metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[trans-di­fluorido­tetra­kis­(pyridine-κN)chromium(III)] sodium tetra­chlorido­zincate perchlorate from synchrotron data

aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

(Received 17 June 2014; accepted 19 June 2014; online 25 June 2014)

The title salt, Na[CrF2(C5H5N)4]2[ZnCl4]ClO4, consists of two cationic CrIII complexes, an Na+ cation, one [ZnCl4]2− anion and one ClO4 anion. The CrIII atoms are coordinated by four pyridine (py) N atoms and two F atoms in a trans arrangement, displaying a distorted octa­hedral geometry. The mean Cr—N(py) and Cr—F bond lengths are 2.086 (8) and 1.864 (14) Å, respectively. The [ZnCl4]2− anion has a distorted tetra­hedral geometry. The most notable feature of the crystal packing is the formation of weak pyridine–perchlorate C—H⋯O hydrogen bonds, resulting in supra­molecular chains along the b-axis direction. The perchlorate anion was disordered over two sets of sites in a 0.868 (3):0.132 (3) ratio.

Keywords: crystal structure.

Related literature

For the synthesis of trans-[Cr(py)4F2]NO3, see: Glerup et al. (1970[Glerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247-254.]). For the structures of trans-[Cr(py)4F2]ClO4 and trans-[Cr(py)4F2]PF6, see: Moon & Choi (2013[Moon, D. & Choi, J.-H. (2013). Acta Cryst. E69, m514.]); Fochi et al. (1991[Fochi, G., Strähle, J. & Gingl, F. (1991). Inorg. Chem. 30, 4669-4671.]). Chromium(III)-doped crystals are promising materials for tunable solid state lasers in the spectral region between 600 and 1100 nm, see: Powell (1998[Powell, R. C. (1998). In Physics of Solid-State Laser Materials. New York: Springer-Verlag.]).

[Scheme 1]

Experimental

Crystal data
  • Na[CrF2(C5H5N)4]2[ZnCl4]ClO4

  • Mr = 1142.41

  • Orthorhombic, P b c a

  • a = 25.397 (5) Å

  • b = 14.600 (3) Å

  • c = 25.510 (5) Å

  • V = 9459 (3) Å3

  • Z = 8

  • Synchrotron radiation

  • λ = 0.62998 Å

  • μ = 0.94 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • ADSC Q210 CCD area-detector diffractometer

  • Absorption correction: empirical (HKL3000sm; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.]) Tmin = 0.835, Tmax = 0.912

  • 86381 measured reflections

  • 13152 independent reflections

  • 12355 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.05

  • 13152 reflections

  • 605 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.25 e Å−3

  • Δρmin = −1.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5Pi 0.95 2.31 3.237 (14) 165
C10—H10⋯O2Pii 0.95 2.49 3.352 (3) 151
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y+1, -z+{\script{1\over 2}}].

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]); cell refinement: HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.]); data reduction: HKL3000sm; program(s) used to solve structure: XS in SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: XL in SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Structural commentary top

The preparation and characterization of novel chromium(III) systems have received much attention because chromium(III) doped crystals are promising materials for tunable solid state laser in the spectral region between 600 and 1100 nm (Powell, 1998). Anionic species also play a very important role in chemistry, medicine and in biology, yet their binding characteristics have not received much recognition. The study of the anion effect and geometrical isomer in o­cta­hedral transition metal complexes may be expected to yield a great variety of new structures and properties of both chemical and biological significance. The [Cr(py)4X2]n+(X = monodentate; py = pyridine) cation can be either trans or cis geometric isomers.

In this communication, we report the synthesis and structure of 2[Cr(C5H5N)4F2]+ [ZnCl4]2- Na+ ClO4- in order to confirm the arrangement of four py molecules and two F ligands in the complex. This is another example of a trans-[Cr(py)4F2]+ complex but with a different counter anion (Fochi et al., 1991; Moon & Choi, 2013). The asymmetric unit of the title salt contains discrete two trans-[Cr(py)4F2]+, one [ZnCl4]2-, one Na cation and one disordered ClO4 - anion. The structural analysis shows that there are two independent Cr(III) complex cations in which the four nitro­gen atoms of four py ligands occupy the equatorial sites and the two F atoms coordinate to the Cr atom in trans configuration. An ellipsoid plot (60% probability level) of the title compound, together with the atomic labelling, is depicted in Fig. 1.

The Cr—N(py) bond distances varies from 2.0759 (18) to 2.0986 (18) Å and the Cr–F bond distances are in the range of 1.8532 (12) to 1.8838 (12) Å. These bond lengths are in good agreement with those observed in trans-[Cr(py)4F2]PF6 and trans-[Cr(py)4F2]ClO4.

The uncoordinated [ZnCl4]2- anion remains outside the coordination sphere. As expected, the Zn atom in the [ZnCl4]2- has a distorted tetra­hedral geometry surrounded by four Cl atoms. The Zn—Cl bond distance of 2.0228 (19)–2.5558 (7) Å and the Cl—Zn—Cl angles of 100.05 (6)–121.91 (3)° are observed, respectively. The ClO4- also has distorted tetra­hedral geometry due to the influence of hydrogen bonding and connecting Na+ ion on the Cl—O lengths and the O—Cl–O angles. In the title complex, the crystal lattice is stabilized by weak hydrogen bonding inter­actions between the C—H groups of the py ligand and the O atoms of the ClO4 anion (Table 1).

Synthesis and crystallization top

All chemicals were reagent grade materials and used without further purification. As starting material, trans-[Cr(py)4F2]NO3 was prepared as described previously (Glerup et al., 1970). The crude [Cr(py)4F2]NO3 (0.2 g) was dissolved in 10 ml water at 60 °C. The 10 ml solution of 1M HCl containing 0.1 g sodium perchlorate and 0.5 g of ZnCl2 was gradually added. The unreacted materials were removed by filtration and allowed to stand at room temperature for several days to give purple crystals of the title compound suitable for X-ray structural analysis.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The perchlorate anion was distorted over two positions in a 0.868 (3):0.132 (3) ratio.

Related literature top

For the synthesis of trans-[Cr(py)4F2]NO3, see: Glerup et al. (1970). For the structures of trans-[Cr(py)4F2]ClO4 and trans-[Cr(py)4F2]PF6, see: Moon & Choi (2013); Fochi et al. (1991). Chromium(III)-doped crystals are promising materials for tunable solid state lasers in the spectral region between 600 and 1100 nm, see: Powell (1998).

Structure description top

The preparation and characterization of novel chromium(III) systems have received much attention because chromium(III) doped crystals are promising materials for tunable solid state laser in the spectral region between 600 and 1100 nm (Powell, 1998). Anionic species also play a very important role in chemistry, medicine and in biology, yet their binding characteristics have not received much recognition. The study of the anion effect and geometrical isomer in o­cta­hedral transition metal complexes may be expected to yield a great variety of new structures and properties of both chemical and biological significance. The [Cr(py)4X2]n+(X = monodentate; py = pyridine) cation can be either trans or cis geometric isomers.

In this communication, we report the synthesis and structure of 2[Cr(C5H5N)4F2]+ [ZnCl4]2- Na+ ClO4- in order to confirm the arrangement of four py molecules and two F ligands in the complex. This is another example of a trans-[Cr(py)4F2]+ complex but with a different counter anion (Fochi et al., 1991; Moon & Choi, 2013). The asymmetric unit of the title salt contains discrete two trans-[Cr(py)4F2]+, one [ZnCl4]2-, one Na cation and one disordered ClO4 - anion. The structural analysis shows that there are two independent Cr(III) complex cations in which the four nitro­gen atoms of four py ligands occupy the equatorial sites and the two F atoms coordinate to the Cr atom in trans configuration. An ellipsoid plot (60% probability level) of the title compound, together with the atomic labelling, is depicted in Fig. 1.

The Cr—N(py) bond distances varies from 2.0759 (18) to 2.0986 (18) Å and the Cr–F bond distances are in the range of 1.8532 (12) to 1.8838 (12) Å. These bond lengths are in good agreement with those observed in trans-[Cr(py)4F2]PF6 and trans-[Cr(py)4F2]ClO4.

The uncoordinated [ZnCl4]2- anion remains outside the coordination sphere. As expected, the Zn atom in the [ZnCl4]2- has a distorted tetra­hedral geometry surrounded by four Cl atoms. The Zn—Cl bond distance of 2.0228 (19)–2.5558 (7) Å and the Cl—Zn—Cl angles of 100.05 (6)–121.91 (3)° are observed, respectively. The ClO4- also has distorted tetra­hedral geometry due to the influence of hydrogen bonding and connecting Na+ ion on the Cl—O lengths and the O—Cl–O angles. In the title complex, the crystal lattice is stabilized by weak hydrogen bonding inter­actions between the C—H groups of the py ligand and the O atoms of the ClO4 anion (Table 1).

For the synthesis of trans-[Cr(py)4F2]NO3, see: Glerup et al. (1970). For the structures of trans-[Cr(py)4F2]ClO4 and trans-[Cr(py)4F2]PF6, see: Moon & Choi (2013); Fochi et al. (1991). Chromium(III)-doped crystals are promising materials for tunable solid state lasers in the spectral region between 600 and 1100 nm, see: Powell (1998).

Synthesis and crystallization top

All chemicals were reagent grade materials and used without further purification. As starting material, trans-[Cr(py)4F2]NO3 was prepared as described previously (Glerup et al., 1970). The crude [Cr(py)4F2]NO3 (0.2 g) was dissolved in 10 ml water at 60 °C. The 10 ml solution of 1M HCl containing 0.1 g sodium perchlorate and 0.5 g of ZnCl2 was gradually added. The unreacted materials were removed by filtration and allowed to stand at room temperature for several days to give purple crystals of the title compound suitable for X-ray structural analysis.

Refinement details top

C-bound H-atoms were placed in calculated positions (C—H = 0.95) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The perchlorate anion was distorted over two positions in a 0.868 (3):0.132 (3) ratio.

Computing details top

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: XS in SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: XL in SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecular structures of the asymmetric unit in the title compound
Bis[trans-difluoridotetrakis(pyridine-κN)chromium(III)] sodium tetrachloridozincate perchlorate top
Crystal data top
Na[CrF2(C5H5N)4]2[ZnCl4]ClO4Dx = 1.604 Mg m3
Mr = 1142.41Synchrotron radiation, λ = 0.62998 Å
Orthorhombic, PbcaCell parameters from 237022 reflections
a = 25.397 (5) Åθ = 0.4–33.6°
b = 14.600 (3) ŵ = 0.94 mm1
c = 25.510 (5) ÅT = 100 K
V = 9459 (3) Å3Block, purple
Z = 80.20 × 0.15 × 0.10 mm
F(000) = 4624
Data collection top
ADSC Q210 CCD area-detector
diffractometer
12355 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.050
ω scanθmax = 26.0°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm; Otwinowski & Minor, 1997)
h = 3535
Tmin = 0.835, Tmax = 0.912k = 1919
86381 measured reflectionsl = 3535
13152 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0773P)2 + 19.7848P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
13152 reflectionsΔρmax = 1.25 e Å3
605 parametersΔρmin = 1.99 e Å3
Crystal data top
Na[CrF2(C5H5N)4]2[ZnCl4]ClO4V = 9459 (3) Å3
Mr = 1142.41Z = 8
Orthorhombic, PbcaSynchrotron radiation, λ = 0.62998 Å
a = 25.397 (5) ŵ = 0.94 mm1
b = 14.600 (3) ÅT = 100 K
c = 25.510 (5) Å0.20 × 0.15 × 0.10 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
13152 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL3000sm; Otwinowski & Minor, 1997)
12355 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.912Rint = 0.050
86381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0773P)2 + 19.7848P]
where P = (Fo2 + 2Fc2)/3
13152 reflectionsΔρmax = 1.25 e Å3
605 parametersΔρmin = 1.99 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.35117 (2)0.76013 (2)0.12316 (2)0.00754 (8)
F10.30651 (4)0.70701 (9)0.17189 (5)0.0118 (2)
F20.39507 (5)0.81430 (9)0.07234 (5)0.0134 (2)
N10.37558 (7)0.63065 (12)0.09803 (7)0.0116 (3)
N20.28923 (7)0.75603 (12)0.06915 (6)0.0105 (3)
N30.32920 (6)0.89005 (12)0.14979 (6)0.0099 (3)
N40.41194 (6)0.75688 (12)0.17755 (7)0.0107 (3)
C10.35464 (10)0.55497 (16)0.12003 (9)0.0188 (4)
H10.32720.56180.14510.023*
C20.37167 (12)0.46750 (17)0.10742 (10)0.0258 (5)
H20.35560.41540.12300.031*
C30.41235 (11)0.45702 (18)0.07181 (10)0.0268 (5)
H30.42580.39800.06370.032*
C40.43310 (10)0.53502 (19)0.04820 (11)0.0252 (5)
H40.46030.52980.02280.030*
C50.41370 (9)0.62005 (17)0.06204 (9)0.0180 (4)
H50.42780.67290.04550.022*
C60.29780 (8)0.75294 (15)0.01708 (8)0.0143 (4)
H60.33300.75650.00450.017*
C70.25712 (9)0.74470 (17)0.01887 (8)0.0188 (4)
H70.26440.74260.05540.023*
C80.20558 (9)0.73955 (16)0.00069 (9)0.0183 (4)
H80.17710.73320.02460.022*
C90.19644 (8)0.74378 (16)0.05288 (9)0.0165 (4)
H90.16160.74120.06630.020*
C100.23912 (8)0.75180 (15)0.08642 (8)0.0133 (4)
H100.23280.75440.12310.016*
C110.35537 (8)0.96612 (14)0.13505 (8)0.0125 (3)
H110.38540.95990.11320.015*
C120.33995 (9)1.05350 (15)0.15071 (8)0.0165 (4)
H120.35921.10580.13970.020*
C130.29607 (9)1.06300 (16)0.18269 (9)0.0177 (4)
H130.28451.12190.19350.021*
C140.26955 (9)0.98475 (16)0.19856 (9)0.0173 (4)
H140.23950.98920.22060.021*
C150.28738 (8)0.89998 (15)0.18182 (8)0.0137 (4)
H150.26940.84660.19340.016*
C160.40251 (9)0.7286 (2)0.22661 (9)0.0259 (5)
H160.36730.71450.23620.031*
C170.44161 (10)0.7191 (2)0.26391 (10)0.0288 (6)
H170.43320.69920.29840.035*
C180.49271 (9)0.7387 (2)0.25044 (10)0.0245 (5)
H180.52040.73160.27510.029*
C190.50286 (10)0.7688 (3)0.20023 (11)0.0441 (9)
H190.53780.78380.18990.053*
C200.46157 (9)0.7770 (2)0.16487 (9)0.0301 (6)
H200.46890.79770.13030.036*
Cr20.65746 (2)0.50377 (2)0.11947 (2)0.00778 (8)
F30.61676 (5)0.45700 (9)0.06534 (4)0.0118 (2)
F40.70069 (5)0.55143 (9)0.17181 (5)0.0130 (2)
N50.63053 (6)0.63505 (12)0.10134 (7)0.0103 (3)
N60.59384 (6)0.49421 (12)0.17052 (6)0.0098 (3)
N70.67945 (7)0.37247 (12)0.14187 (7)0.0126 (3)
N80.72058 (7)0.50992 (12)0.06649 (6)0.0104 (3)
C210.64820 (9)0.70809 (15)0.12802 (8)0.0143 (4)
H210.67590.69990.15260.017*
C220.62733 (10)0.79550 (16)0.12082 (9)0.0187 (4)
H220.64080.84590.14020.022*
C230.58692 (9)0.80824 (16)0.08526 (9)0.0200 (4)
H230.57210.86720.07980.024*
C240.56850 (9)0.73228 (17)0.05761 (10)0.0198 (4)
H240.54090.73870.03280.024*
C250.59096 (8)0.64744 (15)0.06679 (9)0.0153 (4)
H250.57800.59590.04800.018*
C260.54766 (8)0.45919 (16)0.15431 (8)0.0162 (4)
H260.54480.43770.11930.019*
C270.50407 (9)0.4532 (2)0.18677 (9)0.0241 (5)
H270.47210.42720.17440.029*
C280.50789 (9)0.4858 (2)0.23773 (9)0.0227 (5)
H280.47840.48370.26060.027*
C290.55529 (9)0.52141 (19)0.25454 (9)0.0214 (5)
H290.55900.54350.28940.026*
C300.59751 (8)0.52459 (16)0.22017 (8)0.0156 (4)
H300.63010.54900.23200.019*
C310.71928 (9)0.35834 (16)0.17617 (8)0.0177 (4)
H310.73890.40960.18830.021*
C320.73252 (10)0.27212 (18)0.19426 (9)0.0222 (5)
H320.76090.26420.21800.027*
C330.70374 (10)0.19765 (18)0.17718 (10)0.0248 (5)
H330.71180.13780.18930.030*
C340.66268 (10)0.21171 (16)0.14187 (11)0.0229 (5)
H340.64250.16140.12960.027*
C350.65162 (9)0.29982 (16)0.12486 (9)0.0169 (4)
H350.62370.30920.10060.020*
C360.77078 (8)0.51247 (15)0.08380 (8)0.0136 (4)
H360.77710.51510.12050.016*
C370.81361 (8)0.51134 (16)0.04979 (9)0.0164 (4)
H370.84860.51230.06310.020*
C380.80443 (8)0.50876 (16)0.00376 (9)0.0174 (4)
H380.83300.50780.02780.021*
C390.75289 (9)0.50755 (16)0.02167 (8)0.0171 (4)
H390.74570.50690.05820.020*
C400.71206 (8)0.50729 (15)0.01433 (8)0.0137 (4)
H400.67680.50520.00180.016*
Cl1P0.63013 (3)0.20630 (5)0.28660 (3)0.01264 (18)0.868 (3)
O1P0.60224 (9)0.23420 (16)0.33334 (8)0.0262 (5)0.868 (3)
O2P0.68283 (8)0.1857 (2)0.30024 (11)0.0374 (7)0.868 (3)
O3P0.62633 (11)0.2764 (3)0.24867 (13)0.0354 (7)0.868 (3)
O4P0.60397 (9)0.12621 (15)0.26743 (10)0.0370 (5)0.868 (3)
Cl2P0.6450 (2)0.1831 (4)0.2710 (2)0.0221 (12)0.132 (3)
O5P0.6630 (6)0.2113 (10)0.3260 (5)0.0221 (12)0.132 (3)
O6P0.6833 (5)0.1475 (10)0.2396 (5)0.0221 (12)0.132 (3)
O7P0.6415 (8)0.2796 (17)0.2504 (9)0.0221 (12)0.132 (3)
O8P0.60397 (9)0.12621 (15)0.26743 (10)0.0370 (5)0.132 (3)
Zn10.51089 (2)0.13481 (2)0.06065 (2)0.01240 (7)
Cl10.52526 (2)0.28484 (4)0.05651 (2)0.02034 (12)
Cl20.42603 (2)0.10088 (4)0.04318 (2)0.02115 (12)
Cl30.55209 (11)0.09300 (14)0.00286 (9)0.1300 (9)
Cl40.54386 (3)0.04804 (5)0.12572 (2)0.03005 (14)
Na1P0.65188 (10)0.00419 (16)0.19280 (11)0.0856 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.00589 (14)0.00984 (15)0.00688 (14)0.00199 (10)0.00172 (9)0.00211 (10)
F10.0085 (5)0.0164 (6)0.0106 (5)0.0028 (4)0.0025 (4)0.0051 (4)
F20.0136 (5)0.0156 (6)0.0110 (5)0.0050 (4)0.0066 (4)0.0024 (4)
N10.0108 (7)0.0129 (8)0.0111 (7)0.0001 (6)0.0006 (6)0.0004 (6)
N20.0108 (7)0.0113 (8)0.0093 (7)0.0014 (6)0.0008 (6)0.0016 (6)
N30.0088 (7)0.0130 (8)0.0079 (7)0.0006 (6)0.0003 (5)0.0010 (6)
N40.0066 (7)0.0150 (8)0.0106 (7)0.0008 (6)0.0008 (5)0.0003 (6)
C10.0266 (11)0.0125 (10)0.0173 (9)0.0004 (8)0.0012 (8)0.0049 (7)
C20.0433 (15)0.0134 (10)0.0208 (11)0.0032 (10)0.0058 (10)0.0040 (8)
C30.0364 (14)0.0183 (11)0.0258 (11)0.0116 (10)0.0128 (10)0.0055 (9)
C40.0216 (11)0.0263 (13)0.0279 (12)0.0073 (9)0.0003 (9)0.0106 (10)
C50.0152 (9)0.0196 (11)0.0192 (10)0.0004 (8)0.0036 (7)0.0043 (8)
C60.0157 (9)0.0166 (9)0.0107 (8)0.0003 (7)0.0004 (7)0.0011 (7)
C70.0217 (10)0.0238 (11)0.0110 (9)0.0020 (8)0.0039 (8)0.0011 (8)
C80.0183 (10)0.0188 (10)0.0179 (10)0.0003 (8)0.0083 (8)0.0003 (8)
C90.0124 (9)0.0179 (10)0.0193 (10)0.0018 (7)0.0036 (7)0.0026 (8)
C100.0108 (8)0.0169 (9)0.0121 (8)0.0023 (7)0.0009 (7)0.0023 (7)
C110.0143 (8)0.0125 (9)0.0107 (8)0.0023 (7)0.0007 (7)0.0015 (7)
C120.0221 (10)0.0116 (9)0.0157 (9)0.0014 (7)0.0031 (7)0.0010 (7)
C130.0216 (10)0.0156 (10)0.0157 (9)0.0058 (8)0.0048 (8)0.0015 (7)
C140.0149 (9)0.0210 (10)0.0160 (9)0.0048 (8)0.0013 (7)0.0020 (8)
C150.0115 (8)0.0174 (10)0.0122 (8)0.0003 (7)0.0023 (7)0.0005 (7)
C160.0096 (9)0.0503 (16)0.0177 (10)0.0052 (9)0.0016 (8)0.0148 (10)
C170.0160 (10)0.0515 (17)0.0188 (11)0.0053 (10)0.0057 (8)0.0147 (11)
C180.0106 (9)0.0430 (15)0.0197 (10)0.0016 (9)0.0049 (8)0.0003 (10)
C190.0085 (10)0.104 (3)0.0196 (12)0.0125 (14)0.0014 (9)0.0057 (15)
C200.0097 (9)0.067 (2)0.0133 (10)0.0130 (11)0.0004 (8)0.0044 (11)
Cr20.00645 (14)0.01014 (15)0.00675 (14)0.00042 (10)0.00057 (9)0.00142 (10)
F30.0122 (5)0.0140 (6)0.0091 (5)0.0032 (4)0.0019 (4)0.0029 (4)
F40.0099 (5)0.0185 (6)0.0107 (5)0.0007 (4)0.0030 (4)0.0032 (4)
N50.0089 (7)0.0115 (8)0.0104 (7)0.0010 (5)0.0010 (6)0.0006 (6)
N60.0087 (7)0.0121 (8)0.0087 (7)0.0002 (5)0.0001 (5)0.0011 (5)
N70.0129 (7)0.0142 (8)0.0108 (7)0.0039 (6)0.0027 (6)0.0009 (6)
N80.0084 (7)0.0135 (8)0.0093 (7)0.0004 (6)0.0001 (5)0.0008 (6)
C210.0181 (9)0.0131 (10)0.0118 (8)0.0020 (7)0.0016 (7)0.0024 (7)
C220.0269 (11)0.0132 (10)0.0159 (9)0.0014 (8)0.0053 (8)0.0030 (7)
C230.0223 (10)0.0151 (10)0.0225 (10)0.0050 (8)0.0086 (8)0.0032 (8)
C240.0147 (9)0.0181 (11)0.0264 (11)0.0019 (8)0.0014 (8)0.0056 (8)
C250.0135 (9)0.0147 (10)0.0178 (9)0.0017 (7)0.0042 (7)0.0016 (7)
C260.0122 (9)0.0231 (11)0.0134 (9)0.0065 (7)0.0014 (7)0.0047 (7)
C270.0134 (9)0.0409 (15)0.0180 (10)0.0110 (9)0.0028 (8)0.0065 (10)
C280.0137 (10)0.0383 (14)0.0160 (10)0.0030 (9)0.0048 (7)0.0036 (9)
C290.0149 (9)0.0369 (13)0.0125 (9)0.0013 (9)0.0033 (7)0.0077 (9)
C300.0114 (8)0.0246 (11)0.0110 (8)0.0010 (7)0.0004 (7)0.0056 (8)
C310.0187 (10)0.0213 (11)0.0133 (9)0.0069 (8)0.0002 (7)0.0007 (7)
C320.0254 (11)0.0253 (12)0.0160 (9)0.0129 (9)0.0025 (8)0.0037 (8)
C330.0292 (12)0.0207 (11)0.0244 (11)0.0121 (9)0.0109 (9)0.0073 (9)
C340.0245 (11)0.0129 (10)0.0312 (12)0.0022 (8)0.0087 (9)0.0006 (9)
C350.0154 (9)0.0139 (10)0.0214 (10)0.0021 (7)0.0051 (7)0.0000 (7)
C360.0094 (8)0.0194 (10)0.0121 (8)0.0003 (7)0.0004 (7)0.0005 (7)
C370.0087 (8)0.0232 (11)0.0172 (9)0.0015 (7)0.0011 (7)0.0013 (8)
C380.0135 (9)0.0224 (11)0.0162 (9)0.0036 (8)0.0060 (7)0.0009 (8)
C390.0168 (9)0.0239 (11)0.0104 (8)0.0016 (8)0.0033 (7)0.0007 (7)
C400.0120 (8)0.0185 (10)0.0105 (8)0.0009 (7)0.0001 (7)0.0001 (7)
Cl1P0.0113 (3)0.0140 (3)0.0127 (3)0.0026 (2)0.0047 (2)0.0003 (2)
O1P0.0341 (11)0.0252 (11)0.0193 (9)0.0025 (9)0.0063 (8)0.0046 (8)
O2P0.0090 (9)0.0603 (17)0.0430 (14)0.0026 (10)0.0084 (9)0.0126 (12)
O3P0.0316 (15)0.0470 (16)0.0276 (12)0.0024 (15)0.0071 (13)0.0239 (11)
O4P0.0288 (10)0.0346 (12)0.0476 (13)0.0188 (9)0.0081 (9)0.0216 (10)
Cl2P0.0194 (14)0.0263 (14)0.0205 (14)0.0016 (9)0.0010 (9)0.0038 (9)
O5P0.0194 (14)0.0263 (14)0.0205 (14)0.0016 (9)0.0010 (9)0.0038 (9)
O6P0.0194 (14)0.0263 (14)0.0205 (14)0.0016 (9)0.0010 (9)0.0038 (9)
O7P0.0194 (14)0.0263 (14)0.0205 (14)0.0016 (9)0.0010 (9)0.0038 (9)
O8P0.0288 (10)0.0346 (12)0.0476 (13)0.0188 (9)0.0081 (9)0.0216 (10)
Zn10.01514 (13)0.01067 (13)0.01138 (12)0.00326 (8)0.00344 (8)0.00087 (8)
Cl10.0246 (3)0.0112 (2)0.0252 (3)0.00530 (19)0.0023 (2)0.00346 (18)
Cl20.0145 (2)0.0141 (2)0.0348 (3)0.00498 (17)0.0031 (2)0.0015 (2)
Cl30.173 (2)0.0881 (13)0.1291 (17)0.0183 (13)0.0785 (16)0.0087 (11)
Cl40.0477 (4)0.0215 (3)0.0209 (3)0.0029 (3)0.0073 (2)0.0041 (2)
Na1P0.0897 (16)0.0696 (14)0.0974 (17)0.0081 (12)0.0211 (13)0.0102 (12)
Geometric parameters (Å, º) top
Cr1—F11.8532 (12)N6—C261.344 (3)
Cr1—F21.8838 (12)N6—C301.345 (2)
Cr1—N42.0759 (17)N7—C351.346 (3)
Cr1—N12.0902 (18)N7—C311.353 (3)
Cr1—N32.0906 (18)N8—C401.349 (2)
Cr1—N22.0920 (17)N8—C361.350 (2)
N1—C51.343 (3)C21—C221.394 (3)
N1—C11.349 (3)C21—H210.9500
N2—C61.347 (3)C22—C231.382 (3)
N2—C101.348 (2)C22—H220.9500
N3—C111.348 (3)C23—C241.395 (4)
N3—C151.348 (2)C23—H230.9500
N4—C201.334 (3)C24—C251.384 (3)
N4—C161.339 (3)C24—H240.9500
C1—C21.386 (3)C25—H250.9500
C1—H10.9500C26—C271.385 (3)
C2—C31.384 (4)C26—H260.9500
C2—H20.9500C27—C281.388 (3)
C3—C41.392 (4)C27—H270.9500
C3—H30.9500C28—C291.380 (3)
C4—C51.382 (3)C28—H280.9500
C4—H40.9500C29—C301.386 (3)
C5—H50.9500C29—H290.9500
C6—C71.387 (3)C30—H300.9500
C6—H60.9500C31—C321.382 (3)
C7—C81.391 (3)C31—H310.9500
C7—H70.9500C32—C331.381 (4)
C8—C91.388 (3)C32—H320.9500
C8—H80.9500C33—C341.393 (4)
C9—C101.386 (3)C33—H330.9500
C9—H90.9500C34—C351.386 (3)
C10—H100.9500C34—H340.9500
C11—C121.393 (3)C35—H350.9500
C11—H110.9500C36—C371.391 (3)
C12—C131.388 (3)C36—H360.9500
C12—H120.9500C37—C381.386 (3)
C13—C141.387 (3)C37—H370.9500
C13—H130.9500C38—C391.387 (3)
C14—C151.385 (3)C38—H380.9500
C14—H140.9500C39—C401.385 (3)
C15—H150.9500C39—H390.9500
C16—C171.382 (3)C40—H400.9500
C16—H160.9500Cl1P—O3P1.412 (3)
C17—C181.372 (3)Cl1P—O2P1.415 (2)
C17—H170.9500Cl1P—O4P1.431 (2)
C18—C191.379 (4)Cl1P—O1P1.445 (2)
C18—H180.9500O4P—Na1P2.877 (3)
C19—C201.388 (3)Cl2P—O6P1.362 (15)
C19—H190.9500Cl2P—O7P1.51 (3)
C20—H200.9500Cl2P—O5P1.531 (15)
Cr2—F31.8552 (12)Cl2P—Na1P3.291 (8)
Cr2—F41.8634 (12)O6P—Na1P2.537 (15)
Cr2—N72.0769 (18)Zn1—Cl32.0228 (19)
Cr2—N62.0801 (17)Zn1—Cl12.2232 (7)
Cr2—N52.0868 (18)Zn1—Cl42.2499 (7)
Cr2—N82.0986 (17)Zn1—Cl22.2558 (7)
N5—C211.342 (3)Cl4—Na1P3.322 (3)
N5—C251.349 (3)
F1—Cr1—F2178.47 (6)N6—Cr2—N8178.11 (7)
F1—Cr1—N489.83 (6)N5—Cr2—N893.92 (7)
F2—Cr1—N491.70 (6)C21—N5—C25118.28 (19)
F1—Cr1—N190.50 (6)C21—N5—Cr2120.52 (14)
F2—Cr1—N189.61 (6)C25—N5—Cr2120.81 (14)
N4—Cr1—N187.93 (7)C26—N6—C30118.39 (18)
F1—Cr1—N389.90 (6)C26—N6—Cr2120.70 (14)
F2—Cr1—N390.04 (6)C30—N6—Cr2120.90 (14)
N4—Cr1—N390.12 (7)C35—N7—C31118.73 (19)
N1—Cr1—N3178.00 (7)C35—N7—Cr2119.82 (15)
F1—Cr1—N288.25 (6)C31—N7—Cr2121.30 (15)
F2—Cr1—N290.22 (6)C40—N8—C36118.38 (17)
N4—Cr1—N2176.95 (7)C40—N8—Cr2120.77 (14)
N1—Cr1—N289.72 (7)C36—N8—Cr2120.79 (13)
N3—Cr1—N292.25 (7)N5—C21—C22122.2 (2)
C5—N1—C1118.3 (2)N5—C21—H21118.9
C5—N1—Cr1121.84 (15)C22—C21—H21118.9
C1—N1—Cr1119.77 (15)C23—C22—C21119.5 (2)
C6—N2—C10118.25 (17)C23—C22—H22120.3
C6—N2—Cr1121.93 (14)C21—C22—H22120.3
C10—N2—Cr1119.74 (13)C22—C23—C24118.3 (2)
C11—N3—C15117.97 (18)C22—C23—H23120.9
C11—N3—Cr1121.69 (14)C24—C23—H23120.9
C15—N3—Cr1120.33 (14)C25—C24—C23119.2 (2)
C20—N4—C16117.59 (19)C25—C24—H24120.4
C20—N4—Cr1122.37 (15)C23—C24—H24120.4
C16—N4—Cr1119.92 (14)N5—C25—C24122.5 (2)
N1—C1—C2122.4 (2)N5—C25—H25118.7
N1—C1—H1118.8C24—C25—H25118.7
C2—C1—H1118.8N6—C26—C27122.5 (2)
C3—C2—C1119.1 (2)N6—C26—H26118.8
C3—C2—H2120.4C27—C26—H26118.8
C1—C2—H2120.4C26—C27—C28118.8 (2)
C2—C3—C4118.4 (2)C26—C27—H27120.6
C2—C3—H3120.8C28—C27—H27120.6
C4—C3—H3120.8C29—C28—C27118.8 (2)
C5—C4—C3119.3 (2)C29—C28—H28120.6
C5—C4—H4120.3C27—C28—H28120.6
C3—C4—H4120.3C28—C29—C30119.4 (2)
N1—C5—C4122.4 (2)C28—C29—H29120.3
N1—C5—H5118.8C30—C29—H29120.3
C4—C5—H5118.8N6—C30—C29122.08 (19)
N2—C6—C7122.3 (2)N6—C30—H30119.0
N2—C6—H6118.8C29—C30—H30119.0
C7—C6—H6118.8N7—C31—C32122.4 (2)
C6—C7—C8119.1 (2)N7—C31—H31118.8
C6—C7—H7120.5C32—C31—H31118.8
C8—C7—H7120.5C33—C32—C31118.9 (2)
C9—C8—C7118.90 (19)C33—C32—H32120.6
C9—C8—H8120.5C31—C32—H32120.6
C7—C8—H8120.5C32—C33—C34119.0 (2)
C10—C9—C8118.8 (2)C32—C33—H33120.5
C10—C9—H9120.6C34—C33—H33120.5
C8—C9—H9120.6C35—C34—C33119.4 (2)
N2—C10—C9122.72 (19)C35—C34—H34120.3
N2—C10—H10118.6C33—C34—H34120.3
C9—C10—H10118.6N7—C35—C34121.6 (2)
N3—C11—C12122.42 (19)N7—C35—H35119.2
N3—C11—H11118.8C34—C35—H35119.2
C12—C11—H11118.8N8—C36—C37122.27 (19)
C13—C12—C11119.1 (2)N8—C36—H36118.9
C13—C12—H12120.5C37—C36—H36118.9
C11—C12—H12120.5C38—C37—C36118.91 (19)
C14—C13—C12118.6 (2)C38—C37—H37120.5
C14—C13—H13120.7C36—C37—H37120.5
C12—C13—H13120.7C37—C38—C39118.92 (19)
C15—C14—C13119.2 (2)C37—C38—H38120.5
C15—C14—H14120.4C39—C38—H38120.5
C13—C14—H14120.4C40—C39—C38119.2 (2)
N3—C15—C14122.7 (2)C40—C39—H39120.4
N3—C15—H15118.6C38—C39—H39120.4
C14—C15—H15118.6N8—C40—C39122.26 (19)
N4—C16—C17123.1 (2)N8—C40—H40118.9
N4—C16—H16118.5C39—C40—H40118.9
C17—C16—H16118.5O3P—Cl1P—O2P112.79 (16)
C18—C17—C16119.1 (2)O3P—Cl1P—O4P109.07 (18)
C18—C17—H17120.5O2P—Cl1P—O4P110.45 (17)
C16—C17—H17120.5O3P—Cl1P—O1P109.10 (19)
C17—C18—C19118.4 (2)O2P—Cl1P—O1P108.70 (16)
C17—C18—H18120.8O4P—Cl1P—O1P106.53 (13)
C19—C18—H18120.8Cl1P—O4P—Na1P122.39 (13)
C18—C19—C20119.3 (2)O6P—Cl2P—O7P101.2 (11)
C18—C19—H19120.3O6P—Cl2P—O5P115.5 (9)
C20—C19—H19120.3O7P—Cl2P—O5P94.8 (11)
N4—C20—C19122.5 (2)O6P—Cl2P—Na1P45.8 (6)
N4—C20—H20118.7O7P—Cl2P—Na1P122.3 (10)
C19—C20—H20118.7O5P—Cl2P—Na1P138.9 (6)
F3—Cr2—F4177.55 (6)Cl2P—O6P—Na1P111.5 (8)
F3—Cr2—N790.85 (7)Cl3—Zn1—Cl1100.05 (6)
F4—Cr2—N789.38 (7)Cl3—Zn1—Cl4103.21 (9)
F3—Cr2—N690.48 (6)Cl1—Zn1—Cl4121.91 (3)
F4—Cr2—N691.96 (6)Cl3—Zn1—Cl2105.65 (9)
N7—Cr2—N688.54 (7)Cl1—Zn1—Cl2111.33 (2)
F3—Cr2—N589.46 (6)Cl4—Zn1—Cl2112.19 (3)
F4—Cr2—N590.51 (6)Zn1—Cl4—Na1P144.75 (5)
N7—Cr2—N5175.43 (7)O6P—Na1P—Cl2P22.6 (3)
N6—Cr2—N586.89 (7)O6P—Na1P—Cl4133.7 (3)
F3—Cr2—N887.82 (6)O4P—Na1P—Cl497.68 (9)
F4—Cr2—N889.74 (6)Cl2P—Na1P—Cl4116.80 (12)
N7—Cr2—N890.65 (7)
C5—N1—C1—C21.1 (3)C21—C22—C23—C240.1 (3)
Cr1—N1—C1—C2175.75 (19)C22—C23—C24—C250.3 (3)
N1—C1—C2—C31.4 (4)C21—N5—C25—C240.6 (3)
C1—C2—C3—C42.8 (4)Cr2—N5—C25—C24173.43 (17)
C2—C3—C4—C51.9 (4)C23—C24—C25—N50.5 (3)
C1—N1—C5—C42.1 (3)C30—N6—C26—C270.1 (4)
Cr1—N1—C5—C4174.69 (18)Cr2—N6—C26—C27178.8 (2)
C3—C4—C5—N10.6 (4)N6—C26—C27—C281.0 (4)
C10—N2—C6—C70.7 (3)C26—C27—C28—C291.3 (4)
Cr1—N2—C6—C7176.06 (17)C27—C28—C29—C300.7 (4)
N2—C6—C7—C80.1 (3)C26—N6—C30—C290.5 (3)
C6—C7—C8—C90.7 (3)Cr2—N6—C30—C29178.14 (19)
C7—C8—C9—C100.8 (3)C28—C29—C30—N60.2 (4)
C6—N2—C10—C90.5 (3)C35—N7—C31—C320.2 (3)
Cr1—N2—C10—C9176.32 (17)Cr2—N7—C31—C32175.81 (17)
C8—C9—C10—N20.3 (3)N7—C31—C32—C330.7 (3)
C15—N3—C11—C121.5 (3)C31—C32—C33—C340.7 (3)
Cr1—N3—C11—C12177.33 (15)C32—C33—C34—C350.2 (4)
N3—C11—C12—C130.0 (3)C31—N7—C35—C340.3 (3)
C11—C12—C13—C140.9 (3)Cr2—N7—C35—C34175.35 (17)
C12—C13—C14—C150.4 (3)C33—C34—C35—N70.4 (3)
C11—N3—C15—C142.1 (3)C40—N8—C36—C370.8 (3)
Cr1—N3—C15—C14176.77 (16)Cr2—N8—C36—C37176.29 (17)
C13—C14—C15—N31.2 (3)N8—C36—C37—C380.9 (3)
C20—N4—C16—C170.5 (4)C36—C37—C38—C390.1 (3)
Cr1—N4—C16—C17175.7 (2)C37—C38—C39—C401.2 (3)
N4—C16—C17—C180.4 (5)C36—N8—C40—C390.3 (3)
C16—C17—C18—C191.1 (5)Cr2—N8—C40—C39177.39 (17)
C17—C18—C19—C201.0 (6)C38—C39—C40—N81.3 (3)
C16—N4—C20—C190.6 (5)O3P—Cl1P—O4P—Na1P79.1 (2)
Cr1—N4—C20—C19175.5 (3)O2P—Cl1P—O4P—Na1P45.3 (2)
C18—C19—C20—N40.1 (6)O1P—Cl1P—O4P—Na1P163.23 (16)
C25—N5—C21—C220.5 (3)O7P—Cl2P—O6P—Na1P124.6 (10)
Cr2—N5—C21—C22173.30 (16)O5P—Cl2P—O6P—Na1P134.5 (8)
N5—C21—C22—C230.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5Pi0.952.313.237 (14)165
C10—H10···O2Pii0.952.493.352 (3)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O5Pi0.952.313.237 (14)165
C10—H10···O2Pii0.952.493.352 (3)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1/2, y+1, z+1/2.
 

Acknowledgements

The experiment at PLS-II 2D-SMC beamline was supported in part by MEST and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFochi, G., Strähle, J. & Gingl, F. (1991). Inorg. Chem. 30, 4669–4671.  CSD CrossRef CAS Web of Science Google Scholar
First citationGlerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E. & Schäffer, C. E. (1970). Acta Chem. Scand. 24, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationMoon, D. & Choi, J.-H. (2013). Acta Cryst. E69, m514.  CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York.  Google Scholar
First citationPowell, R. C. (1998). In Physics of Solid-State Laser Materials. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds