metal-organic compounds
Bis{N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycinato-κ3O,N,O′}iron(II)
aSchool of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China
*Correspondence e-mail: hjjtbq@163.com
In the title compound, [Fe(C6H12NO5)2], the FeII ion lies on an inversion center and is coordinated by two N atoms and four O atoms from two tridentate N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine ligands, forming a slightly distorted octahedral coordination environment. In the crystal, O—H⋯O, O—H⋯N and weak C—H⋯O hydrogen bonds link molecules, forming a three-dimensional network.
Keywords: crystal structure.
Related literature
For background to the applications of tripodal et al. (1998); Brechin (2005); Murugesu et al. (2005).
as single-molecule magnets, see: PilawaExperimental
Crystal data
|
Data collection: SMART (Bruker, 2007); cell SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S160053681401397X/lh5715sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681401397X/lh5715Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S160053681401397X/lh5715Isup3.cdx
The title compound was synthesized hydrothermally under autogenous pressure. A mixture of FeSO4 (0.028 g, 0.1 mmol), N-[tris(hydroxymethyl)ethyl]glycine (0.056 g, 0.3 mmol), methanol (3 ml), N,N'-dimethyl formamide (1 ml) and H2O (2 ml), was stirred for 30 min and then sealed in a 15 ml Teflon-lined stainless container and heated to 358K for 60 h. After cooling to room temperature and subjected to filltration, colorless plates were recovered.
Hydrogen atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) and N—H = 0.87 (2) Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å.
Tripodal
have been used as poly-dentate ligands in combination with paramagnetic 3d transition metal ions leading to the formation of high nuclear clusters since the discovery of the phenomenon of single-molecule magnetism (Brechin, 2005; Murugesu et al., 2005; Pilawa et al., 1998). During our synthesis to form a poly-nuclear cluster using the N-[tris(hydroxymethyl)ethyl]glycine ligand the title compound was fortuitously obtained.In the title molecule the FeII ion is located on an inversion center (Fig. 1). The FeII ion is in a slightly distorted octahedral coordination environment formed by two N atoms and four O atoms from two N-[tris(hydroxymethyl)ethyl]glycine ligands. In the crystal, classical O—H···O, O—H···N and weak C—H···O hydrogen bonds (Table 1) connect the molecules into a three-dimensional superamolecular architecture.
For background to the applications of tripodal
as single-molecule magnets, see: Pilawa et al. (1998); Brechin (2005); Murugesu et al. (2005).Data collection: SMART (Bruker, 2007); cell
SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound showing 50% displacement ellipsoids. Unlabeled atoms are related by the symmetry operator (-x+1, -y+1, -z+1). |
[Fe(C6H12NO5)2] | F(000) = 432 |
Mr = 412.18 | Dx = 1.748 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 621 reflections |
a = 8.8198 (7) Å | θ = 2.9–21.9° |
b = 9.0245 (7) Å | µ = 1.02 mm−1 |
c = 12.3533 (7) Å | T = 298 K |
β = 127.224 (4)° | Sheet, colorless |
V = 782.94 (10) Å3 | 0.19 × 0.16 × 0.08 mm |
Z = 2 |
Bruker SMART CCD diffractometer | 1708 independent reflections |
Radiation source: fine-focus sealed tube | 1230 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
multi–scan | θmax = 27.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −11→11 |
Tmin = 0.829, Tmax = 0.923 | k = −11→11 |
4000 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3 |
1708 reflections | (Δ/σ)max < 0.001 |
131 parameters | Δρmax = 0.46 e Å−3 |
4 restraints | Δρmin = −0.39 e Å−3 |
[Fe(C6H12NO5)2] | V = 782.94 (10) Å3 |
Mr = 412.18 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.8198 (7) Å | µ = 1.02 mm−1 |
b = 9.0245 (7) Å | T = 298 K |
c = 12.3533 (7) Å | 0.19 × 0.16 × 0.08 mm |
β = 127.224 (4)° |
Bruker SMART CCD diffractometer | 1708 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1230 reflections with I > 2σ(I) |
Tmin = 0.829, Tmax = 0.923 | Rint = 0.056 |
4000 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 4 restraints |
wR(F2) = 0.099 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.46 e Å−3 |
1708 reflections | Δρmin = −0.39 e Å−3 |
131 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.5000 | 0.5000 | 0.5000 | 0.01527 (19) | |
O1 | −0.0265 (4) | 0.7341 (3) | 0.0516 (3) | 0.0347 (7) | |
O2 | 0.0173 (4) | 0.8369 (3) | 0.3530 (3) | 0.0355 (7) | |
O3 | 0.4719 (4) | 0.7180 (3) | 0.5354 (3) | 0.0323 (7) | |
O4 | 0.6437 (4) | 0.6393 (3) | 0.2600 (3) | 0.0356 (7) | |
O5 | 0.6619 (3) | 0.5743 (3) | 0.4408 (2) | 0.0283 (6) | |
N1 | 0.2766 (4) | 0.5686 (3) | 0.2962 (3) | 0.0209 (6) | |
C1 | 0.2121 (5) | 0.7215 (4) | 0.2983 (3) | 0.0190 (8) | |
C2 | 0.3608 (5) | 0.5508 (4) | 0.2233 (3) | 0.0237 (8) | |
H2A | 0.2927 | 0.6132 | 0.1430 | 0.028* | |
H2B | 0.3466 | 0.4488 | 0.1940 | 0.028* | |
C3 | 0.5700 (5) | 0.5920 (4) | 0.3128 (4) | 0.0243 (8) | |
C4 | 0.1289 (5) | 0.8101 (4) | 0.1682 (4) | 0.0276 (9) | |
H4A | 0.0855 | 0.9056 | 0.1758 | 0.033* | |
H4B | 0.2274 | 0.8276 | 0.1572 | 0.033* | |
C5 | 0.0626 (5) | 0.6982 (4) | 0.3222 (4) | 0.0269 (8) | |
H5A | −0.0516 | 0.6556 | 0.2416 | 0.032* | |
H5B | 0.1112 | 0.6298 | 0.3971 | 0.032* | |
C6 | 0.3822 (5) | 0.8077 (4) | 0.4165 (4) | 0.0269 (8) | |
H6A | 0.4712 | 0.8302 | 0.3973 | 0.032* | |
H6B | 0.3396 | 0.9003 | 0.4299 | 0.032* | |
H1A | 0.182 (4) | 0.506 (3) | 0.259 (3) | 0.027 (10)* | |
H3A | 0.514 (6) | 0.773 (5) | 0.605 (3) | 0.078 (18)* | |
H1B | −0.126 (5) | 0.787 (5) | 0.014 (5) | 0.10 (2)* | |
H2C | 0.019 (7) | 0.815 (5) | 0.421 (4) | 0.080 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0159 (4) | 0.0181 (3) | 0.0101 (4) | 0.0003 (3) | 0.0069 (3) | 0.0009 (3) |
O1 | 0.0265 (16) | 0.0462 (18) | 0.0188 (15) | 0.0048 (14) | 0.0070 (14) | 0.0003 (13) |
O2 | 0.0443 (18) | 0.0349 (16) | 0.0402 (19) | 0.0148 (13) | 0.0323 (16) | 0.0086 (14) |
O3 | 0.0379 (17) | 0.0292 (15) | 0.0160 (15) | 0.0004 (13) | 0.0091 (14) | −0.0017 (12) |
O4 | 0.0293 (15) | 0.0513 (18) | 0.0283 (16) | 0.0014 (13) | 0.0185 (14) | 0.0135 (13) |
O5 | 0.0234 (14) | 0.0396 (15) | 0.0174 (14) | 0.0003 (12) | 0.0100 (12) | 0.0048 (12) |
N1 | 0.0203 (16) | 0.0195 (16) | 0.0220 (17) | −0.0026 (13) | 0.0123 (15) | −0.0040 (13) |
C1 | 0.0192 (18) | 0.0201 (18) | 0.0148 (19) | 0.0020 (14) | 0.0087 (16) | 0.0019 (14) |
C2 | 0.0213 (19) | 0.0286 (19) | 0.018 (2) | 0.0028 (15) | 0.0103 (17) | −0.0004 (15) |
C3 | 0.026 (2) | 0.0218 (19) | 0.024 (2) | 0.0015 (16) | 0.0141 (18) | 0.0035 (16) |
C4 | 0.027 (2) | 0.029 (2) | 0.022 (2) | 0.0025 (17) | 0.0123 (19) | 0.0029 (17) |
C5 | 0.027 (2) | 0.031 (2) | 0.025 (2) | 0.0050 (17) | 0.0166 (19) | 0.0038 (17) |
C6 | 0.025 (2) | 0.027 (2) | 0.023 (2) | −0.0003 (16) | 0.0121 (18) | −0.0005 (17) |
Fe1—O3i | 2.062 (3) | N1—C1 | 1.498 (4) |
Fe1—O3 | 2.062 (3) | N1—H1A | 0.871 (18) |
Fe1—O5i | 2.071 (2) | C1—C4 | 1.527 (4) |
Fe1—O5 | 2.071 (2) | C1—C6 | 1.529 (5) |
Fe1—N1 | 2.145 (3) | C1—C5 | 1.531 (4) |
Fe1—N1i | 2.145 (3) | C2—C3 | 1.515 (5) |
O1—C4 | 1.427 (4) | C2—H2A | 0.9700 |
O1—H1B | 0.850 (19) | C2—H2B | 0.9700 |
O2—C5 | 1.433 (4) | C4—H4A | 0.9700 |
O2—H2C | 0.854 (19) | C4—H4B | 0.9700 |
O3—C6 | 1.426 (4) | C5—H5A | 0.9700 |
O3—H3A | 0.855 (19) | C5—H5B | 0.9700 |
O4—C3 | 1.242 (4) | C6—H6A | 0.9700 |
O5—C3 | 1.277 (4) | C6—H6B | 0.9700 |
N1—C2 | 1.482 (4) | ||
O3i—Fe1—O3 | 180.000 (1) | N1—C1—C5 | 104.9 (3) |
O3i—Fe1—O5i | 87.88 (10) | C4—C1—C5 | 110.7 (3) |
O3—Fe1—O5i | 92.12 (10) | C6—C1—C5 | 110.3 (3) |
O3i—Fe1—O5 | 92.12 (10) | N1—C2—C3 | 111.5 (3) |
O3—Fe1—O5 | 87.88 (10) | N1—C2—H2A | 109.3 |
O5i—Fe1—O5 | 180.0 | C3—C2—H2A | 109.3 |
O3i—Fe1—N1 | 99.75 (10) | N1—C2—H2B | 109.3 |
O3—Fe1—N1 | 80.25 (10) | C3—C2—H2B | 109.3 |
O5i—Fe1—N1 | 99.68 (10) | H2A—C2—H2B | 108.0 |
O5—Fe1—N1 | 80.32 (10) | O4—C3—O5 | 123.4 (3) |
O3i—Fe1—N1i | 80.25 (10) | O4—C3—C2 | 119.6 (3) |
O3—Fe1—N1i | 99.75 (10) | O5—C3—C2 | 117.0 (3) |
O5i—Fe1—N1i | 80.32 (10) | O1—C4—C1 | 111.5 (3) |
O5—Fe1—N1i | 99.68 (10) | O1—C4—H4A | 109.3 |
N1—Fe1—N1i | 180.000 (1) | C1—C4—H4A | 109.3 |
C4—O1—H1B | 109 (4) | O1—C4—H4B | 109.3 |
C5—O2—H2C | 102 (3) | C1—C4—H4B | 109.3 |
C6—O3—Fe1 | 112.7 (2) | H4A—C4—H4B | 108.0 |
C6—O3—H3A | 109 (3) | O2—C5—C1 | 110.0 (3) |
Fe1—O3—H3A | 137 (3) | O2—C5—H5A | 109.7 |
C3—O5—Fe1 | 114.9 (2) | C1—C5—H5A | 109.7 |
C2—N1—C1 | 116.4 (3) | O2—C5—H5B | 109.7 |
C2—N1—Fe1 | 103.9 (2) | C1—C5—H5B | 109.7 |
C1—N1—Fe1 | 109.5 (2) | H5A—C5—H5B | 108.2 |
C2—N1—H1A | 106 (2) | O3—C6—C1 | 107.9 (3) |
C1—N1—H1A | 111 (2) | O3—C6—H6A | 110.1 |
Fe1—N1—H1A | 110 (2) | C1—C6—H6A | 110.1 |
N1—C1—C4 | 114.2 (3) | O3—C6—H6B | 110.1 |
N1—C1—C6 | 108.8 (3) | C1—C6—H6B | 110.1 |
C4—C1—C6 | 107.9 (3) | H6A—C6—H6B | 108.4 |
O5i—Fe1—O3—C6 | −120.1 (2) | Fe1—N1—C1—C6 | 32.2 (3) |
O5—Fe1—O3—C6 | 59.9 (2) | C2—N1—C1—C5 | 156.7 (3) |
N1—Fe1—O3—C6 | −20.6 (2) | Fe1—N1—C1—C5 | −85.9 (3) |
N1i—Fe1—O3—C6 | 159.4 (2) | C1—N1—C2—C3 | 83.5 (4) |
O3i—Fe1—O5—C3 | 84.2 (2) | Fe1—N1—C2—C3 | −37.0 (3) |
O3—Fe1—O5—C3 | −95.8 (2) | Fe1—O5—C3—O4 | 178.2 (3) |
N1—Fe1—O5—C3 | −15.3 (2) | Fe1—O5—C3—C2 | −2.4 (4) |
N1i—Fe1—O5—C3 | 164.7 (2) | N1—C2—C3—O4 | −152.0 (3) |
O3i—Fe1—N1—C2 | −62.5 (2) | N1—C2—C3—O5 | 28.6 (4) |
O3—Fe1—N1—C2 | 117.5 (2) | N1—C1—C4—O1 | 56.5 (4) |
O5i—Fe1—N1—C2 | −152.0 (2) | C6—C1—C4—O1 | 177.6 (3) |
O5—Fe1—N1—C2 | 28.0 (2) | C5—C1—C4—O1 | −61.6 (4) |
O3i—Fe1—N1—C1 | 172.4 (2) | N1—C1—C5—O2 | 168.6 (3) |
O3—Fe1—N1—C1 | −7.6 (2) | C4—C1—C5—O2 | −67.7 (4) |
O5i—Fe1—N1—C1 | 82.9 (2) | C6—C1—C5—O2 | 51.6 (4) |
O5—Fe1—N1—C1 | −97.1 (2) | Fe1—O3—C6—C1 | 43.9 (3) |
C2—N1—C1—C4 | 35.4 (4) | N1—C1—C6—O3 | −49.6 (3) |
Fe1—N1—C1—C4 | 152.8 (2) | C4—C1—C6—O3 | −174.0 (3) |
C2—N1—C1—C6 | −85.3 (3) | C5—C1—C6—O3 | 65.0 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2ii | 0.87 (2) | 2.10 (2) | 2.952 (4) | 166 (3) |
O3—H3A···O4iii | 0.86 (2) | 1.72 (2) | 2.562 (4) | 167 (5) |
O1—H1B···O5iv | 0.85 (2) | 1.96 (2) | 2.804 (4) | 174 (6) |
O1—H1B···O4iv | 0.85 (2) | 2.59 (5) | 3.172 (4) | 127 (4) |
O2—H2C···O1iii | 0.85 (2) | 1.93 (2) | 2.779 (4) | 170 (5) |
C5—H5B···O5i | 0.97 | 2.56 | 3.452 (4) | 153 |
C2—H2A···O1 | 0.97 | 2.56 | 3.184 (4) | 122 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) x−1, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.871 (18) | 2.10 (2) | 2.952 (4) | 166 (3) |
O3—H3A···O4ii | 0.855 (19) | 1.72 (2) | 2.562 (4) | 167 (5) |
O1—H1B···O5iii | 0.850 (19) | 1.96 (2) | 2.804 (4) | 174 (6) |
O1—H1B···O4iii | 0.850 (19) | 2.59 (5) | 3.172 (4) | 127 (4) |
O2—H2C···O1ii | 0.854 (19) | 1.93 (2) | 2.779 (4) | 170 (5) |
C5—H5B···O5iv | 0.97 | 2.56 | 3.452 (4) | 152.8 |
C2—H2A···O1 | 0.97 | 2.56 | 3.184 (4) | 122.3 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+3/2, z+1/2; (iii) x−1, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the National Science Foundation (21201114).
References
Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Brechin, E. K. (2005). Chem. Commun. pp. 5141–5153. Web of Science CrossRef Google Scholar
Bruker (2007). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Murugesu, M., Wernsdorfer, W., Abboud, K. A. & Christou, G. (2005). Angew. Chem. Int. Ed. 44, 892–896. Web of Science CSD CrossRef CAS Google Scholar
Pilawa, B., Kelemen, M. T., Wanka, S., Geisselmann, A. & Barra, A. L. (1998). Europhys. Lett. 43, 7–12. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tripodal alcohols have been used as poly-dentate ligands in combination with paramagnetic 3d transition metal ions leading to the formation of high nuclear clusters since the discovery of the phenomenon of single-molecule magnetism (Brechin, 2005; Murugesu et al., 2005; Pilawa et al., 1998). During our synthesis to form a poly-nuclear cluster using the N-[tris(hydroxymethyl)ethyl]glycine ligand the title compound was fortuitously obtained.
In the title molecule the FeII ion is located on an inversion center (Fig. 1). The FeII ion is in a slightly distorted octahedral coordination environment formed by two N atoms and four O atoms from two N-[tris(hydroxymethyl)ethyl]glycine ligands. In the crystal, classical O—H···O, O—H···N and weak C—H···O hydrogen bonds (Table 1) connect the molecules into a three-dimensional superamolecular architecture.