organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Iodo-4-oxo-4H-chromene-3-carbaldehyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 27 May 2014; accepted 28 May 2014; online 4 June 2014)

In the title compound, C10H5IO3, an iodinated 3-formyl­chromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0259 Å), with the largest deviation from the least-squares plane [0.056 (5) Å] being found for the formyl O atom. In the crystal, mol­ecules are linked through I⋯O halogen bonds [I⋯O = 3.245 (4) Å, C—I⋯O = 165.95 (13) and C=O⋯I = 169.7 (4)°] along [101]. The supra­molecular chains are assembled into layers via ππ stacking inter­actions along the b axis [shortest centroid–centroid distance between the pyran and benzene rings = 3.558 (3) Å].

Related literature

For related structures, see: Ishikawa (2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o514.],b[Ishikawa, Y. (2014b). Acta Cryst. E70, o555.],c[Ishikawa, Y. (2014c). Acta Cryst. E70, o583.]). For the synthesis of the precursor of the title compound, see: Bovonsombat et al. (2009[Bovonsombat, P., Leykajarakul, J., Khan, C., Pla-on, K., Krause, M. M., Khanthapura, P., Ali, R. & Doowa, N. (2009). Tetrahedron Lett. 50, 2664-2667.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5IO3

  • Mr = 300.05

  • Triclinic, [P \overline 1]

  • a = 6.5741 (17) Å

  • b = 6.798 (3) Å

  • c = 10.437 (5) Å

  • α = 79.03 (3)°

  • β = 86.45 (3)°

  • γ = 76.00 (3)°

  • V = 444.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.58 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.08 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.432, Tmax = 0.751

  • 2519 measured reflections

  • 2050 independent reflections

  • 1989 reflections with F2 > 2σ(F2)

  • Rint = 0.014

  • 3 standard reflections every 150 reflections intensity decay: −1.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.104

  • S = 1.11

  • 2050 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 2.55 e Å−3

  • Δρmin = −3.59 e Å−3

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Structural commentary top

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supra­molecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of monohalogenated 3-formyl­chromone derivatives 6-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014c, Fig.·3A), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a, Fig.·3B), and 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b, Fig.·3C). It was found that halogen bond is formed between the formyl oxygen atom and the bromine atom in the bromo derivative, but is not formed in the others light-atom derivatives. As part of our inter­est in this type of chemical bonding, we herein report the crystal structure of a monoiodinated 3-formyl­chromone derivative 6-iodo-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal structure of the title compound with the iodine atom in the 6-position.

The mean deviation of the least-squares plane for the non-hydrogen atoms is 0.0259 Å, and the largest deviation is 0.056 (5) Å for C10. These mean that these atoms are essentially coplanar (Fig. 1).

In the crystal, the molecules are stacked with the inversion-symmetry equivalents along the b axis [shortest centroid–centroid distance between the pyran and benzenei rings of the 4H-chromene units = 3.588 (3) Å, i: -x + 1, -y + 2, -z], as shown in Fig. 1.

Halogen bond is observed between the iodine atom and the formyl oxygen atom of the translation-symmetry equivalentii [I1···O3ii = 3.245 (4) Å, ii: x - 1, y, z + 1] along [101], as shown in Fig. 2. The angles of C–I···O and I···O=C are 165.95 (13) and 169.7 (4)°, respectively. Thus, it is found that halogen bond is formed for the iodine atom at 6-position, as shown in Fig.·3D. The space group and crystal packing mode of the title compound are the same with those of 6-chloro-4-oxo-4H-chromene-3-carbaldehyde and 6-bromo-4-oxo-4H-chromene-3-carbaldehyde. On the other hand, halogen bonding is observed for 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig.·3C) and the title compound (Fig.·3D), but is not observed for 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig.·3B). These should be accounted for by the larger size of the σ holes of the bromine and iodine atoms at 6-position (Wilcken et al., 2013).

Synthesis and crystallization top

2'-Hy­droxy-5'-iodo­aceto­phenone was prepared according to the literature method (Bovonsombat et al., 2009). To a solution of 2'-hy­droxy-5'-iodo­aceto­phenone (1.4 mmol) in N,N-di­methyl­formamide (5 ml) was added dropwise POCl3 (3.4 mmol) for 3 min at 0 °C. After the mixture was stirred for 17 h at room temperature, water (30 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 83%). 1H NMR (400 MHz, DMSO-d6): δ = 7.60 (d, 1H, J = 8.8 Hz), 8.18 (dd, 1H, J = 2.4 and 8.8 Hz), 8.37 (d, 1H, J = 2.4 Hz), 8.95 (s, 1H), 10.10 (s, 1H). DART-MS calcd for [C10H5I1O3 + H+]: 300.936, found 300.947. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a chloro­form solution of the title compound held at room temperature.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H = 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Related literature top

For related structures, see: Ishikawa (2014a,b,c). For the synthesis of the precursor of the title compound, see: Bovonsombat et al. (2009). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).

Structure description top

Halogen bonds have been found to occur in organic, inorganic, and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supra­molecular chemistry (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013). We have recently reported the crystal structures of monohalogenated 3-formyl­chromone derivatives 6-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014c, Fig.·3A), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014a, Fig.·3B), and 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b, Fig.·3C). It was found that halogen bond is formed between the formyl oxygen atom and the bromine atom in the bromo derivative, but is not formed in the others light-atom derivatives. As part of our inter­est in this type of chemical bonding, we herein report the crystal structure of a monoiodinated 3-formyl­chromone derivative 6-iodo-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal structure of the title compound with the iodine atom in the 6-position.

The mean deviation of the least-squares plane for the non-hydrogen atoms is 0.0259 Å, and the largest deviation is 0.056 (5) Å for C10. These mean that these atoms are essentially coplanar (Fig. 1).

In the crystal, the molecules are stacked with the inversion-symmetry equivalents along the b axis [shortest centroid–centroid distance between the pyran and benzenei rings of the 4H-chromene units = 3.588 (3) Å, i: -x + 1, -y + 2, -z], as shown in Fig. 1.

Halogen bond is observed between the iodine atom and the formyl oxygen atom of the translation-symmetry equivalentii [I1···O3ii = 3.245 (4) Å, ii: x - 1, y, z + 1] along [101], as shown in Fig. 2. The angles of C–I···O and I···O=C are 165.95 (13) and 169.7 (4)°, respectively. Thus, it is found that halogen bond is formed for the iodine atom at 6-position, as shown in Fig.·3D. The space group and crystal packing mode of the title compound are the same with those of 6-chloro-4-oxo-4H-chromene-3-carbaldehyde and 6-bromo-4-oxo-4H-chromene-3-carbaldehyde. On the other hand, halogen bonding is observed for 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (Fig.·3C) and the title compound (Fig.·3D), but is not observed for 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig.·3B). These should be accounted for by the larger size of the σ holes of the bromine and iodine atoms at 6-position (Wilcken et al., 2013).

For related structures, see: Ishikawa (2014a,b,c). For the synthesis of the precursor of the title compound, see: Bovonsombat et al. (2009). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013).

Synthesis and crystallization top

2'-Hy­droxy-5'-iodo­aceto­phenone was prepared according to the literature method (Bovonsombat et al., 2009). To a solution of 2'-hy­droxy-5'-iodo­aceto­phenone (1.4 mmol) in N,N-di­methyl­formamide (5 ml) was added dropwise POCl3 (3.4 mmol) for 3 min at 0 °C. After the mixture was stirred for 17 h at room temperature, water (30 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 83%). 1H NMR (400 MHz, DMSO-d6): δ = 7.60 (d, 1H, J = 8.8 Hz), 8.18 (dd, 1H, J = 2.4 and 8.8 Hz), 8.37 (d, 1H, J = 2.4 Hz), 8.95 (s, 1H), 10.10 (s, 1H). DART-MS calcd for [C10H5I1O3 + H+]: 300.936, found 300.947. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a chloro­form solution of the title compound held at room temperature.

Refinement details top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H = 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A packing view of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing view of the title compound. The intermolecular halogen bonds are represented as dashed lines for I···O.
[Figure 3] Fig. 3. Sphere models of the supramolecular aggregation in the crystal structures of 6-fluoro-4-oxo-4H-chromene-3-carbaldehyde (A), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (B), 6-bromo-4-oxo-4H-chromene-3-carbaldehyde (C), and the title compound (D).
6-Iodo-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H5IO3Z = 2
Mr = 300.05F(000) = 284.00
Triclinic, P1Dx = 2.243 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.5741 (17) ÅCell parameters from 25 reflections
b = 6.798 (3) Åθ = 15.1–17.0°
c = 10.437 (5) ŵ = 3.58 mm1
α = 79.03 (3)°T = 100 K
β = 86.45 (3)°Plate, yellow
γ = 76.00 (3)°0.25 × 0.25 × 0.08 mm
V = 444.3 (3) Å3
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.014
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 48
Tmin = 0.432, Tmax = 0.751k = 88
2519 measured reflectionsl = 1313
2050 independent reflections3 standard reflections every 150 reflections
1989 reflections with F2 > 2σ(F2) intensity decay: 1.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0828P)2 + 0.5762P]
where P = (Fo2 + 2Fc2)/3
2050 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 2.55 e Å3
0 restraintsΔρmin = 3.59 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H5IO3γ = 76.00 (3)°
Mr = 300.05V = 444.3 (3) Å3
Triclinic, P1Z = 2
a = 6.5741 (17) ÅMo Kα radiation
b = 6.798 (3) ŵ = 3.58 mm1
c = 10.437 (5) ÅT = 100 K
α = 79.03 (3)°0.25 × 0.25 × 0.08 mm
β = 86.45 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
1989 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.432, Tmax = 0.7513 standard reflections every 150 reflections
2519 measured reflections intensity decay: 1.8%
2050 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.11Δρmax = 2.55 e Å3
2050 reflectionsΔρmin = 3.59 e Å3
127 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.09130 (3)0.75924 (3)0.412452 (19)0.01417 (14)
O10.7896 (5)0.6863 (5)0.0188 (3)0.0146 (6)
O20.1807 (5)0.8519 (5)0.1406 (3)0.0160 (6)
O30.6616 (5)0.7995 (5)0.4137 (3)0.0204 (7)
C10.7417 (7)0.7311 (6)0.1454 (5)0.0155 (8)
C20.5449 (6)0.7856 (6)0.1926 (4)0.0112 (7)
C30.3623 (7)0.8053 (6)0.1040 (4)0.0112 (7)
C40.2610 (6)0.7778 (6)0.1343 (4)0.0120 (7)
C50.3206 (6)0.7330 (6)0.2634 (4)0.0115 (7)
C60.5314 (7)0.6711 (6)0.2983 (5)0.0136 (8)
C70.6858 (7)0.6540 (6)0.2022 (4)0.0143 (8)
C80.4172 (6)0.7620 (5)0.0363 (4)0.0103 (7)
C90.6270 (7)0.7003 (6)0.0722 (4)0.0126 (8)
C100.5169 (7)0.8281 (6)0.3362 (4)0.0139 (8)
H10.85470.72420.20700.0186*
H20.11690.81860.11240.0144*
H30.56840.64090.38770.0163*
H40.82970.61150.22460.0172*
H50.37880.88010.36890.0167*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01465 (19)0.01545 (19)0.01309 (19)0.00418 (12)0.00051 (11)0.00369 (11)
O10.0083 (12)0.0180 (14)0.0178 (14)0.0035 (10)0.0002 (11)0.0035 (11)
O20.0100 (13)0.0212 (14)0.0155 (13)0.0030 (11)0.0019 (10)0.0004 (11)
O30.0206 (15)0.0224 (15)0.0188 (15)0.0056 (12)0.0051 (12)0.0062 (12)
C10.0130 (17)0.0118 (17)0.023 (2)0.0053 (14)0.0004 (15)0.0038 (15)
C20.0137 (17)0.0075 (16)0.0139 (18)0.0043 (13)0.0011 (14)0.0025 (13)
C30.0104 (17)0.0062 (15)0.0172 (19)0.0024 (13)0.0024 (14)0.0015 (13)
C40.0117 (17)0.0085 (16)0.0167 (18)0.0032 (13)0.0010 (14)0.0033 (13)
C50.0136 (17)0.0076 (15)0.0139 (17)0.0041 (13)0.0002 (13)0.0015 (12)
C60.0143 (19)0.0115 (17)0.0156 (18)0.0038 (14)0.0032 (15)0.0018 (14)
C70.0120 (17)0.0129 (17)0.0185 (19)0.0025 (14)0.0035 (14)0.0034 (14)
C80.0129 (17)0.0034 (14)0.0146 (19)0.0027 (12)0.0017 (14)0.0001 (12)
C90.0124 (17)0.0097 (16)0.017 (2)0.0037 (13)0.0016 (15)0.0042 (14)
C100.0145 (17)0.0130 (17)0.0144 (19)0.0038 (14)0.0003 (14)0.0023 (14)
Geometric parameters (Å, º) top
I1—C52.100 (4)C4—C81.404 (6)
O1—C11.338 (6)C5—C61.397 (6)
O1—C91.383 (5)C6—C71.383 (6)
O2—C31.224 (5)C7—C91.390 (6)
O3—C101.213 (5)C8—C91.394 (6)
C1—C21.353 (6)C1—H10.950
C2—C31.466 (6)C4—H20.950
C2—C101.485 (6)C6—H30.950
C3—C81.487 (6)C7—H40.950
C4—C51.383 (6)C10—H50.950
O1···C32.876 (5)I1···H4v3.1327
O2···C13.579 (5)I1···H5xi3.3845
O2···C42.877 (6)I1···H5vi3.4429
O2···C102.910 (5)O1···H2iii3.0137
O3···C12.811 (6)O1···H2iv3.5123
C1···C73.575 (7)O2···H1v2.6723
C1···C82.762 (6)O2···H2vi2.6440
C2···C92.774 (6)O2···H4vii3.4433
C4···C72.809 (6)O2···H4iv3.5709
C5···C92.746 (6)O3···H3x2.6765
C6···C82.795 (6)O3···H5ix2.8065
I1···O3i3.245 (4)C1···H2vii3.5802
O1···O1ii3.254 (4)C1···H2iv3.4884
O1···O2iii3.154 (5)C1···H4ii3.3639
O1···C4iv3.554 (5)C3···H2vi3.5381
O2···O1v3.154 (5)C4···H1iv3.5034
O2···C1v3.192 (6)C4···H4v3.3197
O2···C4vi3.358 (5)C5···H1iv3.5345
O2···C7vii3.510 (6)C5···H4v3.5834
O3···I1viii3.245 (4)C6···H5vii3.5870
O3···O3ix3.316 (5)C6···H5iv3.4606
O3···C6x3.494 (6)C7···H1ii3.4570
O3···C10ix3.321 (5)C7···H2iii3.3116
C1···O2iii3.192 (6)C9···H2iii3.5699
C1···C4vii3.444 (6)C10···H3x3.3327
C1···C4iv3.358 (6)C10···H3vii3.5102
C1···C5iv3.548 (6)C10···H3iv3.4573
C2···C5iv3.526 (6)C10···H5ix3.4573
C2···C6iv3.568 (6)H1···O2iii2.6723
C3···C7vii3.555 (7)H1···C4iv3.5034
C3···C7iv3.564 (6)H1···C5iv3.5345
C3···C9vii3.373 (6)H1···C7ii3.4570
C3···C9iv3.457 (7)H1···H2vii3.5954
C4···O1iv3.554 (5)H1···H2iv3.4845
C4···O2vi3.358 (5)H1···H4ii2.7142
C4···C1vii3.444 (6)H2···O1v3.0137
C4···C1iv3.358 (6)H2···O1iv3.5123
C5···C1iv3.548 (6)H2···O2vi2.6440
C5···C2iv3.526 (6)H2···C1vii3.5802
C6···O3xi3.494 (6)H2···C1iv3.4884
C6···C2iv3.568 (6)H2···C3vi3.5381
C6···C10vii3.430 (7)H2···C7v3.3116
C6···C10iv3.438 (7)H2···C9v3.5699
C7···O2vii3.510 (6)H2···H1vii3.5954
C7···C3vii3.555 (7)H2···H1iv3.4845
C7···C3iv3.564 (6)H2···H2vi3.2186
C8···C8iv3.591 (6)H2···H4v2.7025
C8···C9iv3.561 (6)H3···I1xii3.4972
C9···C3vii3.373 (6)H3···O3xi2.6765
C9···C3iv3.457 (7)H3···C10xi3.3327
C9···C8iv3.561 (6)H3···C10vii3.5102
C10···O3ix3.321 (5)H3···C10iv3.4573
C10···C6vii3.430 (7)H3···H3xii2.9731
C10···C6iv3.438 (7)H3···H5xi3.2942
I1···H23.0799H3···H5vii3.5164
I1···H33.0514H3···H5iv3.3247
O1···H42.5116H4···I1iii3.1327
O2···H22.6234H4···O2vii3.4433
O2···H52.6408H4···O2iv3.5709
O3···H12.4759H4···C1ii3.3639
C1···H53.2831H4···C4iii3.3197
C3···H13.2973H4···C5iii3.5834
C3···H22.6956H4···H1ii2.7142
C3···H52.7153H4···H2iii2.7025
C4···H33.2803H5···I1x3.3845
C5···H43.2663H5···I1vi3.4429
C6···H23.2850H5···O3ix2.8065
C8···H43.2886H5···C6vii3.5870
C9···H13.1874H5···C6iv3.4606
C9···H23.2740H5···C10ix3.4573
C9···H33.2505H5···H3x3.2942
C10···H12.5492H5···H3vii3.5164
H1···H53.4835H5···H3iv3.3247
H3···H42.3427H5···H5ix3.4207
I1···H3xii3.4972
C1—O1—C9118.2 (4)C4—C8—C9119.0 (4)
O1—C1—C2125.1 (4)O1—C9—C7115.8 (4)
C1—C2—C3120.7 (4)O1—C9—C8122.3 (4)
C1—C2—C10118.9 (4)C7—C9—C8121.9 (4)
C3—C2—C10120.4 (4)O3—C10—C2123.2 (4)
O2—C3—C2123.7 (4)O1—C1—H1117.453
O2—C3—C8122.5 (4)C2—C1—H1117.444
C2—C3—C8113.7 (4)C5—C4—H2120.591
C5—C4—C8118.8 (4)C8—C4—H2120.596
I1—C5—C4119.9 (3)C5—C6—H3120.161
I1—C5—C6118.4 (3)C7—C6—H3120.160
C4—C5—C6121.7 (4)C6—C7—H4120.551
C5—C6—C7119.7 (4)C9—C7—H4120.551
C6—C7—C9118.9 (4)O3—C10—H5118.395
C3—C8—C4121.2 (4)C2—C10—H5118.392
C3—C8—C9119.8 (4)
C1—O1—C9—C7179.3 (4)C8—C4—C5—I1179.1 (3)
C1—O1—C9—C81.0 (6)C8—C4—C5—C60.5 (6)
C9—O1—C1—C21.5 (6)H2—C4—C5—I10.9
C9—O1—C1—H1178.5H2—C4—C5—C6179.5
O1—C1—C2—C31.7 (6)H2—C4—C8—C30.9
O1—C1—C2—C10179.1 (4)H2—C4—C8—C9179.5
H1—C1—C2—C3178.3I1—C5—C6—C7179.5 (3)
H1—C1—C2—C100.9I1—C5—C6—H30.5
C1—C2—C3—O2179.2 (4)C4—C5—C6—C70.1 (6)
C1—C2—C3—C80.4 (6)C4—C5—C6—H3179.9
C1—C2—C10—O36.5 (6)C5—C6—C7—C90.3 (6)
C1—C2—C10—H5173.5C5—C6—C7—H4179.7
C3—C2—C10—O3174.3 (4)H3—C6—C7—C9179.7
C3—C2—C10—H55.7H3—C6—C7—H40.3
C10—C2—C3—O21.6 (6)C6—C7—C9—O1178.0 (4)
C10—C2—C3—C8178.7 (3)C6—C7—C9—C80.4 (7)
O2—C3—C8—C41.6 (6)H4—C7—C9—O12.0
O2—C3—C8—C9177.0 (4)H4—C7—C9—C8179.7
C2—C3—C8—C4178.7 (3)C3—C8—C9—O13.1 (6)
C2—C3—C8—C92.7 (5)C3—C8—C9—C7178.7 (4)
C5—C4—C8—C3179.1 (3)C4—C8—C9—O1178.3 (4)
C5—C4—C8—C90.5 (6)C4—C8—C9—C70.1 (6)
Symmetry codes: (i) x1, y, z+1; (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x+1, y+2, z; (v) x1, y, z; (vi) x, y+2, z; (vii) x+1, y+1, z; (viii) x+1, y, z1; (ix) x+1, y+2, z1; (x) x, y, z1; (xi) x, y, z+1; (xii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H5IO3
Mr300.05
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5741 (17), 6.798 (3), 10.437 (5)
α, β, γ (°)79.03 (3), 86.45 (3), 76.00 (3)
V3)444.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.58
Crystal size (mm)0.25 × 0.25 × 0.08
Data collection
DiffractometerRigaku AFC-7R
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.432, 0.751
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
2519, 2050, 1989
Rint0.014
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.11
No. of reflections2050
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.55, 3.59

Computer programs: WinAFC Diffractometer Control Software (Rigaku, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

The University of Shizuoka is acknowledged for instrumental support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBovonsombat, P., Leykajarakul, J., Khan, C., Pla-on, K., Krause, M. M., Khanthapura, P., Ali, R. & Doowa, N. (2009). Tetrahedron Lett. 50, 2664–2667.  Web of Science CrossRef CAS Google Scholar
First citationIshikawa, Y. (2014a). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014b). Acta Cryst. E70, o555.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014c). Acta Cryst. E70, o583.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds