metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(dicyanamido-κN1)cobalt(II)]bis­­{μ-1,2-bis­­[(1,2,4-triazol-1-yl)meth­yl]benzene-κ2N4:N4′}]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xiaopingshen@163.com

(Received 22 May 2014; accepted 27 May 2014; online 4 June 2014)

In the title complex, [Co(C2N3)2(C12H12N6)2]n the CoII atom lies on a centre of symmetry and displays a slightly distorted octa­hedral coordination geometry. The 1,2-bis­[(1,2,4-triazol-1-yl)meth­yl]benzene ligands link adjacent metal atoms into polymeric chains parallel to the c axis, forming centrosymmetric 26-membered metallamacrocycles. The conformation of the metallamacrocycles is stabilized by pairs of C—H⋯N hydrogen bonds. The dihedral angles formed by the planes of the triazole rings with those of the benzene ring are 79.4 (2) and 79.1 (2)°. In the crystal, the chains inter­act through C—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Haasnoot (2000[Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.]); Cui et al. (2012[Cui, G. H., He, C. H., Jiao, C. H., Geng, J. C. & Blatov, V. A. (2012). CrystEngComm, 14, 4210-4216.]); Han et al. (2012[Han, M. L., Wang, J. G., Ma, L. F., Guo, H. & Wang, L. Y. (2012). CrystEngComm, 14, 2691-2701.]); Wang et al. (2012[Wang, N., Ma, J. G., Shi, W. & Cheng, P. (2012). CrystEngComm, 14, 5634-5638.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2N3)2(C12H12N6)2]

  • Mr = 671.58

  • Triclinic, [P \overline 1]

  • a = 8.517 (2) Å

  • b = 9.092 (2) Å

  • c = 9.622 (3) Å

  • α = 93.984 (7)°

  • β = 95.015 (7)°

  • γ = 97.587 (7)°

  • V = 733.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.831, Tmax = 0.893

  • 7244 measured reflections

  • 2658 independent reflections

  • 2118 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.111

  • S = 1.05

  • 2658 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯N9i 0.93 2.54 3.308 (4) 140
C11—H11A⋯N5ii 0.93 2.56 3.217 (5) 128
C12—H12A⋯N9iii 0.93 2.48 3.286 (4) 145
Symmetry codes: (i) x-1, y-1, z; (ii) -x+2, -y, -z+1; (iii) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized due to their magnetic properties and novel topologies (Haasnoot, 2000; Cui et al., Han et al., and Wang et al., 2012). As a contribution to this field, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. Each cobalt(II) atom lies on a centre of symmetry and displays a slightly distorted octahedral coordination geometry, provided by four nitrogen atoms from four symmetry-related obtz ligands forming the equatorial plane and by two nitrogen atoms from two dca anions at the apices (obtz = 1,2-bis(1,2,4-triazol-1-ylmethyl)benzene, dca = dicyanamide). Two centrosymmetrically-related obtz ligands link adjacent cobalt(II) atoms to form 22-membered metallamacrocycles, which are connected into one-dimensional chains running parallel to the c axis (Fig. 2). The Co···Co separations within the chain are equal to the c-axis translation (9.622 (3) Å). The obtz ligands exhibit a gauche conformation. The triazole rings form a dihedral angle of 80.5 (2)° and are inclined by 79.4 (2) and 79.1 (2)° with respect to the benzene ring. The conformation of the metallamacrocycles is enforced by pairs of C—H···N hydrogen bonds (Table 1). In the crystal, chains interact through C—H···N hydrogen bonds (Table 1) to form a three-dimensional network.

Related literature top

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Haasnoot (2000); Cui et al. (2012); Han et al. (2012); Wang et al. (2012).

Experimental top

A 20 ml H2O/MeOH solution (1:1 v/v) of Co(NO3)2.6H2O (0.5 mmol) was added to one leg of an "H-shaped" tube, and a 20 ml H2O/MeOH (1:1 v/v) solution of obtz (1.0 mmol) and Na[N(CN)2] (1.0 mmol) was added to the other leg of the tube. After two weeks, well shaped single crystals were obtained. Yield: 61%. Found: C, 50.03; H, 3.54; N, 37.49. Calcd. for C28H24CoN18 (I): C, 50.08; H, 3.60; N, 37.55%.

Refinement top

H atoms were placed in idealized positions and refined as riding, with C—H distances of 0.93 (triazole and benzene) and 0.97 Å (methylene), and with Uiso(H) = 1.2 Ueq(C).

Structure description top

A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized due to their magnetic properties and novel topologies (Haasnoot, 2000; Cui et al., Han et al., and Wang et al., 2012). As a contribution to this field, we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. Each cobalt(II) atom lies on a centre of symmetry and displays a slightly distorted octahedral coordination geometry, provided by four nitrogen atoms from four symmetry-related obtz ligands forming the equatorial plane and by two nitrogen atoms from two dca anions at the apices (obtz = 1,2-bis(1,2,4-triazol-1-ylmethyl)benzene, dca = dicyanamide). Two centrosymmetrically-related obtz ligands link adjacent cobalt(II) atoms to form 22-membered metallamacrocycles, which are connected into one-dimensional chains running parallel to the c axis (Fig. 2). The Co···Co separations within the chain are equal to the c-axis translation (9.622 (3) Å). The obtz ligands exhibit a gauche conformation. The triazole rings form a dihedral angle of 80.5 (2)° and are inclined by 79.4 (2) and 79.1 (2)° with respect to the benzene ring. The conformation of the metallamacrocycles is enforced by pairs of C—H···N hydrogen bonds (Table 1). In the crystal, chains interact through C—H···N hydrogen bonds (Table 1) to form a three-dimensional network.

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Haasnoot (2000); Cui et al. (2012); Han et al. (2012); Wang et al. (2012).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 2, -y, -z + 1; (iii) x, y, z - 1]. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The polymeric one-dimensional chain in the title compound. Hydrogen atoms are omitted for clarity.
catena-Poly[[bis(dicyanamido-κN1)cobalt(II)]bis{µ-1,2-bis[(1,2,4-triazol-1-yl)methyl]benzene-κ2N4:N4'}] top
Crystal data top
[Co(C2N3)2(C12H12N6)2]Z = 1
Mr = 671.58F(000) = 345
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.517 (2) ÅCell parameters from 2443 reflections
b = 9.092 (2) Åθ = 3.1–25.4°
c = 9.622 (3) ŵ = 0.64 mm1
α = 93.984 (7)°T = 293 K
β = 95.015 (7)°Block, orange
γ = 97.587 (7)°0.30 × 0.20 × 0.18 mm
V = 733.2 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
2658 independent reflections
Radiation source: fine-focus sealed tube2118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 910
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1010
Tmin = 0.831, Tmax = 0.893l = 119
7244 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3399P]
where P = (Fo2 + 2Fc2)/3
2658 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Co(C2N3)2(C12H12N6)2]γ = 97.587 (7)°
Mr = 671.58V = 733.2 (3) Å3
Triclinic, P1Z = 1
a = 8.517 (2) ÅMo Kα radiation
b = 9.092 (2) ŵ = 0.64 mm1
c = 9.622 (3) ÅT = 293 K
α = 93.984 (7)°0.30 × 0.20 × 0.18 mm
β = 95.015 (7)°
Data collection top
Rigaku Mercury CCD
diffractometer
2658 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2118 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.893Rint = 0.041
7244 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2658 reflectionsΔρmin = 0.29 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00000.00000.00000.0318 (2)
N10.6352 (3)0.1812 (3)0.2157 (2)0.0372 (6)
N20.5728 (4)0.0354 (3)0.2084 (3)0.0596 (8)
N30.7995 (3)0.0625 (3)0.1044 (2)0.0344 (6)
N40.7413 (3)0.1313 (3)0.6393 (2)0.0399 (6)
N50.8430 (4)0.0608 (3)0.5692 (3)0.0589 (8)
N60.8898 (3)0.0428 (3)0.8003 (2)0.0358 (6)
N71.1984 (3)0.4878 (3)0.0020 (3)0.0530 (8)
N81.1042 (3)0.2262 (3)0.0262 (3)0.0433 (7)
N91.4468 (3)0.6425 (3)0.0931 (3)0.0545 (8)
C10.6521 (4)0.3991 (3)0.3874 (3)0.0397 (7)
C20.6915 (4)0.3559 (4)0.5211 (3)0.0408 (8)
C30.7892 (4)0.4559 (4)0.6162 (4)0.0562 (9)
H3A0.81780.42730.70480.067*
C40.8452 (5)0.5969 (4)0.5828 (4)0.0673 (11)
H4A0.91140.66210.64830.081*
C50.8034 (5)0.6410 (4)0.4529 (4)0.0695 (11)
H5A0.83850.73700.43080.083*
C60.7093 (5)0.5422 (4)0.3556 (4)0.0562 (9)
H6A0.68340.57150.26680.067*
C70.5494 (4)0.2970 (4)0.2755 (3)0.0463 (8)
H7A0.45640.24990.31510.056*
H7B0.51300.35520.20150.056*
C80.6221 (4)0.2075 (4)0.5666 (3)0.0469 (8)
H8A0.54030.22290.62810.056*
H8B0.57220.14460.48490.056*
C90.6753 (4)0.0309 (4)0.1403 (4)0.0540 (9)
H9A0.66310.13330.11880.065*
C100.7693 (3)0.1939 (3)0.1547 (3)0.0348 (7)
H10A0.83390.28350.14820.042*
C110.9294 (4)0.0098 (4)0.6696 (3)0.0539 (9)
H11A1.01160.04490.65250.065*
C120.7701 (4)0.1187 (3)0.7761 (3)0.0401 (7)
H12A0.71360.15800.84480.048*
C131.1548 (3)0.3483 (3)0.0180 (3)0.0356 (7)
C141.3340 (4)0.5617 (3)0.0535 (3)0.0396 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0361 (3)0.0240 (3)0.0352 (3)0.0040 (2)0.0037 (2)0.0028 (2)
N10.0416 (15)0.0357 (15)0.0358 (14)0.0106 (12)0.0040 (12)0.0037 (11)
N20.0564 (19)0.0465 (18)0.077 (2)0.0006 (15)0.0282 (16)0.0005 (16)
N30.0371 (14)0.0302 (14)0.0366 (13)0.0042 (11)0.0064 (11)0.0045 (11)
N40.0457 (15)0.0430 (15)0.0340 (14)0.0121 (12)0.0061 (12)0.0100 (12)
N50.078 (2)0.066 (2)0.0397 (16)0.0324 (17)0.0117 (15)0.0035 (15)
N60.0418 (15)0.0306 (14)0.0362 (14)0.0077 (11)0.0069 (11)0.0018 (11)
N70.0491 (17)0.0319 (16)0.074 (2)0.0018 (13)0.0094 (15)0.0137 (14)
N80.0464 (16)0.0276 (15)0.0554 (17)0.0016 (12)0.0081 (13)0.0027 (12)
N90.0522 (18)0.0388 (17)0.070 (2)0.0013 (15)0.0032 (16)0.0001 (15)
C10.0480 (19)0.0432 (19)0.0336 (16)0.0219 (15)0.0086 (14)0.0063 (14)
C20.0428 (18)0.0438 (19)0.0388 (17)0.0132 (15)0.0090 (14)0.0051 (15)
C30.067 (2)0.057 (2)0.043 (2)0.0051 (19)0.0021 (18)0.0044 (18)
C40.080 (3)0.056 (2)0.061 (3)0.001 (2)0.001 (2)0.004 (2)
C50.091 (3)0.045 (2)0.072 (3)0.002 (2)0.011 (2)0.012 (2)
C60.077 (3)0.053 (2)0.046 (2)0.022 (2)0.0127 (19)0.0172 (18)
C70.051 (2)0.056 (2)0.0377 (17)0.0278 (17)0.0034 (15)0.0071 (16)
C80.0436 (19)0.055 (2)0.0440 (19)0.0090 (16)0.0008 (15)0.0165 (16)
C90.054 (2)0.0355 (19)0.073 (2)0.0015 (16)0.0240 (19)0.0050 (17)
C100.0358 (17)0.0304 (16)0.0385 (16)0.0042 (13)0.0046 (14)0.0050 (13)
C110.072 (2)0.055 (2)0.0413 (19)0.0341 (19)0.0077 (17)0.0024 (17)
C120.0437 (19)0.0464 (19)0.0329 (16)0.0124 (15)0.0099 (14)0.0031 (14)
C130.0378 (17)0.0336 (18)0.0356 (17)0.0055 (14)0.0047 (13)0.0023 (14)
C140.049 (2)0.0287 (17)0.0442 (18)0.0092 (16)0.0119 (16)0.0059 (14)
Geometric parameters (Å, º) top
Co1—N8i2.118 (3)N9—C141.148 (4)
Co1—N82.118 (3)C1—C61.392 (5)
Co1—N6ii2.147 (2)C1—C21.397 (4)
Co1—N6iii2.147 (2)C1—C71.506 (4)
Co1—N32.174 (2)C2—C31.381 (4)
Co1—N3i2.174 (2)C2—C81.510 (4)
N1—C101.325 (4)C3—C41.377 (5)
N1—N21.356 (4)C3—H3A0.9300
N1—C71.472 (4)C4—C51.370 (5)
N2—C91.319 (4)C4—H4A0.9300
N3—C101.322 (4)C5—C61.374 (5)
N3—C91.352 (4)C5—H5A0.9300
N4—C121.333 (4)C6—H6A0.9300
N4—N51.344 (4)C7—H7A0.9700
N4—C81.459 (4)C7—H7B0.9700
N5—C111.311 (4)C8—H8A0.9700
N6—C121.318 (4)C8—H8B0.9700
N6—C111.354 (4)C9—H9A0.9300
N6—Co1iv2.147 (2)C10—H10A0.9300
N7—C141.296 (4)C11—H11A0.9300
N7—C131.297 (4)C12—H12A0.9300
N8—C131.147 (4)
N8i—Co1—N8180.00 (6)C4—C3—H3A119.3
N8i—Co1—N6ii88.36 (9)C2—C3—H3A119.3
N8—Co1—N6ii91.64 (9)C5—C4—C3120.0 (4)
N8i—Co1—N6iii91.64 (9)C5—C4—H4A120.0
N8—Co1—N6iii88.36 (9)C3—C4—H4A120.0
N6ii—Co1—N6iii180.00 (13)C4—C5—C6119.5 (4)
N8i—Co1—N391.36 (9)C4—C5—H5A120.3
N8—Co1—N388.64 (9)C6—C5—H5A120.3
N6ii—Co1—N388.73 (9)C5—C6—C1121.3 (3)
N6iii—Co1—N391.27 (9)C5—C6—H6A119.3
N8i—Co1—N3i88.64 (9)C1—C6—H6A119.3
N8—Co1—N3i91.36 (9)N1—C7—C1112.1 (2)
N6ii—Co1—N3i91.27 (9)N1—C7—H7A109.2
N6iii—Co1—N3i88.73 (9)C1—C7—H7A109.2
N3—Co1—N3i180.00 (12)N1—C7—H7B109.2
C10—N1—N2109.0 (2)C1—C7—H7B109.2
C10—N1—C7130.1 (3)H7A—C7—H7B107.9
N2—N1—C7120.8 (3)N4—C8—C2112.7 (3)
C9—N2—N1103.0 (3)N4—C8—H8A109.0
C10—N3—C9102.4 (3)C2—C8—H8A109.0
C10—N3—Co1131.0 (2)N4—C8—H8B109.0
C9—N3—Co1126.5 (2)C2—C8—H8B109.0
C12—N4—N5109.6 (2)H8A—C8—H8B107.8
C12—N4—C8129.0 (3)N2—C9—N3114.4 (3)
N5—N4—C8121.4 (2)N2—C9—H9A122.8
C11—N5—N4102.8 (3)N3—C9—H9A122.8
C12—N6—C11102.3 (3)N3—C10—N1111.2 (3)
C12—N6—Co1iv127.4 (2)N3—C10—H10A124.4
C11—N6—Co1iv130.2 (2)N1—C10—H10A124.4
C14—N7—C13124.1 (3)N5—C11—N6114.8 (3)
C13—N8—Co1169.2 (3)N5—C11—H11A122.6
C6—C1—C2119.0 (3)N6—C11—H11A122.6
C6—C1—C7118.3 (3)N6—C12—N4110.5 (3)
C2—C1—C7122.7 (3)N6—C12—H12A124.7
C3—C2—C1118.7 (3)N4—C12—H12A124.7
C3—C2—C8119.4 (3)N8—C13—N7174.2 (3)
C1—C2—C8121.8 (3)N9—C14—N7171.4 (3)
C4—C3—C2121.5 (3)
C10—N1—N2—C90.8 (4)C2—C1—C6—C50.0 (5)
C7—N1—N2—C9175.3 (3)C7—C1—C6—C5179.9 (3)
N8i—Co1—N3—C10178.4 (3)C10—N1—C7—C156.9 (4)
N8—Co1—N3—C101.6 (3)N2—N1—C7—C1128.0 (3)
N6ii—Co1—N3—C1093.2 (3)C6—C1—C7—N1105.8 (3)
N6iii—Co1—N3—C1086.8 (3)C2—C1—C7—N174.3 (4)
N8i—Co1—N3—C95.4 (3)C12—N4—C8—C2102.7 (4)
N8—Co1—N3—C9174.6 (3)N5—N4—C8—C277.0 (4)
N6ii—Co1—N3—C983.0 (3)C3—C2—C8—N449.1 (4)
N6iii—Co1—N3—C997.0 (3)C1—C2—C8—N4134.9 (3)
C12—N4—N5—C110.4 (4)N1—N2—C9—N30.4 (4)
C8—N4—N5—C11179.3 (3)C10—N3—C9—N20.1 (4)
N6ii—Co1—N8—C13162.9 (13)Co1—N3—C9—N2177.2 (2)
N6iii—Co1—N8—C1317.1 (13)C9—N3—C10—N10.6 (3)
N3—Co1—N8—C13108.5 (13)Co1—N3—C10—N1177.47 (18)
N3i—Co1—N8—C1371.5 (13)N2—N1—C10—N30.9 (3)
C6—C1—C2—C31.5 (5)C7—N1—C10—N3174.6 (3)
C7—C1—C2—C3178.6 (3)N4—N5—C11—N60.1 (4)
C6—C1—C2—C8174.6 (3)C12—N6—C11—N50.3 (4)
C7—C1—C2—C85.3 (5)Co1iv—N6—C11—N5175.5 (2)
C1—C2—C3—C41.3 (5)C11—N6—C12—N40.6 (3)
C8—C2—C3—C4174.9 (3)Co1iv—N6—C12—N4175.45 (18)
C2—C3—C4—C50.4 (6)N5—N4—C12—N60.7 (4)
C3—C4—C5—C61.9 (6)C8—N4—C12—N6179.0 (3)
C4—C5—C6—C11.7 (6)
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1; (iii) x, y, z1; (iv) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N9v0.932.543.308 (4)140
C11—H11A···N5ii0.932.563.217 (5)128
C12—H12A···N9vi0.932.483.286 (4)145
Symmetry codes: (ii) x+2, y, z+1; (v) x1, y1, z; (vi) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···N9i0.932.543.308 (4)140
C11—H11A···N5ii0.932.563.217 (5)128
C12—H12A···N9iii0.932.483.286 (4)145
Symmetry codes: (i) x1, y1, z; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 51072071) for financial support.

References

First citationCui, G. H., He, C. H., Jiao, C. H., Geng, J. C. & Blatov, V. A. (2012). CrystEngComm, 14, 4210–4216.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.  Web of Science CrossRef CAS Google Scholar
First citationHan, M. L., Wang, J. G., Ma, L. F., Guo, H. & Wang, L. Y. (2012). CrystEngComm, 14, 2691–2701.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, N., Ma, J. G., Shi, W. & Cheng, P. (2012). CrystEngComm, 14, 5634–5638.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds