metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[trans-bis­­(1,3-benzo­thia­zole-κN)manganese(II)]-di-μ-chlorido]

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Algeria, and bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 5 June 2014; accepted 17 June 2014; online 21 June 2014)

In the title coordination polymer, [MnCl2(C7H5NS)2]n, the MnII ion is located on the inter­section of a twofold rotation axis and a mirror plane and adopts an octa­hedral coordination geometry defined by two mutually trans N atoms from benzo­thia­zole ligands which occupy the axial positions, and four Cl atoms which form the equatorial sites. The MnII ions are connected by two bridging Cl atoms, forming chains parallel to the c axis. The crystal packing can be descibed as alternating layers parallel to (001) featuring ππ stacking inter­actions with a centroid–centroid distance of 3.6029 (15) Å.

Keywords: crystal structure.

Related literature

For applications of benzo­thia­zole and its derivatives, see: Petkova et al. (2000[Petkova, I., Nikolov, P. & Dryanska, V. (2000). J. Photochem. Photobiol. A, 133, 21-25.]); Karisson et al. (2003[Karisson, H. J., Lincoln, P. & Westman, G. (2003). Bioorg. Med. Chem. 11, 1035-1040.]); Khan et al. (2011[Khan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Ul-Haq, Z., Mesaik, M. A. & Choudhary, M. I. (2011). Bioorg. Med. Chem. 19, 4286-4294.]). For related structures see: Bouchareb et al. (2013[Bouchareb, H., Boudraa, M., Bouacida, S. & Merazig, H. (2013). Acta Cryst. E69, o1078-o1079.]); Roh & Jeong (2007[Roh, S.-G. & Jeong, J. H. (2007). Acta Cryst. E63, m2334.]); Popović et al. (2003[Popović, Z., Pavlović, G., Soldin, Ž., Tralić-Kulenović, V. & Racané, L. (2003). Acta Cryst. C59, m4-m6.]); Maniukiewicz (2004[Maniukiewicz, W. (2004). Acta Cryst. E60, m340-m341.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C7H5NS)2]

  • Mr = 396.22

  • Tetragonal, P 42 /m b c

  • a = 14.761 (6) Å

  • c = 7.170 (3) Å

  • V = 1562.3 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 150 K

  • 0.19 × 0.14 × 0.12 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.674, Tmax = 0.746

  • 15714 measured reflections

  • 918 independent reflections

  • 685 reflections with I > 2σ(I)

  • Rint = 0.117

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.092

  • S = 1.14

  • 918 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In recent years, benzothiazole and its derivatives have attracted more attention because they exhibit interesting optical and biological activities (Petkova et al., 2000; Karisson et al., 2003; Khan et al. 2011). Related structural studies are partly focused on the fact that the benzothiazole ring contains N, S and O as potential donor atoms, which exhibit good coordination capacity, and so are propitious to build novel complexes (Roh et al. 2007, Popović et al. 2003, Maniukiewicz 2004). As part of our ongoing studies of benzothiazole-based coordination networks (Bouchareb et al. 2013), we report herein the structure of a coordination polymer of manganese and a benzothiazole ligand (I). The molecular geometry and the atom-numbering scheme are shown in Fig 1.

In the title compound, the MnII cation is located on the intersection of a twofold rotation axis and a mirror plane. The coordination sphere is defined by two mutually trans N atoms from two neutral monodentate benzothiazole ligands occupying the axial positions, and four Cl atoms lying in the equatorial plane. All Mn–Cl bond lengths are identical [2.5232 (10)] Å by symmetry and the Mn—N bond lengths are 2.307 (4) Å. In the coordination octahedron, all N—Mn—Cl and Cl—Mn—Cl bond angles are in the range of 89.40 (7) – 90.60 (7)°. The MnII ions are connected by two bridging Cl atoms, resulting in a chain of octahedra parallel to the c axis (Fig. 2). The crystal packing can be descibed as alterning layers parallel to (001) (Fig. 3). The crystal structure features two ππ stacking interactions: Cg1—Cg1 = 3.6029 (15) Å and Cg1—Cg2 = 4.048 (2) Å, Where, Cg1 is the centroid of the imidazole ring (N1/C7/S1/C6/C1) and Cg2 is the centroid of the fused benzene ring (C1/C2/C3/C4/C5/C6). No hydrogen bonds are observed in the structure.

Related literature top

For applications of benzothiazole and its derivatives, see: Petkova et al. (2000); Karisson et al. (2003); Khan et al. (2011). For related structures see: Bouchareb et al. (2013); Roh et al. (2007); Popović et al. (2003); Maniukiewicz (2004).

Experimental top

Benzothiazole (1 ml) and ethanol (1 ml) were added to a solution of MnCl2·4H2O (39.5 mg, 0.2 mmol) in water (10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. After several days, single crystals suitable for X-ray diffraction were obtained.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were placed in idealized positions and refined in a riding-model approximation. The applied constraints were as follow: C—H = 0.93 Å and Uiso = 1.2Ueq(C).

Structure description top

In recent years, benzothiazole and its derivatives have attracted more attention because they exhibit interesting optical and biological activities (Petkova et al., 2000; Karisson et al., 2003; Khan et al. 2011). Related structural studies are partly focused on the fact that the benzothiazole ring contains N, S and O as potential donor atoms, which exhibit good coordination capacity, and so are propitious to build novel complexes (Roh et al. 2007, Popović et al. 2003, Maniukiewicz 2004). As part of our ongoing studies of benzothiazole-based coordination networks (Bouchareb et al. 2013), we report herein the structure of a coordination polymer of manganese and a benzothiazole ligand (I). The molecular geometry and the atom-numbering scheme are shown in Fig 1.

In the title compound, the MnII cation is located on the intersection of a twofold rotation axis and a mirror plane. The coordination sphere is defined by two mutually trans N atoms from two neutral monodentate benzothiazole ligands occupying the axial positions, and four Cl atoms lying in the equatorial plane. All Mn–Cl bond lengths are identical [2.5232 (10)] Å by symmetry and the Mn—N bond lengths are 2.307 (4) Å. In the coordination octahedron, all N—Mn—Cl and Cl—Mn—Cl bond angles are in the range of 89.40 (7) – 90.60 (7)°. The MnII ions are connected by two bridging Cl atoms, resulting in a chain of octahedra parallel to the c axis (Fig. 2). The crystal packing can be descibed as alterning layers parallel to (001) (Fig. 3). The crystal structure features two ππ stacking interactions: Cg1—Cg1 = 3.6029 (15) Å and Cg1—Cg2 = 4.048 (2) Å, Where, Cg1 is the centroid of the imidazole ring (N1/C7/S1/C6/C1) and Cg2 is the centroid of the fused benzene ring (C1/C2/C3/C4/C5/C6). No hydrogen bonds are observed in the structure.

For applications of benzothiazole and its derivatives, see: Petkova et al. (2000); Karisson et al. (2003); Khan et al. (2011). For related structures see: Bouchareb et al. (2013); Roh et al. (2007); Popović et al. (2003); Maniukiewicz (2004).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of, (I), with displacement ellipsoids drawn at the 50% probability level. Only the contents of the asymmetric unit are numbered. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The coordination around the MnII ion in a chain of octahedra parallel to the c axis
[Figure 3] Fig. 3. Packing diagram of (I) viewed along the a axis showing alterning layers parallel to (001).
catena-Poly[[trans-bis(1,3-benzothiazole-κN)manganese(II)]-di-µ-chlorido] top
Crystal data top
[MnCl2(C7H5NS)2]Dx = 1.685 Mg m3
Mr = 396.22Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/mbcCell parameters from 1270 reflections
Hall symbol: -P 4c 2abθ = 3.1–25.2°
a = 14.761 (6) ŵ = 1.45 mm1
c = 7.170 (3) ÅT = 150 K
V = 1562.3 (14) Å3Block, colorless
Z = 40.19 × 0.14 × 0.12 mm
F(000) = 796
Data collection top
Bruker APEXII
diffractometer
918 independent reflections
Radiation source: sealed tube685 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
φ and ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1818
Tmin = 0.674, Tmax = 0.746k = 1818
15714 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0376P)2 + 1.2805P]
where P = (Fo2 + 2Fc2)/3
918 reflections(Δ/σ)max = 0.007
64 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[MnCl2(C7H5NS)2]Z = 4
Mr = 396.22Mo Kα radiation
Tetragonal, P42/mbcµ = 1.45 mm1
a = 14.761 (6) ÅT = 150 K
c = 7.170 (3) Å0.19 × 0.14 × 0.12 mm
V = 1562.3 (14) Å3
Data collection top
Bruker APEXII
diffractometer
918 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
685 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.746Rint = 0.117
15714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.14Δρmax = 0.55 e Å3
918 reflectionsΔρmin = 0.46 e Å3
64 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8908 (3)0.2962 (3)10.0160 (9)
C20.9693 (3)0.2427 (3)10.0242 (11)
H21.02640.269210.029*
C30.9597 (3)0.1501 (3)10.0337 (13)
H31.01120.113710.04*
C40.8742 (3)0.1096 (3)10.0423 (16)
H40.86970.046810.051*
C50.7963 (3)0.1612 (3)10.0398 (15)
H50.73950.13410.048*
C60.8050 (3)0.2547 (3)10.0226 (10)
C70.8052 (3)0.4183 (3)10.0225 (11)
H70.79090.479610.027*
N10.8879 (2)0.3912 (2)10.0167 (7)
S10.72177 (8)0.33651 (9)10.0284 (3)
Cl10.91494 (5)0.58506 (5)0.750.0163 (2)
Mn110.510.0135 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.018 (2)0.012 (2)0.018 (2)0.0047 (18)00
C20.014 (2)0.018 (2)0.041 (3)0.0029 (18)00
C30.018 (2)0.016 (2)0.067 (4)0.002 (2)00
C40.026 (3)0.016 (3)0.084 (5)0.004 (2)00
C50.020 (3)0.023 (3)0.077 (4)0.012 (2)00
C60.018 (2)0.020 (2)0.030 (3)0.0039 (19)00
C70.019 (2)0.023 (3)0.026 (3)0.004 (2)00
N10.015 (2)0.016 (2)0.0192 (18)0.0017 (14)00
S10.0122 (6)0.0245 (7)0.0484 (8)0.0023 (5)00
Cl10.0161 (3)0.0161 (3)0.0167 (5)0.0030 (4)0.0004 (4)0.0004 (4)
Mn10.0128 (5)0.0128 (5)0.0150 (4)0.0003 (3)00
Geometric parameters (Å, º) top
C1—C21.402 (6)C6—S11.723 (5)
C1—N11.402 (5)C7—N11.284 (6)
C1—C61.406 (6)C7—S11.724 (5)
C2—C31.374 (6)C7—H70.93
C2—H20.93N1—Mn12.307 (4)
C3—C41.397 (7)Cl1—Mn1i2.5232 (10)
C3—H30.93Cl1—Mn12.5232 (10)
C4—C51.379 (7)Mn1—N1ii2.307 (4)
C4—H40.93Mn1—Cl1iii2.5232 (10)
C5—C61.386 (7)Mn1—Cl1ii2.5232 (10)
C5—H50.93Mn1—Cl1iv2.5232 (10)
C2—C1—N1126.1 (4)C7—N1—C1109.9 (4)
C2—C1—C6119.9 (4)C7—N1—Mn1117.7 (3)
N1—C1—C6114.1 (4)C1—N1—Mn1132.4 (3)
C3—C2—C1118.4 (4)C6—S1—C788.9 (2)
C3—C2—H2120.8Mn1i—Cl1—Mn190.54 (4)
C1—C2—H2120.8N1ii—Mn1—N1180
C2—C3—C4121.2 (5)N1ii—Mn1—Cl1iii89.40 (7)
C2—C3—H3119.4N1—Mn1—Cl1iii90.60 (7)
C4—C3—H3119.4N1ii—Mn1—Cl1ii89.40 (7)
C5—C4—C3121.1 (5)N1—Mn1—Cl1ii90.60 (7)
C5—C4—H4119.4Cl1iii—Mn1—Cl1ii90.54 (4)
C3—C4—H4119.4N1ii—Mn1—Cl190.60 (7)
C4—C5—C6118.2 (5)N1—Mn1—Cl189.40 (7)
C4—C5—H5120.9Cl1iii—Mn1—Cl189.46 (4)
C6—C5—H5120.9Cl1ii—Mn1—Cl1180
C5—C6—C1121.1 (4)N1ii—Mn1—Cl1iv90.60 (7)
C5—C6—S1129.2 (4)N1—Mn1—Cl1iv89.40 (7)
C1—C6—S1109.7 (3)Cl1iii—Mn1—Cl1iv180
N1—C7—S1117.4 (4)Cl1ii—Mn1—Cl1iv89.46 (4)
N1—C7—H7121.3Cl1—Mn1—Cl1iv90.54 (4)
S1—C7—H7121.3
N1—C1—C2—C3180C6—C1—N1—Mn1180
C6—C1—C2—C30C5—C6—S1—C7180
C1—C2—C3—C40C1—C6—S1—C70
C2—C3—C4—C50N1—C7—S1—C60
C3—C4—C5—C60C7—N1—Mn1—Cl1iii134.72 (2)
C4—C5—C6—C10C1—N1—Mn1—Cl1iii45.28 (2)
C4—C5—C6—S1180C7—N1—Mn1—Cl1ii134.72 (2)
C2—C1—C6—C50C1—N1—Mn1—Cl1ii45.28 (2)
N1—C1—C6—C5180C7—N1—Mn1—Cl145.28 (2)
C2—C1—C6—S1180C1—N1—Mn1—Cl1134.72 (2)
N1—C1—C6—S10C7—N1—Mn1—Cl1iv45.28 (2)
S1—C7—N1—C10C1—N1—Mn1—Cl1iv134.72 (2)
S1—C7—N1—Mn1180Mn1i—Cl1—Mn1—N1ii89.39 (7)
C2—C1—N1—C7180Mn1i—Cl1—Mn1—N190.61 (7)
C6—C1—N1—C70Mn1i—Cl1—Mn1—Cl1iv180
C2—C1—N1—Mn10
Symmetry codes: (i) y+1/2, x1/2, z+3/2; (ii) x+2, y+1, z+2; (iii) x+2, y+1, z; (iv) x, y, z+2.

Experimental details

Crystal data
Chemical formula[MnCl2(C7H5NS)2]
Mr396.22
Crystal system, space groupTetragonal, P42/mbc
Temperature (K)150
a, c (Å)14.761 (6), 7.170 (3)
V3)1562.3 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.19 × 0.14 × 0.12
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.674, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
15714, 918, 685
Rint0.117
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.092, 1.14
No. of reflections918
No. of parameters64
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.46

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).

 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université de Constantine 1, Algeria. Thanks are due to MESRS and ATRST (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Thématique de Recherche en Sciences et Technologie – Algérie) for financial support via the PNR programme.

References

First citationBouchareb, H., Boudraa, M., Bouacida, S. & Merazig, H. (2013). Acta Cryst. E69, o1078–o1079.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKarisson, H. J., Lincoln, P. & Westman, G. (2003). Bioorg. Med. Chem. 11, 1035–1040.  Web of Science PubMed Google Scholar
First citationKhan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Ul-Haq, Z., Mesaik, M. A. & Choudhary, M. I. (2011). Bioorg. Med. Chem. 19, 4286–4294.  Web of Science CrossRef CAS PubMed Google Scholar
First citationManiukiewicz, W. (2004). Acta Cryst. E60, m340–m341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPetkova, I., Nikolov, P. & Dryanska, V. (2000). J. Photochem. Photobiol. A, 133, 21–25.  Web of Science CrossRef CAS Google Scholar
First citationPopović, Z., Pavlović, G., Soldin, Ž., Tralić-Kulenović, V. & Racané, L. (2003). Acta Cryst. C59, m4–m6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoh, S.-G. & Jeong, J. H. (2007). Acta Cryst. E63, m2334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds