)C12—H12B0.9601
C20—H200.9799C12—H12C0.9601
C25—C241.523 (3)C23—C221.525 (3)
C25—H25A0.9700C23—H23A0.9701
C25—H25B0.9701C23—H23B0.9700
C8—C91.522 (3)C9—H9A0.9597
C8—C101.524 (3)C9—H9B0.9602
C8—H80.9798C9—H9C0.9601
C19—C141.519 (3)C13—H13A0.9600
C19—C181.526 (3)C13—H13B0.9601
C19—H19A0.9700C13—H13C0.9600
C19—H19B0.9699C17—C181.515 (3)
C15—C161.521 (3)C17—H17A0.9699
C15—C141.523 (3)C17—H17B0.9701
C15—H15A0.9700C18—H18A0.9700
C15—H15B0.9700C18—H18B0.9702
C11—C121.519 (3)C22—H22A0.9700
C11—C131.520 (3)C22—H22B0.9700
C11—H110.9801
C1—N1—C2120.19 (16)C20—C21—H21B109.4
C1—N2—C14124.63 (16)H21A—C21—H21B108.1
C1—N2—H2117.7C8—C10—H10A109.3
C14—N2—H2117.7C8—C10—H10B109.5
N1—C1—N3119.62 (17)H10A—C10—H10B109.5
N1—C1—N2124.68 (17)C8—C10—H10C109.6
N3—C1—N2115.69 (17)H10A—C10—H10C109.5
C1—N3—C20121.52 (16)H10B—C10—H10C109.5
C1—N3—H3119.3C5—C6—C7121.4 (2)
C20—N3—H3119.2C5—C6—H6119.2
C6—C7—C2118.41 (18)C7—C6—H6119.4
C6—C7—C11120.38 (19)C6—C5—C4119.83 (19)
C2—C7—C11121.19 (17)C6—C5—H5120.1
C7—C2—N1120.96 (17)C4—C5—H5120.0
C7—C2—C3120.35 (17)C17—C16—C15110.58 (18)
N1—C2—C3118.49 (17)C17—C16—H16A109.3
C4—C3—C2118.59 (19)C15—C16—H16A109.4
C4—C3—C8121.83 (18)C17—C16—H16B109.8
C2—C3—C8119.57 (17)C15—C16—H16B109.6
C5—C4—C3121.3 (2)H16A—C16—H16B108.1
C5—C4—H4119.3C23—C24—C25112.42 (18)
C3—C4—H4119.4C23—C24—H24A109.2
N3—C20—C21112.63 (16)C25—C24—H24A109.3
N3—C20—C25109.28 (16)C23—C24—H24B109.0
C21—C20—C25110.17 (16)C25—C24—H24B108.9
N3—C20—H20108.2H24A—C24—H24B107.9
C21—C20—H20108.2C11—C12—H12A109.3
C25—C20—H20108.2C11—C12—H12B109.5
C24—C25—C20110.97 (17)H12A—C12—H12B109.5
C24—C25—H25A109.3C11—C12—H12C109.6
C20—C25—H25A109.4H12A—C12—H12C109.5
C24—C25—H25B109.5H12B—C12—H12C109.5
C20—C25—H25B109.5C24—C23—C22111.05 (18)
H25A—C25—H25B108.1C24—C23—H23A109.5
C3—C8—C9111.11 (18)C22—C23—H23A109.2
C3—C8—C10113.82 (17)C24—C23—H23B109.4
C9—C8—C10110.19 (18)C22—C23—H23B109.6
C3—C8—H8107.2H23A—C23—H23B108.1
C9—C8—H8107.1C8—C9—H9A109.5
C10—C8—H8107.1C8—C9—H9B109.3
C14—C19—C18111.73 (17)H9A—C9—H9B109.5
C14—C19—H19A109.5C8—C9—H9C109.6
C18—C19—H19A109.5H9A—C9—H9C109.5
C14—C19—H19B109.0H9B—C9—H9C109.4
C18—C19—H19B109.1C11—C13—H13A109.7
H19A—C19—H19B107.9C11—C13—H13B109.3
C16—C15—C14111.56 (17)H13A—C13—H13B109.5
C16—C15—H15A109.3C11—C13—H13C109.4
C14—C15—H15A109.3H13A—C13—H13C109.5
C16—C15—H15B109.4H13B—C13—H13C109.5
C14—C15—H15B109.3C16—C17—C18111.0 (2)
H15A—C15—H15B107.9C16—C17—H17A109.6
C12—C11—C13110.6 (2)C18—C17—H17A109.5
C12—C11—C7111.03 (17)C16—C17—H17B109.3
C13—C11—C7112.47 (17)C18—C17—H17B109.4
C12—C11—H11107.5H17A—C17—H17B108.0
C13—C11—H11107.6C17—C18—C19111.79 (19)
C7—C11—H11107.4C17—C18—H18A109.4
N2—C14—C19108.47 (16)C19—C18—H18A109.5
N2—C14—C15112.84 (16)C17—C18—H18B109.0
C19—C14—C15110.73 (17)C19—C18—H18B109.1
N2—C14—H14108.2H18A—C18—H18B107.9
C19—C14—H14108.3C21—C22—C23110.91 (19)
C15—C14—H14108.1C21—C22—H22A109.7
C22—C21—C20110.87 (18)C23—C22—H22A109.6
C22—C21—H21A109.4C21—C22—H22B109.2
C20—C21—H21A109.6C23—C22—H22B109.4
C22—C21—H21B109.4H22A—C22—H22B108.0

Experimental details

Crystal data
Chemical formulaC25H41N3
Mr383.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)30.9001 (3), 9.9442 (5), 18.5260 (3)
β (°) 124.962 (3)
V3)4665.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.45 × 0.18 × 0.18
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.982, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
40512, 5336, 3272
Rint0.098
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.137, 1.06
No. of reflections5336
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors would like to thank the Technology Agency of the Czech Republic (project No. TA02020466) for financial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBoere, R. E., Boere, R. T., Masuda, J. & Wolmershauser, G. (2000). Can. J. Chem. 78, 1613–1619.  CAS Google Scholar
First citationBrazeau, A. L., Hanninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398–5414.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationGhosh, H., Yella, R., Nath, J. & Patel, B. K. (2008). Eur. J. Org. Chem. pp. 6189–6196.  Web of Science CSD CrossRef Google Scholar
First citationHan, Y. & Huynh, H. V. (2009). Dalton Trans. pp. 2201–2209.  Web of Science CSD CrossRef Google Scholar
First citationHooft, R. W. (1998). COLLECT. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, H., Wang, Y. & Xie, Z. (2011). Org. Lett. 13, 4562–4565.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanatani, A., Yamaguchi, K., Azumaya, I., Fukutomi, R., Shudo, K. & Kagechika, H. (1998). J. Am. Chem. Soc. 120, 6433–6442.  Web of Science CSD CrossRef CAS Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Servi, S., Şekerci, M. & Heinemann, F. W. (2007). Acta Cryst. E63, o2130–o2132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W.-X., Li, D., Wang, Z. & Xi, Z. (2009). Organometallics, 28, 882–887.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds