organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Adamantan-1-yl)-4-benzyl-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, bKing Abdullah Institute for Nanotechnology (KAIN), King Saud University, Riyadh 11451, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: elemam5@hotmail.com, hfun.c@ksu.edu.sa

(Received 3 June 2014; accepted 6 June 2014; online 14 June 2014)

The title compound, C19H23N3S, is a functionalized triazoline-3-thione derivative. The benzyl ring is almost normal to the planar 1,2,4-triazole ring (r.m.s. deviation = 0.007 Å) with a dihedral angle of 86.90 (7)°. In the crystal, molecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers that enclose R22(8) loops. The crystal packing is further stabilized by weak C—H⋯π inter­actions that link adjacent dimeric units into supra­molecular chains extending along the a-axis direction.

Related literature

For the biological activity of adamantane derivatives, see: Lorenzo et al. (2008[Lorenzo, P., Alvarez, R., Ortiz, M. A., Alvarez, S., Piedrafita, F. J. & de Lera, A. (2008). J. Med. Chem. 51, 5431-5440.]); Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]); Wang et al. (2013[Wang, J., Ma, C., Wang, J., Jo, H., Canturk, B., Fiorin, G., Pinto, L. H., Lamb, R. A., Klein, M. L. & DeGrado, W. F. (2013). J. Med. Chem. 56, 2804-2812.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Kadi et al. (2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Balzarini et al. (2009[Balzarini, J., Orzeszko-Krzesinska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303-311.]); Protopopova et al. (2005[Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968-974.]); Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]). For related adamantyl-1,2,4-triazole structures, see: El-Emam et al. (2012[El-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347.]), Al-Tamimi et al. (2013[Al-Tamimi, A.-M. S., Al-Abdullah, E. S., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o685-o686.]). For the synthesis of the title compound, see El-Emam & Ibrahim (1991[El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260-1264.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H23N3S

  • Mr = 325.46

  • Triclinic, [P \overline 1]

  • a = 7.6407 (4) Å

  • b = 10.5150 (5) Å

  • c = 12.3434 (5) Å

  • α = 67.1806 (13)°

  • β = 72.9688 (13)°

  • γ = 70.0695 (14)°

  • V = 844.42 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.60 × 0.48 × 0.34 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.891, Tmax = 0.937

  • 43581 measured reflections

  • 5166 independent reflections

  • 4651 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.08

  • 5166 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1–N3/C8/C9 triazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.85 (2) 2.44 (2) 3.2753 (11) 169.1 (18)
C19—H19BCg1ii 0.97 2.85 3.7885 (17) 141
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Adamantane derivatives have long been known for their diverse biological activities (Lorenzo et al., 2008; Al-Deeb et al., 2006; Wang et al., 2013). These also include antiviral activity against influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004; Balzarini et al., 2009). In addition, adamantane derivative were recently reported to exhibit marked antibacterial activity (Kadi et al., 2010; Protopopova et al., 2005). In an earlier publication, we reported the synthesis and potent anti-inflammatory of a series of 5-(1-adamantyl)-4-substituted-4H-1,2,4-triazole-3-thiols and related derivatives including the title compound (El-Emam & Ibrahim, 1991).

In the title compound (Fig. 1), the 1,2,4-triazole (N1—N3/C8/C9) ring is nearly planar with a maximum deviation of -0.007 (1) Å at atom N2. The central 1,2,4-triazole ring forms dihedral angles of 86.90 (7)° and 69 (4)° with the adjacent phenyl (C1–C6) and adamantyl (C10–C19) substituents attached at the 4- and 5-positions, respectively. The attached phenyl ring is almost perpendicular to the plane of the triazole which is evident from the C9–N1–C7–C6 torsion angle of -95.63 (12)°. In the crystal packing (Fig. 2), centrosymmetric dimeric aggregates are formed by pairs of N2—H1N2···S1 hydrogen bonds resulting in an R22(8) ring motif (Bernstein et al., 1995). These are connected into supramolecular chains extending along the a axis direction via weak intermolecular C–H···π(triazole) interactions (Table 1).

Related literature top

For the biological activity of adamantane derivatives, see: Lorenzo et al. (2008); Al-Deeb et al. (2006); Wang et al. (2013); El-Emam et al. (2004); Kadi et al. (2010); Balzarini et al. (2009); Protopopova et al. (2005); Vernier et al. (1969). For related adamantyl-1,2,4-triazole structures, see: El-Emam et al. (2012), Al-Tamimi et al. (2013). For the synthesis of the title compound, see El-Emam & Ibrahim (1991). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of adamantane-1-carbohydrazide (1.94 g, 0.01 mol), benzyl isothiocyanate (1.49 g, 0.01 mol), in ethanol (10 ml) was heated under reflux with stirring for one hour and the solvent was distilled off in vacuo. Aqueous sodium hydroxide solution (10%, 15 ml) was added to the residue and the mixture was heated under reflux for 2 h. then filtered hot. On cooling, the mixture was acidified with hydrochloric acid and the precipitated crude product was filtered, washed with water, dried and crystallized from aqueous ethanol to yield 2.93 g (90%) of the title compound (C19H23N3S) as colorless crystals. M·P.: 241–243 °C.

1H NMR (CDCl3, 700.17 MHz): δ 1.64–1.69 (m, 6H, Adamantane-H), 1.90 (s, 6H, Adamantane-H), 2.20 (s, 3H, Adamantane-H), 5.53 (s, 2H, CH2), 7.04–7.63 (s, 5H, Ar—H), 11.55 (br. s, 1H, NH). 13C NMR (CDCl3, 176.08 MHz): δ 28.51, 35.66, 36.86, 39.08 (Adamantane-C), 63.56 (CH2), 121.25, 123.0, 124.27, 130.54 (Ar—C), 154.06 (C=N), 164.41 (C=S).

Refinement top

The nitrogen-bound H-atom was located in a difference Fourier map and was refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl group.

Structure description top

Adamantane derivatives have long been known for their diverse biological activities (Lorenzo et al., 2008; Al-Deeb et al., 2006; Wang et al., 2013). These also include antiviral activity against influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004; Balzarini et al., 2009). In addition, adamantane derivative were recently reported to exhibit marked antibacterial activity (Kadi et al., 2010; Protopopova et al., 2005). In an earlier publication, we reported the synthesis and potent anti-inflammatory of a series of 5-(1-adamantyl)-4-substituted-4H-1,2,4-triazole-3-thiols and related derivatives including the title compound (El-Emam & Ibrahim, 1991).

In the title compound (Fig. 1), the 1,2,4-triazole (N1—N3/C8/C9) ring is nearly planar with a maximum deviation of -0.007 (1) Å at atom N2. The central 1,2,4-triazole ring forms dihedral angles of 86.90 (7)° and 69 (4)° with the adjacent phenyl (C1–C6) and adamantyl (C10–C19) substituents attached at the 4- and 5-positions, respectively. The attached phenyl ring is almost perpendicular to the plane of the triazole which is evident from the C9–N1–C7–C6 torsion angle of -95.63 (12)°. In the crystal packing (Fig. 2), centrosymmetric dimeric aggregates are formed by pairs of N2—H1N2···S1 hydrogen bonds resulting in an R22(8) ring motif (Bernstein et al., 1995). These are connected into supramolecular chains extending along the a axis direction via weak intermolecular C–H···π(triazole) interactions (Table 1).

For the biological activity of adamantane derivatives, see: Lorenzo et al. (2008); Al-Deeb et al. (2006); Wang et al. (2013); El-Emam et al. (2004); Kadi et al. (2010); Balzarini et al. (2009); Protopopova et al. (2005); Vernier et al. (1969). For related adamantyl-1,2,4-triazole structures, see: El-Emam et al. (2012), Al-Tamimi et al. (2013). For the synthesis of the title compound, see El-Emam & Ibrahim (1991). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H-atoms not involved in the hydrogen bonding are omitted for clarity.
3-(Adamantan-1-yl)-4-benzyl-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C19H23N3SZ = 2
Mr = 325.46F(000) = 348
Triclinic, P1Dx = 1.280 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6407 (4) ÅCell parameters from 9608 reflections
b = 10.5150 (5) Åθ = 2.9–30.6°
c = 12.3434 (5) ŵ = 0.20 mm1
α = 67.1806 (13)°T = 293 K
β = 72.9688 (13)°Block, colourless
γ = 70.0695 (14)°0.60 × 0.48 × 0.34 mm
V = 844.42 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5166 independent reflections
Radiation source: fine-focus sealed tube4651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.891, Tmax = 0.937k = 1515
43581 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.1424P]
where P = (Fo2 + 2Fc2)/3
5166 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C19H23N3Sγ = 70.0695 (14)°
Mr = 325.46V = 844.42 (7) Å3
Triclinic, P1Z = 2
a = 7.6407 (4) ÅMo Kα radiation
b = 10.5150 (5) ŵ = 0.20 mm1
c = 12.3434 (5) ÅT = 293 K
α = 67.1806 (13)°0.60 × 0.48 × 0.34 mm
β = 72.9688 (13)°
Data collection top
Bruker APEXII CCD
diffractometer
5166 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4651 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.937Rint = 0.029
43581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.31 e Å3
5166 reflectionsΔρmin = 0.56 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.05370 (4)0.44991 (3)0.32578 (3)0.03965 (10)
N10.70863 (12)0.63160 (9)0.28216 (7)0.02792 (16)
N20.74865 (14)0.58334 (11)0.45903 (8)0.0360 (2)
N30.57266 (14)0.67716 (11)0.45231 (8)0.0359 (2)
C10.75626 (15)0.49115 (13)0.03402 (10)0.0363 (2)
H1A0.81420.55550.03020.044*
C20.71844 (19)0.38114 (15)0.01658 (13)0.0471 (3)
H2A0.75120.37190.05930.057*
C30.6325 (2)0.28550 (15)0.11137 (15)0.0522 (3)
H3A0.60730.21180.09950.063*
C40.5840 (2)0.29922 (14)0.22381 (14)0.0497 (3)
H4A0.52530.23490.28760.060*
C50.62220 (17)0.40876 (12)0.24249 (10)0.0390 (2)
H5A0.59030.41690.31870.047*
C60.70774 (13)0.50549 (10)0.14754 (8)0.02895 (19)
C70.75127 (15)0.62875 (11)0.15983 (8)0.03048 (19)
H7A0.88460.62420.12820.037*
H7B0.67930.71750.11130.037*
C80.83679 (14)0.55430 (10)0.35740 (9)0.03030 (19)
C90.54907 (13)0.70511 (10)0.34398 (8)0.02803 (18)
C100.37568 (13)0.81094 (10)0.29687 (8)0.02757 (18)
C110.22454 (18)0.84649 (16)0.40233 (11)0.0460 (3)
H11A0.18940.76040.45840.055*
H11B0.27610.88300.44390.055*
C120.04846 (19)0.95844 (17)0.35680 (13)0.0513 (3)
H12A0.04610.98060.42470.062*
C130.1044 (2)1.09463 (16)0.26935 (19)0.0642 (4)
H13A0.15661.13260.30940.077*
H13B0.00651.16630.24110.077*
C140.2523 (2)1.05937 (13)0.16312 (15)0.0553 (4)
H14A0.28731.14650.10640.066*
C150.1686 (2)0.99973 (17)0.10091 (13)0.0546 (3)
H15A0.05851.07050.07090.065*
H15B0.26140.97730.03360.065*
C160.11210 (18)0.86562 (14)0.18917 (12)0.0436 (3)
H16A0.05810.82790.14880.052*
C170.28778 (16)0.75284 (12)0.23410 (11)0.0380 (2)
H17A0.38000.72900.16720.046*
H17B0.25240.66670.28970.046*
C180.42886 (18)0.94874 (12)0.20848 (12)0.0428 (3)
H18A0.48180.98700.24790.051*
H18B0.52390.92770.14150.051*
C190.03504 (18)0.90065 (16)0.29388 (14)0.0499 (3)
H19A0.14640.97120.26540.060*
H19B0.07280.81530.34930.060*
H1N20.798 (3)0.5628 (19)0.5188 (16)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03414 (15)0.04240 (16)0.04517 (17)0.00090 (11)0.01292 (11)0.02211 (12)
N10.0301 (4)0.0295 (4)0.0249 (3)0.0049 (3)0.0058 (3)0.0114 (3)
N20.0363 (4)0.0423 (5)0.0276 (4)0.0032 (4)0.0107 (3)0.0118 (3)
N30.0351 (4)0.0435 (5)0.0264 (4)0.0027 (4)0.0068 (3)0.0140 (3)
C10.0341 (5)0.0463 (6)0.0330 (5)0.0067 (4)0.0059 (4)0.0208 (4)
C20.0439 (6)0.0582 (7)0.0537 (7)0.0057 (5)0.0127 (5)0.0368 (6)
C30.0468 (7)0.0482 (7)0.0780 (9)0.0082 (5)0.0187 (6)0.0355 (7)
C40.0485 (7)0.0399 (6)0.0619 (8)0.0167 (5)0.0066 (6)0.0158 (5)
C50.0414 (6)0.0381 (5)0.0367 (5)0.0109 (4)0.0020 (4)0.0144 (4)
C60.0261 (4)0.0323 (4)0.0295 (4)0.0029 (3)0.0052 (3)0.0149 (3)
C70.0348 (5)0.0337 (5)0.0238 (4)0.0092 (4)0.0022 (3)0.0122 (3)
C80.0327 (4)0.0295 (4)0.0302 (4)0.0067 (3)0.0087 (3)0.0103 (3)
C90.0301 (4)0.0295 (4)0.0242 (4)0.0063 (3)0.0044 (3)0.0101 (3)
C100.0292 (4)0.0276 (4)0.0256 (4)0.0053 (3)0.0050 (3)0.0101 (3)
C110.0372 (5)0.0618 (7)0.0336 (5)0.0026 (5)0.0053 (4)0.0240 (5)
C120.0377 (6)0.0647 (8)0.0516 (7)0.0076 (5)0.0096 (5)0.0357 (6)
C130.0572 (8)0.0428 (7)0.1067 (13)0.0107 (6)0.0372 (9)0.0429 (8)
C140.0536 (7)0.0294 (5)0.0729 (9)0.0095 (5)0.0244 (7)0.0022 (5)
C150.0523 (7)0.0577 (8)0.0418 (6)0.0021 (6)0.0200 (6)0.0058 (6)
C160.0399 (6)0.0473 (6)0.0527 (7)0.0034 (5)0.0192 (5)0.0243 (5)
C170.0377 (5)0.0351 (5)0.0480 (6)0.0052 (4)0.0136 (4)0.0199 (4)
C180.0402 (6)0.0310 (5)0.0536 (7)0.0126 (4)0.0123 (5)0.0043 (4)
C190.0324 (5)0.0551 (7)0.0610 (8)0.0069 (5)0.0090 (5)0.0207 (6)
Geometric parameters (Å, º) top
S1—C81.6784 (10)C10—C171.5415 (14)
N1—C81.3735 (12)C11—C121.5368 (18)
N1—C91.3915 (12)C11—H11A0.9700
N1—C71.4586 (12)C11—H11B0.9700
N2—C81.3351 (13)C12—C191.517 (2)
N2—N31.3732 (13)C12—C131.532 (3)
N2—H1N20.846 (19)C12—H12A0.9800
N3—C91.3065 (12)C13—C141.535 (3)
C1—C21.3876 (16)C13—H13A0.9700
C1—C61.3946 (13)C13—H13B0.9700
C1—H1A0.9300C14—C151.525 (2)
C2—C31.378 (2)C14—C181.5344 (18)
C2—H2A0.9300C14—H14A0.9800
C3—C41.379 (2)C15—C161.520 (2)
C3—H3A0.9300C15—H15A0.9700
C4—C51.3929 (17)C15—H15B0.9700
C4—H4A0.9300C16—C191.5185 (19)
C5—C61.3840 (15)C16—C171.5351 (16)
C5—H5A0.9300C16—H16A0.9800
C6—C71.5131 (13)C17—H17A0.9700
C7—H7A0.9700C17—H17B0.9700
C7—H7B0.9700C18—H18A0.9700
C9—C101.5086 (13)C18—H18B0.9700
C10—C111.5396 (14)C19—H19A0.9700
C10—C181.5396 (14)C19—H19B0.9700
C8—N1—C9108.06 (8)C19—C12—C13109.53 (12)
C8—N1—C7121.22 (8)C19—C12—C11109.84 (11)
C9—N1—C7130.71 (8)C13—C12—C11109.41 (12)
C8—N2—N3113.41 (9)C19—C12—H12A109.3
C8—N2—H1N2126.3 (12)C13—C12—H12A109.3
N3—N2—H1N2119.1 (12)C11—C12—H12A109.3
C9—N3—N2104.79 (8)C12—C13—C14109.13 (10)
C2—C1—C6120.22 (11)C12—C13—H13A109.9
C2—C1—H1A119.9C14—C13—H13A109.9
C6—C1—H1A119.9C12—C13—H13B109.9
C3—C2—C1120.15 (11)C14—C13—H13B109.9
C3—C2—H2A119.9H13A—C13—H13B108.3
C1—C2—H2A119.9C15—C14—C18109.88 (12)
C2—C3—C4119.91 (11)C15—C14—C13109.38 (12)
C2—C3—H3A120.0C18—C14—C13109.37 (13)
C4—C3—H3A120.0C15—C14—H14A109.4
C3—C4—C5120.43 (12)C18—C14—H14A109.4
C3—C4—H4A119.8C13—C14—H14A109.4
C5—C4—H4A119.8C16—C15—C14109.44 (11)
C6—C5—C4119.92 (11)C16—C15—H15A109.8
C6—C5—H5A120.0C14—C15—H15A109.8
C4—C5—H5A120.0C16—C15—H15B109.8
C5—C6—C1119.36 (10)C14—C15—H15B109.8
C5—C6—C7123.23 (9)H15A—C15—H15B108.2
C1—C6—C7117.40 (9)C19—C16—C15109.94 (11)
N1—C7—C6114.42 (8)C19—C16—C17109.96 (11)
N1—C7—H7A108.7C15—C16—C17109.53 (10)
C6—C7—H7A108.7C19—C16—H16A109.1
N1—C7—H7B108.7C15—C16—H16A109.1
C6—C7—H7B108.7C17—C16—H16A109.1
H7A—C7—H7B107.6C16—C17—C10109.85 (9)
N2—C8—N1103.79 (9)C16—C17—H17A109.7
N2—C8—S1129.01 (8)C10—C17—H17A109.7
N1—C8—S1127.19 (8)C16—C17—H17B109.7
N3—C9—N1109.93 (9)C10—C17—H17B109.7
N3—C9—C10122.14 (9)H17A—C17—H17B108.2
N1—C9—C10127.80 (8)C14—C18—C10109.81 (9)
C9—C10—C11108.87 (8)C14—C18—H18A109.7
C9—C10—C18109.22 (8)C10—C18—H18A109.7
C11—C10—C18108.93 (10)C14—C18—H18B109.7
C9—C10—C17112.77 (8)C10—C18—H18B109.7
C11—C10—C17107.69 (9)H18A—C18—H18B108.2
C18—C10—C17109.28 (9)C12—C19—C16109.24 (10)
C12—C11—C10110.21 (10)C12—C19—H19A109.8
C12—C11—H11A109.6C16—C19—H19A109.8
C10—C11—H11A109.6C12—C19—H19B109.8
C12—C11—H11B109.6C16—C19—H19B109.8
C10—C11—H11B109.6H19A—C19—H19B108.3
H11A—C11—H11B108.1
C8—N2—N3—C91.25 (13)N3—C9—C10—C17132.65 (10)
C6—C1—C2—C30.06 (19)N1—C9—C10—C1751.96 (13)
C1—C2—C3—C40.0 (2)C9—C10—C11—C12177.91 (10)
C2—C3—C4—C50.4 (2)C18—C10—C11—C1258.90 (14)
C3—C4—C5—C60.7 (2)C17—C10—C11—C1259.52 (13)
C4—C5—C6—C10.56 (17)C10—C11—C12—C1960.43 (15)
C4—C5—C6—C7179.01 (11)C10—C11—C12—C1359.83 (15)
C2—C1—C6—C50.21 (16)C19—C12—C13—C1460.12 (15)
C2—C1—C6—C7179.39 (10)C11—C12—C13—C1460.33 (15)
C8—N1—C7—C685.08 (11)C12—C13—C14—C1559.48 (15)
C9—N1—C7—C695.63 (12)C12—C13—C14—C1860.91 (15)
C5—C6—C7—N14.38 (14)C18—C14—C15—C1660.57 (16)
C1—C6—C7—N1176.04 (9)C13—C14—C15—C1659.51 (15)
N3—N2—C8—N11.21 (12)C14—C15—C16—C1960.18 (14)
N3—N2—C8—S1178.19 (8)C14—C15—C16—C1760.75 (14)
C9—N1—C8—N20.70 (11)C19—C16—C17—C1060.82 (13)
C7—N1—C8—N2179.87 (9)C15—C16—C17—C1060.09 (13)
C9—N1—C8—S1178.72 (7)C9—C10—C17—C16179.74 (9)
C7—N1—C8—S10.71 (14)C11—C10—C17—C1659.61 (12)
N2—N3—C9—N10.74 (11)C18—C10—C17—C1658.58 (12)
N2—N3—C9—C10176.86 (9)C15—C14—C18—C1059.41 (15)
C8—N1—C9—N30.04 (11)C13—C14—C18—C1060.67 (14)
C7—N1—C9—N3179.32 (10)C9—C10—C18—C14178.04 (10)
C8—N1—C9—C10175.88 (9)C11—C10—C18—C1459.25 (14)
C7—N1—C9—C103.48 (16)C17—C10—C18—C1458.16 (13)
N3—C9—C10—C1113.20 (14)C13—C12—C19—C1660.51 (14)
N1—C9—C10—C11171.41 (10)C11—C12—C19—C1659.68 (15)
N3—C9—C10—C18105.64 (11)C15—C16—C19—C1260.60 (14)
N1—C9—C10—C1869.75 (12)C17—C16—C19—C1260.06 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1–N3/C8/C9 triazole ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.85 (2)2.44 (2)3.2753 (11)169.1 (18)
C19—H19B···Cg1ii0.972.853.7885 (17)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1–N3/C8/C9 triazole ring.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.85 (2)2.44 (2)3.2753 (11)169.1 (18)
C19—H19B···Cg1ii0.97002.853.7885 (17)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: C-3194-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAl-Tamimi, A.-M. S., Al-Abdullah, E. S., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o685–o686.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBalzarini, J., Orzeszko-Krzesinska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.  CAS Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLorenzo, P., Alvarez, R., Ortiz, M. A., Alvarez, S., Piedrafita, F. J. & de Lera, A. (2008). J. Med. Chem. 51, 5431–5440.  Web of Science CrossRef PubMed CAS Google Scholar
First citationProtopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, J., Ma, C., Wang, J., Jo, H., Canturk, B., Fiorin, G., Pinto, L. H., Lamb, R. A., Klein, M. L. & DeGrado, W. F. (2013). J. Med. Chem. 56, 2804–2812.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds