research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­(piperidine-κN)(quinoline-2-carboxyl­ato-κ2N,O)platinum(II)

aChemistry Department, Hanoi National University of Education, 136 – Xuan Thuy – Cau Giay, Hanoi, Vietnam, and bChemistry Department, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 May 2014; accepted 22 May 2014; online 23 June 2014)

The title compound, [Pt(C10H6NO2)Cl(C5H11N)], crystallizes with one mol­ecule in the asymmetric unit. The PtII cation has a slightly distorted square-planar coordination environment defined by a chloride anion, the quinoline N atom and a carboxyl­ate O atom of the bidentate quinaldate ligand and a piperidine N atom. An intra­molecular C—H⋯Cl hydrogen bond occurs. In the crystal, mol­ecules are stacked into columns along the c axis by the formation of N—H⋯Cl and C—H⋯O hydrogen bonds.

1. Chemical context

The title compound belongs to a series of platinum(II) complexes bearing piperidine (pip) as a ligand, which exhibit notable anti­tumour activity (Da et al., 2001[Da, T. T., Vu, D. B. & Dinh, N. H. (2001). J. Pharm. Sci. (Vietnam), 6, 6-8.]; Rounaq Ali Khan et al., 2000[Rounaq Ali Khan, S., Guzman-Jimenez, I., Whitmire, K. H. & Khokhar, A. R. (2000). Polyhedron, 19, 975-981.]; Solin et al., 1982[Solin, T., Matsumoto, K. & Fuwa, K. (1982). Inorg. Chim. Acta, 65, L172-L172.]). In comparison with the earlier reported complex [PtCl2(pip)(quinoline)] (Nguyen Thi Thanh et al., 2014[Nguyen Thi Thanh, C., Nguyen Bich, N. & Van Meervelt, L. (2014). Acta Cryst. C70, 297-301.]), the quinoline ligand is replaced by an N,O-bidentate quinaldate ligand. It is inter­esting to note that in the [PtCl2(pip)(quinoline)] complex, the quinoline and piperidine ligands are arranged in cis positions (Nguyen Thi Thanh et al., 2014[Nguyen Thi Thanh, C., Nguyen Bich, N. & Van Meervelt, L. (2014). Acta Cryst. C70, 297-301.]). In the title compound, the quinoline ring of the quinaldate ligand occupies a trans position with respect to the piperidine ring. We suggest that in the reaction solution there exists a chemical equilibrium between the neutral and bipolar forms of quinaldic acid. Thus, the quinaldic acid in its ionic form coordinates with PtII via the O atom of the carboxyl­ate group first and in a cis position with respect to piperidine based on the trans effect. In a second step, the quinaldic acid coordin­ates with PtII also via its N atom, resulting in the cyclic complex.

[Scheme 1]

The anti­cancer activity of the title compound was tested according to the method described in Skehan et al. (1990[Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). J. Natl Cancer Inst. 82, 1107-1112.]) on four human cancer cells of HepG2, RD, MCF7 and Fl. The IC50 values calculated based on OD values taken on an Elisa instrument at 515–540 nm are 4.46, 2.59, >10 and 5.60 µg ml−1, respectively.

2. Structural commentary

The title complex crystallizes with one mol­ecule per asymmetric unit (Fig. 1[link]). The PtII cation is surrounded by two N atoms, one O atom and one Cl atom, resulting in a slightly distorted square-planar coordination environment [angles around platinum: O1—Pt1—N1 81.38 (9), O1—Pt1—N2 88.26 (9), Cl1—Pt1—N2 84.26 (7) and Cl1—Pt1—N1 106.11 (7)°]. The Cl and the PtII atoms are displaced from the least-squares plane of the quinoline ring and all other coord­inating atoms by 0.2936 (7) and 0.0052 (1) Å, respectively. The piperidine ring adopts a chair conformation and is almost perpendicular to the coordination plane of the PtII cation [dihedral angle between the best plane through the piperidine ring and the four atoms coordinating to the PtII cation = 79.66 (13)°]. Bond lengths are normal and agree well with related platinum compounds (Cambridge Structural Database, version 5.34; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). There is an intra­molecular hydrogen bond between atom Cl1 and atom H8 (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.93 2.74 3.624 (2) 160
C3—H3⋯O2ii 0.96 2.53 3.360 (4) 145
C8—H8⋯Cl1 0.95 2.40 3.268 (3) 152
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯Cl hydrogen bond is shown as a green dashed line.

3. Supra­molecular features

The crystal packing is characterized by N—H⋯Cl and C—H⋯O hydrogen bonds (Table 1[link]). Mol­ecules are arranged into columns along the c axis (Fig. 2[link]) with the piperidine rings all directed towards the center of the column, favouring hydro­phobic inter­actions.

[Figure 2]
Figure 2
View of the crystal packing for the title compound, with (N/C)—H⋯Cl and C—H⋯O hydrogen bonds drawn as green and red dashed lines, respectively. [Symmetry codes: (i) x, −y + 1, z − [{1\over 2}]; (ii) −x + 1, y, −z + [{3\over 2}].]

4. Synthesis and crystallization

The starting complex K[PtCl3(piperidine)] (0.425 g, 1 mmol), prepared according to the synthetic protocol of Da et al. (2001[Da, T. T., Vu, D. B. & Dinh, N. H. (2001). J. Pharm. Sci. (Vietnam), 6, 6-8.]), was dissolved in water (10 ml) and filtered to afford a clear solution. To this solution, quinaldic acid (1.2 mmol) in an aqueous ethanol solution (5 ml, 1:1 v/v) was added gradually while stirring at room temperature for 1 h. The reaction mixture was stirred further for 4 h. The precipitated yellow substance was filtered off and washed consecutively with a 0.1 M HCl solution (2 × 2 ml), warm water (3 × 2 ml) and cold ethanol (2 ml). The product was then dried in a vacuum at 323 K for 4 h. The yield was 80%. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from an ethanol–water (1:1 v/v) solution at room temperature. Positive ESI–MS: m/z 1973 [4M + Na]+, 1483 [3M + Na]+, 998 [2M + Na]+, 510 [M + Na]+, 977 [2M + H]+, 489 [M + H]+; IR (KBr) cm−1: 3192 (νNH); 3080, 2930, 2866 (νCH); 1678 (νC=O); 1592, 1459 (νC=C arom); 1334 (νC—O); 1H NMR (δ p.p.m; CDCl3, 500Hz): 9.50 (1H, d, 3J = 9.0 Hz, Ar-H), 8.51 (1H, d, 3J = 8.0 Hz, Ar-H), 8.06 (1H, d, 3J = 8.0 Hz, Ar-H), 7.91–7.88 (2H, ov, Ar-H), 7.71 (1H, t, 3J = 8.0 Hz, Ar-H), 3.52 (2Hαe, d, 2Jae = 12.5 Hz, C5H10NH), 3.27 (2Hαa, q, 2Jae, 3Jaa, 3Jaa(NH) = 12.5 Hz, C5H10NH), 1.76–1.61 (4Hβ, 2Hγ, ov, C5H10NH), 4.00 (1H, br, C5H10NH).

5. Refinement

All H atoms were refined using a riding model, with C—H = 0.95 Å for aromatic, C—H = 0.99 Å for CH2 and N—H = 0.93 Å for amino H atoms, with Uiso = 1.2Ueq(C,N).[link]

Table 2
Experimental details

Crystal data
Chemical formula [Pt(C10H6NO2)Cl(C5H11N)]
Mr 487.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 22.7542 (8), 9.7540 (3), 14.0139 (5)
β (°) 95.542 (3)
V3) 3095.78 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 9.24
Crystal size (mm) 0.3 × 0.3 × 0.2
 
Data collection
Diffractometer Agilent SuperNova (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.473, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 31419, 3166, 2951
Rint 0.026
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.035, 1.12
No. of reflections 3166
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −0.53
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Chlorido(piperidine-kN)(quinoline-2-carboxylato-κ2N,O)platinum(II) top
Crystal data top
[Pt(C10H6NO2)Cl(C5H11N)]F(000) = 1856
Mr = 487.85Dx = 2.093 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
a = 22.7542 (8) ÅCell parameters from 16449 reflections
b = 9.7540 (3) Åθ = 3.4–29.8°
c = 14.0139 (5) ŵ = 9.24 mm1
β = 95.542 (3)°T = 200 K
V = 3095.78 (19) Å3Block, yellow
Z = 80.3 × 0.3 × 0.2 mm
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
3166 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2951 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 2828
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1212
Tmin = 0.473, Tmax = 1.000l = 1717
31419 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.035H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0118P)2 + 9.138P]
where P = (Fo2 + 2Fc2)/3
3166 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29348 (12)0.6098 (3)0.5028 (2)0.0268 (6)
C20.25609 (13)0.5746 (3)0.4211 (2)0.0327 (7)
H20.22270.51760.42640.039*
C30.26831 (14)0.6232 (3)0.3338 (2)0.0354 (7)
H30.24320.60140.27770.042*
C40.31811 (14)0.7052 (3)0.3278 (2)0.0324 (7)
C50.33360 (18)0.7554 (4)0.2386 (2)0.0432 (8)
H50.30850.73720.18180.052*
C60.38367 (19)0.8290 (4)0.2332 (2)0.0516 (10)
H60.39340.86250.17300.062*
C70.42105 (18)0.8556 (4)0.3167 (2)0.0503 (9)
H70.45650.90570.31210.060*
C80.40769 (16)0.8111 (3)0.4047 (2)0.0400 (8)
H80.43360.83090.46030.048*
C90.35561 (14)0.7362 (3)0.4130 (2)0.0285 (6)
C100.28109 (13)0.5514 (3)0.5984 (2)0.0318 (7)
C110.42217 (15)0.5840 (3)0.8206 (2)0.0402 (8)
H11A0.45180.54010.78320.048*
H11B0.38570.52810.81250.048*
C120.44551 (16)0.5867 (4)0.9262 (3)0.0479 (9)
H12A0.45090.49140.94990.058*
H12B0.48450.63230.93330.058*
C130.40413 (18)0.6613 (5)0.9861 (2)0.0550 (10)
H13A0.42250.66901.05280.066*
H13B0.36710.60830.98690.066*
C140.39015 (16)0.8039 (4)0.9459 (2)0.0443 (9)
H14A0.42630.86070.95270.053*
H14B0.36040.84810.98280.053*
C150.36650 (13)0.7956 (3)0.8404 (2)0.0337 (7)
H15A0.32850.74550.83440.040*
H15B0.35910.88930.81500.040*
Cl10.45271 (3)0.88368 (8)0.62745 (5)0.03279 (16)
N10.34113 (10)0.6894 (2)0.50082 (16)0.0255 (5)
N20.40915 (10)0.7240 (2)0.78242 (16)0.0264 (5)
H2A0.44430.77330.78930.032*
O10.31888 (9)0.5856 (2)0.66939 (14)0.0369 (5)
O20.23904 (10)0.4760 (3)0.60452 (16)0.0433 (6)
Pt10.380802 (4)0.720087 (11)0.639573 (7)0.02386 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0264 (14)0.0266 (14)0.0271 (14)0.0071 (12)0.0005 (11)0.0021 (12)
C20.0288 (15)0.0374 (17)0.0308 (15)0.0016 (13)0.0034 (12)0.0040 (13)
C30.0374 (16)0.0387 (18)0.0281 (15)0.0067 (14)0.0071 (12)0.0063 (13)
C40.0425 (17)0.0282 (16)0.0256 (15)0.0079 (13)0.0006 (12)0.0035 (12)
C50.067 (2)0.0370 (18)0.0247 (16)0.0022 (17)0.0017 (15)0.0011 (13)
C60.086 (3)0.042 (2)0.0269 (16)0.014 (2)0.0094 (17)0.0007 (15)
C70.071 (3)0.046 (2)0.0345 (18)0.0231 (19)0.0125 (17)0.0054 (16)
C80.052 (2)0.0383 (18)0.0298 (16)0.0106 (15)0.0033 (14)0.0039 (13)
C90.0397 (16)0.0213 (14)0.0242 (14)0.0045 (12)0.0010 (12)0.0031 (11)
C100.0282 (15)0.0393 (17)0.0268 (14)0.0012 (13)0.0028 (12)0.0017 (13)
C110.0421 (18)0.0303 (17)0.0443 (19)0.0005 (14)0.0153 (15)0.0051 (14)
C120.051 (2)0.040 (2)0.048 (2)0.0110 (16)0.0235 (17)0.0172 (16)
C130.060 (2)0.072 (3)0.0299 (17)0.024 (2)0.0086 (16)0.0155 (18)
C140.0404 (18)0.065 (3)0.0262 (16)0.0016 (17)0.0010 (13)0.0030 (15)
C150.0296 (15)0.0433 (19)0.0275 (15)0.0027 (13)0.0014 (12)0.0001 (13)
Cl10.0348 (4)0.0335 (4)0.0292 (3)0.0071 (3)0.0013 (3)0.0006 (3)
N10.0274 (12)0.0244 (12)0.0241 (11)0.0033 (9)0.0002 (9)0.0026 (9)
N20.0240 (11)0.0299 (13)0.0242 (12)0.0014 (10)0.0028 (9)0.0022 (10)
O10.0349 (11)0.0493 (14)0.0251 (10)0.0115 (10)0.0044 (9)0.0061 (10)
O20.0350 (12)0.0585 (16)0.0350 (12)0.0179 (11)0.0031 (9)0.0032 (11)
Pt10.02348 (6)0.02556 (6)0.02184 (6)0.00129 (4)0.00148 (4)0.00049 (4)
Geometric parameters (Å, º) top
C1—C21.402 (4)C11—H11B0.9900
C1—C101.507 (4)C11—C121.524 (4)
C1—N11.336 (4)C11—N21.486 (4)
C2—H20.9500C12—H12A0.9900
C2—C31.365 (4)C12—H12B0.9900
C3—H30.9500C12—C131.507 (6)
C3—C41.396 (5)C13—H13A0.9900
C4—C51.419 (4)C13—H13B0.9900
C4—C91.432 (4)C13—C141.522 (5)
C5—H50.9500C14—H14A0.9900
C5—C61.355 (5)C14—H14B0.9900
C6—H60.9500C14—C151.526 (4)
C6—C71.403 (5)C15—H15A0.9900
C7—H70.9500C15—H15B0.9900
C7—C81.369 (5)C15—N21.497 (4)
C8—H80.9500Cl1—Pt12.3035 (7)
C8—C91.407 (5)N1—Pt12.085 (2)
C9—N11.382 (4)N2—H2A0.9300
C10—O11.295 (3)N2—Pt12.043 (2)
C10—O21.217 (4)O1—Pt11.999 (2)
C11—H11A0.9900
C2—C1—C10118.8 (3)H12A—C12—H12B107.9
N1—C1—C2123.8 (3)C13—C12—C11111.8 (3)
N1—C1—C10117.4 (2)C13—C12—H12A109.3
C1—C2—H2120.4C13—C12—H12B109.3
C3—C2—C1119.1 (3)C12—C13—H13A109.5
C3—C2—H2120.4C12—C13—H13B109.5
C2—C3—H3120.3C12—C13—C14110.8 (3)
C2—C3—C4119.3 (3)H13A—C13—H13B108.1
C4—C3—H3120.3C14—C13—H13A109.5
C3—C4—C5121.6 (3)C14—C13—H13B109.5
C3—C4—C9119.5 (3)C13—C14—H14A109.5
C5—C4—C9118.9 (3)C13—C14—H14B109.5
C4—C5—H5119.5C13—C14—C15110.6 (3)
C6—C5—C4120.9 (3)H14A—C14—H14B108.1
C6—C5—H5119.5C15—C14—H14A109.5
C5—C6—H6120.1C15—C14—H14B109.5
C5—C6—C7119.8 (3)C14—C15—H15A109.4
C7—C6—H6120.1C14—C15—H15B109.4
C6—C7—H7119.2H15A—C15—H15B108.0
C8—C7—C6121.6 (3)N2—C15—C14111.4 (3)
C8—C7—H7119.2N2—C15—H15A109.4
C7—C8—H8120.0N2—C15—H15B109.4
C7—C8—C9120.1 (3)C1—N1—C9118.3 (2)
C9—C8—H8120.0C1—N1—Pt1110.10 (18)
C8—C9—C4118.7 (3)C9—N1—Pt1131.61 (19)
N1—C9—C4119.9 (3)C11—N2—C15110.5 (2)
N1—C9—C8121.4 (3)C11—N2—H2A107.4
O1—C10—C1114.8 (3)C11—N2—Pt1111.61 (18)
O2—C10—C1120.5 (3)C15—N2—H2A107.4
O2—C10—O1124.7 (3)C15—N2—Pt1112.37 (17)
H11A—C11—H11B107.9Pt1—N2—H2A107.4
C12—C11—H11A109.2C10—O1—Pt1115.95 (19)
C12—C11—H11B109.2N1—Pt1—Cl1106.11 (7)
N2—C11—H11A109.2N2—Pt1—Cl184.26 (7)
N2—C11—H11B109.2N2—Pt1—N1169.63 (9)
N2—C11—C12111.9 (3)O1—Pt1—Cl1171.99 (6)
C11—C12—H12A109.3O1—Pt1—N181.38 (9)
C11—C12—H12B109.3O1—Pt1—N288.26 (9)
C1—C2—C3—C40.8 (5)C9—N1—Pt1—Cl18.2 (3)
C1—C10—O1—Pt15.1 (3)C9—N1—Pt1—N2171.6 (4)
C1—N1—Pt1—Cl1171.51 (17)C9—N1—Pt1—O1174.7 (3)
C1—N1—Pt1—N28.6 (6)C10—C1—C2—C3177.6 (3)
C1—N1—Pt1—O15.58 (18)C10—C1—N1—C9175.6 (2)
C2—C1—C10—O1177.8 (3)C10—C1—N1—Pt14.7 (3)
C2—C1—C10—O20.7 (4)C10—O1—Pt1—N16.0 (2)
C2—C1—N1—C92.1 (4)C10—O1—Pt1—N2174.6 (2)
C2—C1—N1—Pt1177.6 (2)C11—C12—C13—C1453.6 (4)
C2—C3—C4—C5178.4 (3)C11—N2—Pt1—Cl1129.0 (2)
C2—C3—C4—C90.4 (4)C11—N2—Pt1—N150.9 (6)
C3—C4—C5—C6176.6 (3)C11—N2—Pt1—O153.9 (2)
C3—C4—C9—C8175.7 (3)C12—C11—N2—C1556.3 (3)
C3—C4—C9—N12.5 (4)C12—C11—N2—Pt1177.9 (2)
C4—C5—C6—C70.3 (6)C12—C13—C14—C1554.5 (4)
C4—C9—N1—C13.3 (4)C13—C14—C15—N256.9 (4)
C4—C9—N1—Pt1176.4 (2)C14—C15—N2—C1157.6 (3)
C5—C4—C9—C82.3 (4)C14—C15—N2—Pt1177.0 (2)
C5—C4—C9—N1179.4 (3)C15—N2—Pt1—Cl1106.25 (19)
C5—C6—C7—C81.3 (6)C15—N2—Pt1—N173.9 (6)
C6—C7—C8—C90.3 (6)C15—N2—Pt1—O170.9 (2)
C7—C8—C9—C41.5 (5)N1—C1—C2—C30.0 (5)
C7—C8—C9—N1179.7 (3)N1—C1—C10—O10.0 (4)
C8—C9—N1—C1174.9 (3)N1—C1—C10—O2178.5 (3)
C8—C9—N1—Pt15.4 (4)N2—C11—C12—C1354.9 (4)
C9—C4—C5—C61.4 (5)O2—C10—O1—Pt1176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.932.743.624 (2)160
C3—H3···O2ii0.962.533.360 (4)145
C8—H8···Cl10.952.403.268 (3)152
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y+1, z1/2.
 

Acknowledgements

The authors thank the Vietnamese Ministry of Education (project No. B2013-17-39) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDa, T. T., Vu, D. B. & Dinh, N. H. (2001). J. Pharm. Sci. (Vietnam), 6, 6–8.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNguyen Thi Thanh, C., Nguyen Bich, N. & Van Meervelt, L. (2014). Acta Cryst. C70, 297–301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRounaq Ali Khan, S., Guzman-Jimenez, I., Whitmire, K. H. & Khokhar, A. R. (2000). Polyhedron, 19, 975–981.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). J. Natl Cancer Inst. 82, 1107–1112.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSolin, T., Matsumoto, K. & Fuwa, K. (1982). Inorg. Chim. Acta, 65, L172–L172.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds