organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-5′-bromo-6-(4-methyl­benzo­yl)-8-nitro-2,3-di­hydro-1H-spiro­[imidazo[1,2-a]pyridine-7,3′-indolin]-2′-one including an unknown solvate

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 15 May 2014; accepted 19 June 2014; online 25 June 2014)

In the title compound, C22H18BrN5O4, the central six-membered ring, derived from 1,4-di­hydro­pyridine, adopts a distorted boat conformation with a puckering amplitude of 0.197 (3) Å, the imidazole ring adopts a twisted conformation with a puckering amplitude of 0.113 (3) Å, and the oxindole moiety is planar with an r.m.s. deviation of 0.0125 Å. Two intra­molecular N—H⋯O hydrogen bonds are formed, each closing an S(6) loop. In the crystal, strong N—H⋯O hydrogen bonds lead to the formation of zigzag chains along the c axis. These are consolidated in the three-dimensional crystal packing by weak N—H⋯O hydrogen bonding, as well as by C—H⋯O, C—H⋯Br and C—H⋯π inter­actions. A small region of electron density well removed from the main mol­ecule was removed with the SQUEEZE procedure in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155] following unsuccessful attempts to model it as a plausible solvent mol­ecule. The unit-cell characteristics do not take into account this feature of the structure.

Keywords: crystal structure.

Related literature

For a similar structure, see: Nagalakshmi et al. (2014[Nagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014). Acta Cryst. E70, o604-o605.]). For additional conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18BrN5O4

  • Mr = 496.32

  • Monoclinic, P 21 /c

  • a = 15.5482 (9) Å

  • b = 14.7033 (7) Å

  • c = 12.1907 (6) Å

  • β = 101.856 (2)°

  • V = 2727.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.974

  • 30073 measured reflections

  • 5962 independent reflections

  • 4098 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.04

  • 5962 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C32–C37 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O1 0.86 2.09 2.608 (2) 118
N2—H2B⋯O4 0.86 1.87 2.518 (2) 131
N3—H3⋯O4i 0.86 1.95 2.792 (2) 168
N5—H5⋯O3ii 0.86 2.36 2.961 (2) 127
C7—H7A⋯O3iii 0.97 2.54 3.342 (3) 140
C33—H33⋯Br1iv 0.93 2.91 3.675 (2) 141
C14—H14⋯Cg1i 0.93 2.83 3.553 (2) 135
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Structural commentary top

Our inter­est in preparing pharmacologically active pyridine-related compounds (Nagalakshmi et al., 2014) led us to the title compound, derived from a 1,4-di­hydro­pyridine. We have undertaken an X-ray crystal structure determination of this compound in order to establish its molecular conformation.

In the title compound (Fig. 1), the central six-membered ring adopts a distorted-boat conformation with the puckering parameters Q = 0.197 (3) Å and θ = 102.0 (10)° and φ = 9.1 (6)° (Cremer & Pople, 1975). The imidazole ring adopts a twisted conformation with puckering parameters Q = 0.113 (3) Å and φ2 = 302.9 (11)° (Cremer & Pople, 1975). The oxindole moiety (C2/C8—C14/N3/O3) is planar with r.m.s. deviation of 0.0125 Å. The sum of valence angles at N2 (360 (3)°) indicates that the atom N2 is sp2 hybridized. There is a partial delocalization of the lone pair of N2 towards the pyridine ring which is confirmed by the short bond length of C4–N2 = 1.324 (3) Å. The C–N and C–C bond lengths (C4–N4 = 1.361 (3) Å, N4–C5 = 1.365 (3) Å, C1–C2 = 1.523 (3) Å are shorter than the standard C–N = 1.47 Å and C–C = 1.54 Å, respectively. By contrast, the CC bond lengths (C1C5 = 1.383 (3) Å and C4C3 = 1.409 (3) Å) are longer than the standard CC bond (1.34 Å). Thus, the title compound shows that there is a homo-conjugation effect on the pyridine moiety.

In the crystal, N3—H3···O4 hydrogen bonds lead to the formation of chains along the c axis. N5—H5···O3 hydrogen bonds lead to the formation of chains along the b axis. There are further C7—H7A···O3 and C33—H33···Br1 hydrogen bonds enclosing R22(16) and R22(20) ring motifs respectively as shown in Fig. 2. The structure is further stabilized by weak C—H···π inter-molecular inter­actions.

Synthesis and crystallization top

A mixture of 4-methyl­benzoyl­aceto­nitrile (1.0 mmol), 5-bromo­isatin (1.0 mmol) and 2-(nitro­methyl­ene)imidazolidine were dissolved in 10 ml of EtOH and tri­ethyl­amine (1.0 mmol) was added and the reaction mixture was heated to reflux for 45 min. After completion of the reaction, as evident from TLC, the precipitated solid product was filtered and dried to obtain pure pale brown solid. Yield 91 %. Melting point 530 K.

Refinement top

H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3) or 0.97 Å (methyl­ene CH2), and N—H = 0.86 Å. Isotropic displacement parameters for H atoms were calculated as Uiso = 1.5Ueq(C) for CH3 groups and Uiso = 1.2Ueq(carrier atom) for all other H atoms. A small region of electron density well removed from the main molecule and appearing disordered was removed with PLATON SQUEEZE [Spek (2009). Acta Cryst. D65, 148–155] following unsuccessful attempts to model it as plausible solvent molecule.

Related literature top

For a similar structure, see: Nagalakshmi et al. (2014). For additional conformational analysis, see: Cremer & Pople (1975).

Structure description top

Our inter­est in preparing pharmacologically active pyridine-related compounds (Nagalakshmi et al., 2014) led us to the title compound, derived from a 1,4-di­hydro­pyridine. We have undertaken an X-ray crystal structure determination of this compound in order to establish its molecular conformation.

In the title compound (Fig. 1), the central six-membered ring adopts a distorted-boat conformation with the puckering parameters Q = 0.197 (3) Å and θ = 102.0 (10)° and φ = 9.1 (6)° (Cremer & Pople, 1975). The imidazole ring adopts a twisted conformation with puckering parameters Q = 0.113 (3) Å and φ2 = 302.9 (11)° (Cremer & Pople, 1975). The oxindole moiety (C2/C8—C14/N3/O3) is planar with r.m.s. deviation of 0.0125 Å. The sum of valence angles at N2 (360 (3)°) indicates that the atom N2 is sp2 hybridized. There is a partial delocalization of the lone pair of N2 towards the pyridine ring which is confirmed by the short bond length of C4–N2 = 1.324 (3) Å. The C–N and C–C bond lengths (C4–N4 = 1.361 (3) Å, N4–C5 = 1.365 (3) Å, C1–C2 = 1.523 (3) Å are shorter than the standard C–N = 1.47 Å and C–C = 1.54 Å, respectively. By contrast, the CC bond lengths (C1C5 = 1.383 (3) Å and C4C3 = 1.409 (3) Å) are longer than the standard CC bond (1.34 Å). Thus, the title compound shows that there is a homo-conjugation effect on the pyridine moiety.

In the crystal, N3—H3···O4 hydrogen bonds lead to the formation of chains along the c axis. N5—H5···O3 hydrogen bonds lead to the formation of chains along the b axis. There are further C7—H7A···O3 and C33—H33···Br1 hydrogen bonds enclosing R22(16) and R22(20) ring motifs respectively as shown in Fig. 2. The structure is further stabilized by weak C—H···π inter-molecular inter­actions.

For a similar structure, see: Nagalakshmi et al. (2014). For additional conformational analysis, see: Cremer & Pople (1975).

Synthesis and crystallization top

A mixture of 4-methyl­benzoyl­aceto­nitrile (1.0 mmol), 5-bromo­isatin (1.0 mmol) and 2-(nitro­methyl­ene)imidazolidine were dissolved in 10 ml of EtOH and tri­ethyl­amine (1.0 mmol) was added and the reaction mixture was heated to reflux for 45 min. After completion of the reaction, as evident from TLC, the precipitated solid product was filtered and dried to obtain pure pale brown solid. Yield 91 %. Melting point 530 K.

Refinement details top

H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93 (aromatic CH), 0.96 (methyl CH3) or 0.97 Å (methyl­ene CH2), and N—H = 0.86 Å. Isotropic displacement parameters for H atoms were calculated as Uiso = 1.5Ueq(C) for CH3 groups and Uiso = 1.2Ueq(carrier atom) for all other H atoms. A small region of electron density well removed from the main molecule and appearing disordered was removed with PLATON SQUEEZE [Spek (2009). Acta Cryst. D65, 148–155] following unsuccessful attempts to model it as plausible solvent molecule.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom-numbering scheme. H-atoms are omitted for clarity.
[Figure 2] Fig. 2. Partial packing diagram of the title compound. Dashed bonds represent inter-molecular hydrogen bonds.
5-Amino-5'-bromo-6-(4-methylbenzoyl)-8-nitro-2,3-dihydro-1H-spiro[imidazo[1,2-a]pyridine-7,3'-indolin]-2'-one top
Crystal data top
C22H18BrN5O4F(000) = 1008
Mr = 496.32Dx = 1.209 Mg m3
Monoclinic, P21/cMelting point: 530 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.5482 (9) ÅCell parameters from 2000 reflections
b = 14.7033 (7) Åθ = 2–31°
c = 12.1907 (6) ŵ = 1.54 mm1
β = 101.856 (2)°T = 293 K
V = 2727.5 (2) Å3Block, brown
Z = 40.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
5962 independent reflections
Radiation source: fine-focus sealed tube4098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 0 pixels mm-1θmax = 27.0°, θmin = 1.9°
ω and φ scansh = 1911
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1818
Tmin = 0.967, Tmax = 0.974l = 1515
30073 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0653P)2]
where P = (Fo2 + 2Fc2)/3
5962 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.30 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
C22H18BrN5O4V = 2727.5 (2) Å3
Mr = 496.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.5482 (9) ŵ = 1.54 mm1
b = 14.7033 (7) ÅT = 293 K
c = 12.1907 (6) Å0.21 × 0.19 × 0.18 mm
β = 101.856 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
5962 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4098 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.035
30073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
5962 reflectionsΔρmin = 0.41 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10831 (12)0.03982 (13)0.29919 (16)0.0302 (4)
C20.16209 (12)0.04483 (12)0.33939 (15)0.0273 (4)
C30.15943 (12)0.06548 (13)0.46280 (15)0.0302 (4)
C40.13013 (12)0.00186 (13)0.52880 (16)0.0335 (4)
C50.08565 (12)0.10239 (13)0.37313 (16)0.0315 (4)
C60.04187 (16)0.22940 (16)0.45722 (19)0.0509 (6)
H6A0.08180.28080.46940.061*
H6B0.01740.25080.45550.061*
C70.06850 (15)0.15800 (14)0.54656 (19)0.0421 (5)
H7A0.01840.13740.57590.051*
H7B0.11330.18080.60780.051*
C80.12622 (12)0.12869 (13)0.26493 (15)0.0305 (4)
C90.26599 (13)0.10750 (13)0.24292 (16)0.0327 (4)
C100.25462 (12)0.03862 (12)0.31650 (15)0.0291 (4)
C110.32166 (12)0.02155 (14)0.35672 (16)0.0363 (5)
H110.31460.06800.40590.044*
C120.39967 (14)0.01014 (17)0.32108 (19)0.0461 (5)
C130.41184 (14)0.05743 (17)0.2473 (2)0.0498 (6)
H130.46530.06260.22500.060*
C140.34405 (14)0.11796 (16)0.20630 (18)0.0449 (5)
H140.35090.16370.15620.054*
C310.18598 (14)0.15050 (13)0.51348 (17)0.0376 (5)
C320.23171 (13)0.22376 (13)0.46127 (16)0.0346 (4)
C330.31931 (14)0.21652 (15)0.45811 (19)0.0452 (5)
H330.34890.16210.47810.054*
C340.36363 (16)0.29024 (19)0.4251 (2)0.0608 (6)
H340.42280.28450.42300.073*
C350.3216 (2)0.37187 (19)0.3955 (2)0.0621 (7)
C360.23388 (18)0.37875 (16)0.3996 (2)0.0515 (6)
H360.20430.43320.37980.062*
C370.18933 (14)0.30590 (14)0.43283 (16)0.0381 (5)
H370.13040.31200.43610.046*
C380.3699 (3)0.4543 (3)0.3619 (4)0.1206 (16)
H38A0.32990.50460.34580.181*
H38B0.39260.43990.29650.181*
H38C0.41750.47030.42230.181*
N10.09080 (11)0.06034 (12)0.18652 (14)0.0389 (4)
N20.12708 (14)0.00993 (13)0.63557 (15)0.0548 (5)
H2A0.10890.03330.67250.066*
H2B0.14330.06080.66800.066*
N30.19037 (10)0.16040 (11)0.21672 (13)0.0336 (4)
H30.18540.20780.17460.040*
N40.10306 (11)0.08480 (10)0.48544 (13)0.0342 (4)
N50.04712 (11)0.18207 (12)0.35518 (15)0.0412 (4)
H50.02710.20380.28940.049*
O10.05241 (12)0.13281 (11)0.15117 (13)0.0546 (4)
O20.11477 (11)0.00570 (11)0.12016 (12)0.0494 (4)
O30.05189 (9)0.15950 (10)0.25570 (12)0.0413 (4)
O40.17505 (15)0.17071 (11)0.60983 (14)0.0669 (5)
Br10.493532 (17)0.09216 (2)0.37527 (3)0.07818 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0390 (9)0.0255 (10)0.0254 (10)0.0006 (7)0.0052 (8)0.0020 (8)
C20.0378 (9)0.0216 (10)0.0219 (9)0.0030 (7)0.0048 (7)0.0008 (8)
C30.0428 (10)0.0230 (10)0.0243 (10)0.0030 (8)0.0058 (8)0.0009 (8)
C40.0427 (10)0.0283 (11)0.0290 (11)0.0032 (8)0.0059 (8)0.0012 (9)
C50.0351 (9)0.0254 (10)0.0332 (11)0.0012 (7)0.0052 (8)0.0028 (8)
C60.0645 (14)0.0402 (14)0.0485 (14)0.0178 (11)0.0124 (11)0.0030 (11)
C70.0533 (12)0.0334 (12)0.0411 (13)0.0091 (9)0.0131 (10)0.0072 (10)
C80.0410 (10)0.0241 (10)0.0244 (10)0.0048 (8)0.0018 (8)0.0007 (8)
C90.0429 (10)0.0282 (11)0.0260 (10)0.0008 (8)0.0050 (8)0.0006 (8)
C100.0376 (9)0.0250 (10)0.0245 (10)0.0007 (7)0.0057 (8)0.0035 (8)
C110.0410 (10)0.0352 (12)0.0306 (11)0.0053 (8)0.0021 (8)0.0019 (9)
C120.0408 (11)0.0527 (14)0.0421 (13)0.0134 (10)0.0028 (9)0.0025 (11)
C130.0406 (11)0.0635 (16)0.0485 (14)0.0003 (11)0.0164 (10)0.0020 (12)
C140.0511 (12)0.0486 (14)0.0379 (13)0.0054 (10)0.0161 (10)0.0047 (11)
C310.0577 (12)0.0270 (11)0.0279 (11)0.0004 (9)0.0080 (9)0.0012 (9)
C320.0497 (11)0.0251 (11)0.0261 (10)0.0015 (8)0.0012 (8)0.0048 (8)
C330.0483 (11)0.0365 (13)0.0472 (13)0.0031 (9)0.0014 (10)0.0099 (10)
C340.0533 (13)0.0669 (15)0.0663 (17)0.0117 (11)0.0217 (12)0.0200 (13)
C350.0841 (18)0.0504 (13)0.0619 (17)0.0197 (11)0.0385 (14)0.0100 (12)
C360.0818 (17)0.0306 (12)0.0455 (14)0.0039 (11)0.0211 (12)0.0050 (10)
C370.0485 (11)0.0317 (12)0.0349 (12)0.0026 (9)0.0105 (9)0.0019 (9)
C380.143 (4)0.081 (3)0.164 (4)0.046 (2)0.093 (3)0.000 (3)
N10.0517 (10)0.0333 (10)0.0308 (10)0.0021 (8)0.0061 (8)0.0050 (8)
N20.1040 (16)0.0329 (11)0.0321 (11)0.0126 (10)0.0243 (10)0.0022 (8)
N30.0464 (9)0.0267 (9)0.0267 (9)0.0032 (7)0.0049 (7)0.0074 (7)
N40.0481 (9)0.0259 (9)0.0284 (9)0.0050 (7)0.0074 (7)0.0020 (7)
N50.0548 (10)0.0327 (10)0.0348 (10)0.0114 (8)0.0060 (8)0.0036 (8)
O10.0814 (11)0.0412 (9)0.0393 (9)0.0214 (8)0.0080 (8)0.0155 (7)
O20.0767 (11)0.0408 (9)0.0305 (8)0.0099 (8)0.0104 (7)0.0016 (7)
O30.0428 (7)0.0396 (9)0.0387 (9)0.0142 (6)0.0021 (6)0.0049 (6)
O40.1371 (17)0.0322 (9)0.0391 (10)0.0172 (10)0.0359 (10)0.0120 (7)
Br10.05198 (16)0.0981 (3)0.0821 (3)0.03710 (14)0.00837 (14)0.01124 (17)
Geometric parameters (Å, º) top
C1—N11.378 (3)C12—C131.379 (3)
C1—C51.383 (3)C12—Br11.904 (2)
C1—C21.523 (3)C13—C141.392 (3)
C2—C101.523 (2)C13—H130.9300
C2—C31.544 (3)C14—H140.9300
C2—C81.564 (3)C31—O41.257 (2)
C3—C41.409 (3)C31—C321.502 (3)
C3—C311.418 (3)C32—C331.374 (3)
C4—N21.324 (3)C32—C371.385 (3)
C4—N41.361 (3)C33—C341.388 (3)
C5—N51.314 (2)C33—H330.9300
C5—N41.365 (3)C34—C351.379 (4)
C6—N51.442 (3)C34—H340.9300
C6—C71.508 (3)C35—C361.379 (4)
C6—H6A0.9700C35—C381.525 (4)
C6—H6B0.9700C36—C371.381 (3)
C7—N41.472 (2)C36—H360.9300
C7—H7A0.9700C37—H370.9300
C7—H7B0.9700C38—H38A0.9600
C8—O31.225 (2)C38—H38B0.9600
C8—N31.341 (2)C38—H38C0.9600
C9—C141.385 (3)N1—O21.250 (2)
C9—C101.388 (3)N1—O11.254 (2)
C9—N31.391 (2)N2—H2A0.8600
C10—C111.378 (3)N2—H2B0.8600
C11—C121.380 (3)N3—H30.8600
C11—H110.9300N5—H50.8600
N1—C1—C5118.64 (17)C14—C13—H13120.0
N1—C1—C2118.86 (16)C9—C14—C13117.5 (2)
C5—C1—C2122.03 (16)C9—C14—H14121.2
C1—C2—C10111.65 (14)C13—C14—H14121.2
C1—C2—C3110.57 (14)O4—C31—C3122.18 (18)
C10—C2—C3113.94 (15)O4—C31—C32113.15 (17)
C1—C2—C8110.53 (15)C3—C31—C32124.64 (17)
C10—C2—C8100.28 (14)C33—C32—C37118.93 (19)
C3—C2—C8109.43 (14)C33—C32—C31120.95 (19)
C4—C3—C31118.04 (17)C37—C32—C31119.27 (18)
C4—C3—C2119.66 (16)C32—C33—C34120.1 (2)
C31—C3—C2122.30 (16)C32—C33—H33120.0
N2—C4—N4115.38 (18)C34—C33—H33120.0
N2—C4—C3123.41 (19)C35—C34—C33121.3 (2)
N4—C4—C3121.21 (17)C35—C34—H34119.4
N5—C5—N4109.02 (17)C33—C34—H34119.4
N5—C5—C1130.78 (18)C36—C35—C34118.3 (2)
N4—C5—C1120.20 (17)C36—C35—C38119.8 (3)
N5—C6—C7103.37 (16)C34—C35—C38121.9 (3)
N5—C6—H6A111.1C35—C36—C37120.9 (2)
C7—C6—H6A111.1C35—C36—H36119.6
N5—C6—H6B111.1C37—C36—H36119.6
C7—C6—H6B111.1C36—C37—C32120.5 (2)
H6A—C6—H6B109.1C36—C37—H37119.7
N4—C7—C6102.60 (16)C32—C37—H37119.7
N4—C7—H7A111.2C35—C38—H38A109.5
C6—C7—H7A111.2C35—C38—H38B109.5
N4—C7—H7B111.2H38A—C38—H38B109.5
C6—C7—H7B111.2C35—C38—H38C109.5
H7A—C7—H7B109.2H38A—C38—H38C109.5
O3—C8—N3127.15 (18)H38B—C38—H38C109.5
O3—C8—C2124.20 (17)O2—N1—O1120.52 (17)
N3—C8—C2108.65 (15)O2—N1—C1118.71 (16)
C14—C9—C10121.71 (18)O1—N1—C1120.76 (17)
C14—C9—N3128.25 (18)C4—N2—H2A120.0
C10—C9—N3110.03 (16)C4—N2—H2B120.0
C11—C10—C9120.72 (17)H2A—N2—H2B120.0
C11—C10—C2130.31 (17)C8—N3—C9112.00 (15)
C9—C10—C2108.97 (15)C8—N3—H3124.0
C10—C11—C12117.34 (19)C9—N3—H3124.0
C10—C11—H11121.3C4—N4—C5122.77 (16)
C12—C11—H11121.3C4—N4—C7125.06 (17)
C13—C12—C11122.7 (2)C5—N4—C7110.57 (16)
C13—C12—Br1118.99 (16)C5—N5—C6113.04 (17)
C11—C12—Br1118.32 (17)C5—N5—H5123.5
C12—C13—C14119.99 (19)C6—N5—H5123.5
C12—C13—H13120.0
N1—C1—C2—C1062.7 (2)C10—C9—C14—C130.9 (3)
C5—C1—C2—C10109.30 (19)N3—C9—C14—C13178.1 (2)
N1—C1—C2—C3169.32 (16)C12—C13—C14—C90.4 (3)
C5—C1—C2—C318.7 (2)C4—C3—C31—O48.1 (3)
N1—C1—C2—C848.0 (2)C2—C3—C31—O4172.2 (2)
C5—C1—C2—C8139.99 (18)C4—C3—C31—C32169.99 (18)
C1—C2—C3—C415.3 (2)C2—C3—C31—C329.7 (3)
C10—C2—C3—C4111.41 (19)O4—C31—C32—C33102.3 (2)
C8—C2—C3—C4137.27 (17)C3—C31—C32—C3375.9 (3)
C1—C2—C3—C31164.99 (17)O4—C31—C32—C3767.0 (3)
C10—C2—C3—C3168.3 (2)C3—C31—C32—C37114.8 (2)
C8—C2—C3—C3143.0 (2)C37—C32—C33—C341.0 (3)
C31—C3—C4—N20.7 (3)C31—C32—C33—C34170.3 (2)
C2—C3—C4—N2178.98 (19)C32—C33—C34—C350.3 (4)
C31—C3—C4—N4179.52 (18)C33—C34—C35—C360.2 (4)
C2—C3—C4—N40.8 (3)C33—C34—C35—C38178.4 (3)
N1—C1—C5—N51.1 (3)C34—C35—C36—C370.1 (4)
C2—C1—C5—N5173.18 (19)C38—C35—C36—C37178.1 (3)
N1—C1—C5—N4179.15 (16)C35—C36—C37—C320.9 (3)
C2—C1—C5—N47.1 (3)C33—C32—C37—C361.3 (3)
N5—C6—C7—N411.3 (2)C31—C32—C37—C36170.8 (2)
C1—C2—C8—O361.5 (2)C5—C1—N1—O2176.85 (18)
C10—C2—C8—O3179.41 (18)C2—C1—N1—O24.6 (3)
C3—C2—C8—O360.5 (2)C5—C1—N1—O12.4 (3)
C1—C2—C8—N3119.69 (16)C2—C1—N1—O1174.70 (17)
C10—C2—C8—N31.77 (19)O3—C8—N3—C9178.42 (19)
C3—C2—C8—N3118.31 (16)C2—C8—N3—C92.8 (2)
C14—C9—C10—C110.7 (3)C14—C9—N3—C8178.2 (2)
N3—C9—C10—C11178.48 (17)C10—C9—N3—C82.7 (2)
C14—C9—C10—C2179.42 (18)N2—C4—N4—C5166.80 (18)
N3—C9—C10—C21.4 (2)C3—C4—N4—C513.5 (3)
C1—C2—C10—C1162.8 (3)N2—C4—N4—C72.6 (3)
C3—C2—C10—C1163.3 (3)C3—C4—N4—C7177.68 (18)
C8—C2—C10—C11179.93 (19)N5—C5—N4—C4169.47 (17)
C1—C2—C10—C9117.27 (17)C1—C5—N4—C410.3 (3)
C3—C2—C10—C9116.59 (17)N5—C5—N4—C73.2 (2)
C8—C2—C10—C90.18 (19)C1—C5—N4—C7176.55 (17)
C9—C10—C11—C120.1 (3)C6—C7—N4—C4175.24 (19)
C2—C10—C11—C12179.74 (19)C6—C7—N4—C59.4 (2)
C10—C11—C12—C130.7 (3)N4—C5—N5—C65.0 (2)
C10—C11—C12—Br1179.96 (14)C1—C5—N5—C6175.2 (2)
C11—C12—C13—C140.4 (4)C7—C6—N5—C510.7 (2)
Br1—C12—C13—C14179.77 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C32–C37 ring.
D—H···AD—HH···AD···AD—H···A
N5—H5···O10.862.092.608 (2)118
N2—H2B···O40.861.872.518 (2)131
N3—H3···O4i0.861.952.792 (2)168
N5—H5···O3ii0.862.362.961 (2)127
C7—H7A···O3iii0.972.543.342 (3)140
C33—H33···Br1iv0.932.913.675 (2)141
C14—H14···Cg1i0.932.833.553 (2)135
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C32–C37 ring.
D—H···AD—HH···AD···AD—H···A
N5—H5···O10.862.092.608 (2)118
N2—H2B···O40.861.872.518 (2)131
N3—H3···O4i0.861.952.792 (2)168
N5—H5···O3ii0.862.362.961 (2)127
C7—H7A···O3iii0.972.543.342 (3)140
C33—H33···Br1iv0.932.913.675 (2)141
C14—H14···Cg1i0.932.833.553 (2)135
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

JS and RAN thank the management of the Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No. SR/FT/CS-073/2009)

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNagalakshmi, R. A., Suresh, J., Sivakumar, S., Kumar, R. R. & Lakshman, P. L. N. (2014). Acta Cryst. E70, o604–o605.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds