metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{N-[2-hy­dr­oxy-1,1-bis­­(hy­dr­oxy­methyl)eth­yl]glycinato-κ3O,N,O′}iron(II)

aSchool of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
*Correspondence e-mail: hjjtbq@163.com

(Received 3 June 2014; accepted 14 June 2014; online 21 June 2014)

In the title compound, [Fe(C6H12NO5)2], the FeII ion lies on an inversion center and is coordinated by two N atoms and four O atoms from two tridentate N-[2-hy­droxy-1,1-bis­(hy­droxy­methyl)eth­yl]glycine ligands, forming a slightly distorted octa­hedral coordination environment. In the crystal, O—H⋯O, O—H⋯N and weak C—H⋯O hydrogen bonds link mol­ecules, forming a three-dimensional network.

Keywords: crystal structure.

Related literature

For background to the applications of tripodal alcohols as single-mol­ecule magnets, see: Pilawa et al. (1998[Pilawa, B., Kelemen, M. T., Wanka, S., Geisselmann, A. & Barra, A. L. (1998). Europhys. Lett. 43, 7-12.]); Brechin (2005[Brechin, E. K. (2005). Chem. Commun. pp. 5141-5153.]); Murugesu et al. (2005[Murugesu, M., Wernsdorfer, W., Abboud, K. A. & Christou, G. (2005). Angew. Chem. Int. Ed. 44, 892-896.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C6H12NO5)2]

  • Mr = 412.18

  • Monoclinic, P 21 /c

  • a = 8.8198 (7) Å

  • b = 9.0245 (7) Å

  • c = 12.3533 (7) Å

  • β = 127.224 (4)°

  • V = 782.94 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 298 K

  • 0.19 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.829, Tmax = 0.923

  • 4000 measured reflections

  • 1708 independent reflections

  • 1230 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.099

  • S = 1.04

  • 1708 reflections

  • 131 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.87 (2) 2.10 (2) 2.952 (4) 166 (3)
O3—H3A⋯O4ii 0.86 (2) 1.72 (2) 2.562 (4) 167 (5)
O1—H1B⋯O5iii 0.85 (2) 1.96 (2) 2.804 (4) 174 (6)
O1—H1B⋯O4iii 0.85 (2) 2.59 (5) 3.172 (4) 127 (4)
O2—H2C⋯O1ii 0.85 (2) 1.93 (2) 2.779 (4) 170 (5)
C5—H5B⋯O5iv 0.97 2.56 3.452 (4) 153
C2—H2A⋯O1 0.97 2.56 3.184 (4) 122
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Tripodal alcohols have been used as poly-dentate ligands in combination with paramagnetic 3d transition metal ions leading to the formation of high nuclear clusters since the discovery of the phenomenon of single-molecule magnetism (Brechin, 2005; Murugesu et al., 2005; Pilawa et al., 1998). During our synthesis to form a poly-nuclear cluster using the N-[tris(hydroxymethyl)ethyl]glycine ligand the title compound was fortuitously obtained.

In the title molecule the FeII ion is located on an inversion center (Fig. 1). The FeII ion is in a slightly distorted octahedral coordination environment formed by two N atoms and four O atoms from two N-[tris(hydroxymethyl)ethyl]glycine ligands. In the crystal, classical O—H···O, O—H···N and weak C—H···O hydrogen bonds (Table 1) connect the molecules into a three-dimensional superamolecular architecture.

Related literature top

For background to the applications of tripodal alcohols as single-molecule magnets, see: Pilawa et al. (1998); Brechin (2005); Murugesu et al. (2005).

Experimental top

The title compound was synthesized hydrothermally under autogenous pressure. A mixture of FeSO4 (0.028 g, 0.1 mmol), N-[tris(hydroxymethyl)ethyl]glycine (0.056 g, 0.3 mmol), methanol (3 ml), N,N'-dimethyl formamide (1 ml) and H2O (2 ml), was stirred for 30 min and then sealed in a 15 ml Teflon-lined stainless container and heated to 358K for 60 h. After cooling to room temperature and subjected to filltration, colorless plates were recovered.

Refinement top

Hydrogen atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) and N—H = 0.87 (2) Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å.

Structure description top

Tripodal alcohols have been used as poly-dentate ligands in combination with paramagnetic 3d transition metal ions leading to the formation of high nuclear clusters since the discovery of the phenomenon of single-molecule magnetism (Brechin, 2005; Murugesu et al., 2005; Pilawa et al., 1998). During our synthesis to form a poly-nuclear cluster using the N-[tris(hydroxymethyl)ethyl]glycine ligand the title compound was fortuitously obtained.

In the title molecule the FeII ion is located on an inversion center (Fig. 1). The FeII ion is in a slightly distorted octahedral coordination environment formed by two N atoms and four O atoms from two N-[tris(hydroxymethyl)ethyl]glycine ligands. In the crystal, classical O—H···O, O—H···N and weak C—H···O hydrogen bonds (Table 1) connect the molecules into a three-dimensional superamolecular architecture.

For background to the applications of tripodal alcohols as single-molecule magnets, see: Pilawa et al. (1998); Brechin (2005); Murugesu et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% displacement ellipsoids. Unlabeled atoms are related by the symmetry operator (-x+1, -y+1, -z+1).
Bis{N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycinato-κ3O,N,O'}iron(II) top
Crystal data top
[Fe(C6H12NO5)2]F(000) = 432
Mr = 412.18Dx = 1.748 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 621 reflections
a = 8.8198 (7) Åθ = 2.9–21.9°
b = 9.0245 (7) ŵ = 1.02 mm1
c = 12.3533 (7) ÅT = 298 K
β = 127.224 (4)°Sheet, colorless
V = 782.94 (10) Å30.19 × 0.16 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1708 independent reflections
Radiation source: fine-focus sealed tube1230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
multi–scanθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.829, Tmax = 0.923k = 1111
4000 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
1708 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.46 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Fe(C6H12NO5)2]V = 782.94 (10) Å3
Mr = 412.18Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.8198 (7) ŵ = 1.02 mm1
b = 9.0245 (7) ÅT = 298 K
c = 12.3533 (7) Å0.19 × 0.16 × 0.08 mm
β = 127.224 (4)°
Data collection top
Bruker SMART CCD
diffractometer
1708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1230 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.923Rint = 0.056
4000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
1708 reflectionsΔρmin = 0.39 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.50000.01527 (19)
O10.0265 (4)0.7341 (3)0.0516 (3)0.0347 (7)
O20.0173 (4)0.8369 (3)0.3530 (3)0.0355 (7)
O30.4719 (4)0.7180 (3)0.5354 (3)0.0323 (7)
O40.6437 (4)0.6393 (3)0.2600 (3)0.0356 (7)
O50.6619 (3)0.5743 (3)0.4408 (2)0.0283 (6)
N10.2766 (4)0.5686 (3)0.2962 (3)0.0209 (6)
C10.2121 (5)0.7215 (4)0.2983 (3)0.0190 (8)
C20.3608 (5)0.5508 (4)0.2233 (3)0.0237 (8)
H2A0.29270.61320.14300.028*
H2B0.34660.44880.19400.028*
C30.5700 (5)0.5920 (4)0.3128 (4)0.0243 (8)
C40.1289 (5)0.8101 (4)0.1682 (4)0.0276 (9)
H4A0.08550.90560.17580.033*
H4B0.22740.82760.15720.033*
C50.0626 (5)0.6982 (4)0.3222 (4)0.0269 (8)
H5A0.05160.65560.24160.032*
H5B0.11120.62980.39710.032*
C60.3822 (5)0.8077 (4)0.4165 (4)0.0269 (8)
H6A0.47120.83020.39730.032*
H6B0.33960.90030.42990.032*
H1A0.182 (4)0.506 (3)0.259 (3)0.027 (10)*
H3A0.514 (6)0.773 (5)0.605 (3)0.078 (18)*
H1B0.126 (5)0.787 (5)0.014 (5)0.10 (2)*
H2C0.019 (7)0.815 (5)0.421 (4)0.080 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0159 (4)0.0181 (3)0.0101 (4)0.0003 (3)0.0069 (3)0.0009 (3)
O10.0265 (16)0.0462 (18)0.0188 (15)0.0048 (14)0.0070 (14)0.0003 (13)
O20.0443 (18)0.0349 (16)0.0402 (19)0.0148 (13)0.0323 (16)0.0086 (14)
O30.0379 (17)0.0292 (15)0.0160 (15)0.0004 (13)0.0091 (14)0.0017 (12)
O40.0293 (15)0.0513 (18)0.0283 (16)0.0014 (13)0.0185 (14)0.0135 (13)
O50.0234 (14)0.0396 (15)0.0174 (14)0.0003 (12)0.0100 (12)0.0048 (12)
N10.0203 (16)0.0195 (16)0.0220 (17)0.0026 (13)0.0123 (15)0.0040 (13)
C10.0192 (18)0.0201 (18)0.0148 (19)0.0020 (14)0.0087 (16)0.0019 (14)
C20.0213 (19)0.0286 (19)0.018 (2)0.0028 (15)0.0103 (17)0.0004 (15)
C30.026 (2)0.0218 (19)0.024 (2)0.0015 (16)0.0141 (18)0.0035 (16)
C40.027 (2)0.029 (2)0.022 (2)0.0025 (17)0.0123 (19)0.0029 (17)
C50.027 (2)0.031 (2)0.025 (2)0.0050 (17)0.0166 (19)0.0038 (17)
C60.025 (2)0.027 (2)0.023 (2)0.0003 (16)0.0121 (18)0.0005 (17)
Geometric parameters (Å, º) top
Fe1—O3i2.062 (3)N1—C11.498 (4)
Fe1—O32.062 (3)N1—H1A0.871 (18)
Fe1—O5i2.071 (2)C1—C41.527 (4)
Fe1—O52.071 (2)C1—C61.529 (5)
Fe1—N12.145 (3)C1—C51.531 (4)
Fe1—N1i2.145 (3)C2—C31.515 (5)
O1—C41.427 (4)C2—H2A0.9700
O1—H1B0.850 (19)C2—H2B0.9700
O2—C51.433 (4)C4—H4A0.9700
O2—H2C0.854 (19)C4—H4B0.9700
O3—C61.426 (4)C5—H5A0.9700
O3—H3A0.855 (19)C5—H5B0.9700
O4—C31.242 (4)C6—H6A0.9700
O5—C31.277 (4)C6—H6B0.9700
N1—C21.482 (4)
O3i—Fe1—O3180.000 (1)N1—C1—C5104.9 (3)
O3i—Fe1—O5i87.88 (10)C4—C1—C5110.7 (3)
O3—Fe1—O5i92.12 (10)C6—C1—C5110.3 (3)
O3i—Fe1—O592.12 (10)N1—C2—C3111.5 (3)
O3—Fe1—O587.88 (10)N1—C2—H2A109.3
O5i—Fe1—O5180.0C3—C2—H2A109.3
O3i—Fe1—N199.75 (10)N1—C2—H2B109.3
O3—Fe1—N180.25 (10)C3—C2—H2B109.3
O5i—Fe1—N199.68 (10)H2A—C2—H2B108.0
O5—Fe1—N180.32 (10)O4—C3—O5123.4 (3)
O3i—Fe1—N1i80.25 (10)O4—C3—C2119.6 (3)
O3—Fe1—N1i99.75 (10)O5—C3—C2117.0 (3)
O5i—Fe1—N1i80.32 (10)O1—C4—C1111.5 (3)
O5—Fe1—N1i99.68 (10)O1—C4—H4A109.3
N1—Fe1—N1i180.000 (1)C1—C4—H4A109.3
C4—O1—H1B109 (4)O1—C4—H4B109.3
C5—O2—H2C102 (3)C1—C4—H4B109.3
C6—O3—Fe1112.7 (2)H4A—C4—H4B108.0
C6—O3—H3A109 (3)O2—C5—C1110.0 (3)
Fe1—O3—H3A137 (3)O2—C5—H5A109.7
C3—O5—Fe1114.9 (2)C1—C5—H5A109.7
C2—N1—C1116.4 (3)O2—C5—H5B109.7
C2—N1—Fe1103.9 (2)C1—C5—H5B109.7
C1—N1—Fe1109.5 (2)H5A—C5—H5B108.2
C2—N1—H1A106 (2)O3—C6—C1107.9 (3)
C1—N1—H1A111 (2)O3—C6—H6A110.1
Fe1—N1—H1A110 (2)C1—C6—H6A110.1
N1—C1—C4114.2 (3)O3—C6—H6B110.1
N1—C1—C6108.8 (3)C1—C6—H6B110.1
C4—C1—C6107.9 (3)H6A—C6—H6B108.4
O5i—Fe1—O3—C6120.1 (2)Fe1—N1—C1—C632.2 (3)
O5—Fe1—O3—C659.9 (2)C2—N1—C1—C5156.7 (3)
N1—Fe1—O3—C620.6 (2)Fe1—N1—C1—C585.9 (3)
N1i—Fe1—O3—C6159.4 (2)C1—N1—C2—C383.5 (4)
O3i—Fe1—O5—C384.2 (2)Fe1—N1—C2—C337.0 (3)
O3—Fe1—O5—C395.8 (2)Fe1—O5—C3—O4178.2 (3)
N1—Fe1—O5—C315.3 (2)Fe1—O5—C3—C22.4 (4)
N1i—Fe1—O5—C3164.7 (2)N1—C2—C3—O4152.0 (3)
O3i—Fe1—N1—C262.5 (2)N1—C2—C3—O528.6 (4)
O3—Fe1—N1—C2117.5 (2)N1—C1—C4—O156.5 (4)
O5i—Fe1—N1—C2152.0 (2)C6—C1—C4—O1177.6 (3)
O5—Fe1—N1—C228.0 (2)C5—C1—C4—O161.6 (4)
O3i—Fe1—N1—C1172.4 (2)N1—C1—C5—O2168.6 (3)
O3—Fe1—N1—C17.6 (2)C4—C1—C5—O267.7 (4)
O5i—Fe1—N1—C182.9 (2)C6—C1—C5—O251.6 (4)
O5—Fe1—N1—C197.1 (2)Fe1—O3—C6—C143.9 (3)
C2—N1—C1—C435.4 (4)N1—C1—C6—O349.6 (3)
Fe1—N1—C1—C4152.8 (2)C4—C1—C6—O3174.0 (3)
C2—N1—C1—C685.3 (3)C5—C1—C6—O365.0 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.87 (2)2.10 (2)2.952 (4)166 (3)
O3—H3A···O4iii0.86 (2)1.72 (2)2.562 (4)167 (5)
O1—H1B···O5iv0.85 (2)1.96 (2)2.804 (4)174 (6)
O1—H1B···O4iv0.85 (2)2.59 (5)3.172 (4)127 (4)
O2—H2C···O1iii0.85 (2)1.93 (2)2.779 (4)170 (5)
C5—H5B···O5i0.972.563.452 (4)153
C2—H2A···O10.972.563.184 (4)122
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x1, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.871 (18)2.10 (2)2.952 (4)166 (3)
O3—H3A···O4ii0.855 (19)1.72 (2)2.562 (4)167 (5)
O1—H1B···O5iii0.850 (19)1.96 (2)2.804 (4)174 (6)
O1—H1B···O4iii0.850 (19)2.59 (5)3.172 (4)127 (4)
O2—H2C···O1ii0.854 (19)1.93 (2)2.779 (4)170 (5)
C5—H5B···O5iv0.972.563.452 (4)152.8
C2—H2A···O10.972.563.184 (4)122.3
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the National Science Foundation (21201114).

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBrechin, E. K. (2005). Chem. Commun. pp. 5141–5153.  Web of Science CrossRef Google Scholar
First citationBruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMurugesu, M., Wernsdorfer, W., Abboud, K. A. & Christou, G. (2005). Angew. Chem. Int. Ed. 44, 892–896.  Web of Science CSD CrossRef CAS Google Scholar
First citationPilawa, B., Kelemen, M. T., Wanka, S., Geisselmann, A. & Barra, A. L. (1998). Europhys. Lett. 43, 7–12.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds