organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

(Received 18 June 2014; accepted 21 June 2014; online 25 June 2014)

In the title compound, C10H4ClFO3, a chlorinated and fluorinated 3-formyl­chromone derivative, all atoms are essentially coplanar (r.m.s. = 0.0336 Å for the non-H atoms), with the largest deviation from the least-squares plane [0.062 (2) Å] being for a benzene-ring C atom. In the crystal, mol­ecules are linked through stacking inter­actions [centroid–centroid distance between the benzene and pyran rings = 3.958 (3) Å and inter­planar distance = 3.259 (3) Å], C—H⋯O hydrogen bonds, and short C⋯O contacts [2.879 (3) Å]. Unsymmetrical halogen–halogen inter­actions between the Cl and F atoms [Cl⋯F = 3.049 (3) Å, C—Cl⋯F = 148.10 (9)° and C—F⋯Cl = 162.06 (13)°] are also formed, giving a meandering two-dimensional network along the a axis.

Keywords: crystal structure.

Related literature

For related structures, see: Ishikawa & Motohashi (2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]); Ishikawa (2014[Ishikawa, Y. (2014). Acta Cryst. E70, o514.]). For halogen bonding, see: Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]); Metrangolo et al. (2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]); Wilcken et al. (2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]); Sirimulla et al. (2013[Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781-2791.]). For halogen–halogen inter­actions, see: Hathwar & Guru Row (2011[Hathwar, V. R. & Guru Row, T. N. (2011). Cryst. Growth Des. 11, 1338-1346.]); Metrangolo & Resnati (2014[Metrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5-7.]); Mukherjee & Desiraju (2014[Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.]).

[Scheme 1]

Experimental

Crystal data
  • C10H4ClFO3

  • Mr = 226.59

  • Orthorhombic, P 21 21 21

  • a = 5.725 (3) Å

  • b = 32.57 (3) Å

  • c = 4.706 (4) Å

  • V = 877.4 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 100 K

  • 0.40 × 0.25 × 0.08 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.894, Tmax = 0.966

  • 1692 measured reflections

  • 1346 independent reflections

  • 1249 reflections with F2 > 2σ(F2)

  • Rint = 0.009

  • 3 standard reflections every 150 reflections intensity decay: −0.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.09

  • 1346 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 105 Friedel Pairs

  • Absolute structure parameter: 0.31 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H3⋯O2i 0.95 2.27 3.173 (3) 158
C1—H1⋯O3ii 0.95 2.40 3.242 (3) 147
Symmetry codes: (i) x-1, y, z+1; (ii) [-x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]; cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Halogen bonding and halogen···halogen interactions have recently attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee et al., 2014, Metrangolo et al., 2014). We have recently reported the crystal structures of chlorinated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014). Halogen bonding between the formyl oxygen atom and the chlorine atom at the 8-position and type I halogen···halogen interaction between the chlorine atoms at 6-position are observed in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig.3 (top)). On the other hand, a van der Waals contact between the formyl oxygen atom and the chlorine atom at 6-position is found in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig.3 (middle)). As part of our interest in these types of chemical bonding, we herein report the crystal structure of a monochlorinated and monofluorinated 3-formylchromone derivative, 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal the inductive effect of the vicinal electron-withdrawing substituent on the chlorine atom at 6-position and the interaction mode(s).

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0336 Å, and the largest deviations is 0.062 (2) Å for C4. These mean that these atoms are essentially coplanar (Fig.1).

In the crystal, the molecules are linked through stacking interaction between the translation-symmetry equivalenti molecules [centroid–centroid distance between the benzene and pyran rings of the 4H-chromene units = 3.958 (3) Å, interplanar distance 3.259 (3) Å, i: x, y, z + 1], and through C–H···O hydrogen bonds (see hydrogen bonding table).

A contact between the formyl oxygen atom and the chlorine atom at 6-position is not found in the title compound. Instead, unsymmetrical halogen···halogen interactions are formed between the chlorine and fluorine atoms [Cl1···F1 = 3.049 (3) Å, C5–Cl1···F1 = 148.10 (9)°, C6–F1···Cl1 = 162.06 (13)°] to give a meandering two-dimensional-network along the a axis, as shown in Fig.2 and Fig.3 (bottom). It is suggested that the electron-withdrawing substituent at 7-position should make the σ-hole of the chlorine atom at 6-position larger, and the electropositive region of the chlorine atom should contact the electronegative region of the fluorine atom (Hathwar et al., 2011). Symmetrical halogen···halogen interactions (F···F and Cl···Cl) are not observed in the title compound, which might support that the unsymmetrical Cl···F interaction is more favorable than the symmetrical ones.

Furthermore, short contacts between the formyl C10 and O3ii atoms [2.879 (3) Å, ii: –x + 1/2, –y + 1, z + 1/2] are observed. This interesting feature might be caused by strong dipole-dipole interaction between the formyl groups polarized by introduction of the chlorine and fluorine atoms into the chromone ring. These findings should be helpful to understand interaction of halogenated ligands with proteins, and are thus valuable for rational drug design.

Related literature top

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013). For halogen–halogen interactions, see: Hathwar & Guru Row (2011); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

Experimental top

5-Chloro-4-fluoro-2-hydroxyacetophenone was prepared from 4-chloro-3-fluorophenol by Fries rearrangement reaction. To a solution of 5-chloro-4-fluoro-2-hydroxyacetophenone (2.4 mmol) in N,N-dimethylformamide (10 ml) was added dropwise POCl3 (6.0 mmol) at 0 °C. After the mixture was stirred for 14 h at room temperature, water (30 ml) was added. The precipitates were collected, washed with water, and dried in vacuo (yield: 58%). 1H NMR (400 MHz, CDCl3): δ = 7.36 (d, 1H, J = 8.3 Hz), 8.37 (d, 1H, J = 8.3 Hz), 8.52 (s, 1H), 10.36 (s, 1H). DART-MS calcd for [C10H4Cl1F1O3 + H+]: 226.991, found 227.014. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate/chloroform solution of the title compound at room temperature.

Refinement top

The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model.

Structure description top

Halogen bonding and halogen···halogen interactions have recently attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Auffinger et al., 2004, Metrangolo et al., 2005, Wilcken et al., 2013, Sirimulla et al., 2013, Mukherjee et al., 2014, Metrangolo et al., 2014). We have recently reported the crystal structures of chlorinated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013) and 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014). Halogen bonding between the formyl oxygen atom and the chlorine atom at the 8-position and type I halogen···halogen interaction between the chlorine atoms at 6-position are observed in 6,8-dichloro-4-oxochromene-3-carbaldehyde (Fig.3 (top)). On the other hand, a van der Waals contact between the formyl oxygen atom and the chlorine atom at 6-position is found in 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (Fig.3 (middle)). As part of our interest in these types of chemical bonding, we herein report the crystal structure of a monochlorinated and monofluorinated 3-formylchromone derivative, 6-chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal the inductive effect of the vicinal electron-withdrawing substituent on the chlorine atom at 6-position and the interaction mode(s).

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0336 Å, and the largest deviations is 0.062 (2) Å for C4. These mean that these atoms are essentially coplanar (Fig.1).

In the crystal, the molecules are linked through stacking interaction between the translation-symmetry equivalenti molecules [centroid–centroid distance between the benzene and pyran rings of the 4H-chromene units = 3.958 (3) Å, interplanar distance 3.259 (3) Å, i: x, y, z + 1], and through C–H···O hydrogen bonds (see hydrogen bonding table).

A contact between the formyl oxygen atom and the chlorine atom at 6-position is not found in the title compound. Instead, unsymmetrical halogen···halogen interactions are formed between the chlorine and fluorine atoms [Cl1···F1 = 3.049 (3) Å, C5–Cl1···F1 = 148.10 (9)°, C6–F1···Cl1 = 162.06 (13)°] to give a meandering two-dimensional-network along the a axis, as shown in Fig.2 and Fig.3 (bottom). It is suggested that the electron-withdrawing substituent at 7-position should make the σ-hole of the chlorine atom at 6-position larger, and the electropositive region of the chlorine atom should contact the electronegative region of the fluorine atom (Hathwar et al., 2011). Symmetrical halogen···halogen interactions (F···F and Cl···Cl) are not observed in the title compound, which might support that the unsymmetrical Cl···F interaction is more favorable than the symmetrical ones.

Furthermore, short contacts between the formyl C10 and O3ii atoms [2.879 (3) Å, ii: –x + 1/2, –y + 1, z + 1/2] are observed. This interesting feature might be caused by strong dipole-dipole interaction between the formyl groups polarized by introduction of the chlorine and fluorine atoms into the chromone ring. These findings should be helpful to understand interaction of halogenated ligands with proteins, and are thus valuable for rational drug design.

For related structures, see: Ishikawa & Motohashi (2013); Ishikawa (2014). For halogen bonding, see: Auffinger et al. (2004); Metrangolo et al. (2005); Wilcken et al. (2013); Sirimulla et al. (2013). For halogen–halogen interactions, see: Hathwar & Guru Row (2011); Metrangolo & Resnati (2014); Mukherjee & Desiraju (2014).

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A packing view of the title compound.
[Figure 3] Fig. 3. Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (top, Ishikawa & Motohashi, 2013), 6-chloro-4-oxo-4H-chromene-3-carbaldehyde (middle, Ishikawa, 2014), and the title compound (bottom).
6-Chloro-7-fluoro-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H4ClFO3F(000) = 456.00
Mr = 226.59Dx = 1.715 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 5.725 (3) Åθ = 15.0–17.5°
b = 32.57 (3) ŵ = 0.43 mm1
c = 4.706 (4) ÅT = 100 K
V = 877.4 (11) Å3Prismatic, yellow
Z = 40.40 × 0.25 × 0.08 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.009
ω scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 47
Tmin = 0.894, Tmax = 0.966k = 042
1692 measured reflectionsl = 36
1346 independent reflections3 standard reflections every 150 reflections
1249 reflections with F2 > 2σ(F2) intensity decay: 0.1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.3855P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1346 reflectionsΔρmax = 0.29 e Å3
136 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983), 105 Friedel Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.31 (9)
Secondary atom site location: difference Fourier map
Crystal data top
C10H4ClFO3V = 877.4 (11) Å3
Mr = 226.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.725 (3) ŵ = 0.43 mm1
b = 32.57 (3) ÅT = 100 K
c = 4.706 (4) Å0.40 × 0.25 × 0.08 mm
Data collection top
Rigaku AFC-7R
diffractometer
1249 reflections with F2 > 2σ(F2)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.009
Tmin = 0.894, Tmax = 0.9663 standard reflections every 150 reflections
1692 measured reflections intensity decay: 0.1%
1346 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.29 e Å3
S = 1.09Δρmin = 0.25 e Å3
1346 reflectionsAbsolute structure: Flack (1983), 105 Friedel Pairs
136 parametersAbsolute structure parameter: 0.31 (9)
0 restraints
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39186 (10)0.273972 (16)1.18743 (14)0.02563 (15)
F10.0630 (3)0.29836 (4)1.4050 (3)0.0262 (4)
O10.1743 (3)0.41526 (4)0.8442 (4)0.0170 (4)
O20.4433 (3)0.39789 (5)0.4232 (4)0.0197 (4)
O30.0422 (3)0.49703 (5)0.2146 (4)0.0221 (4)
C10.1015 (4)0.44135 (6)0.6415 (5)0.0164 (5)
C20.1017 (4)0.43740 (6)0.4982 (5)0.0150 (4)
C30.2589 (4)0.40294 (6)0.5529 (5)0.0151 (5)
C40.3078 (4)0.34031 (6)0.8557 (5)0.0166 (5)
C50.2284 (4)0.31479 (6)1.0679 (5)0.0179 (5)
C60.0125 (4)0.32307 (6)1.1954 (5)0.0179 (5)
C70.1221 (4)0.35619 (6)1.1204 (5)0.0168 (5)
C80.1766 (4)0.37479 (6)0.7742 (5)0.0146 (5)
C90.0373 (4)0.38186 (6)0.9084 (5)0.0139 (5)
C100.1639 (4)0.46812 (6)0.2808 (5)0.0174 (5)
H10.19910.46400.59600.0197*
H20.45200.33460.76400.0200*
H30.26780.36141.21000.0202*
H40.30940.46500.18610.0208*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0256 (3)0.0191 (3)0.0322 (3)0.0053 (3)0.0045 (3)0.0062 (3)
F10.0290 (8)0.0242 (7)0.0256 (8)0.0050 (7)0.0003 (7)0.0083 (6)
O10.0134 (7)0.0183 (7)0.0194 (8)0.0035 (6)0.0028 (7)0.0013 (7)
O20.0160 (8)0.0231 (8)0.0199 (8)0.0032 (7)0.0050 (8)0.0007 (7)
O30.0219 (8)0.0194 (7)0.0250 (9)0.0017 (7)0.0026 (8)0.0047 (7)
C10.0170 (10)0.0144 (9)0.0180 (11)0.0007 (8)0.0019 (11)0.0003 (9)
C20.0160 (10)0.0143 (9)0.0146 (10)0.0003 (9)0.0007 (10)0.0016 (8)
C30.0150 (10)0.0159 (10)0.0144 (10)0.0004 (9)0.0025 (10)0.0029 (9)
C40.0161 (10)0.0170 (10)0.0169 (11)0.0015 (9)0.0019 (10)0.0031 (9)
C50.0193 (11)0.0136 (10)0.0207 (11)0.0023 (9)0.0049 (10)0.0004 (9)
C60.0208 (11)0.0168 (10)0.0162 (11)0.0050 (9)0.0007 (11)0.0007 (10)
C70.0152 (10)0.0202 (10)0.0150 (10)0.0022 (9)0.0002 (10)0.0025 (9)
C80.0157 (10)0.0142 (9)0.0137 (10)0.0001 (8)0.0013 (9)0.0026 (9)
C90.0137 (10)0.0134 (9)0.0147 (10)0.0004 (8)0.0034 (9)0.0029 (9)
C100.0175 (10)0.0191 (10)0.0156 (10)0.0009 (9)0.0010 (10)0.0013 (9)
Geometric parameters (Å, º) top
Cl1—C51.720 (3)C4—C51.377 (4)
F1—C61.344 (3)C4—C81.405 (3)
O1—C11.344 (3)C5—C61.400 (4)
O1—C91.375 (3)C6—C71.372 (3)
O2—C31.231 (3)C7—C91.389 (3)
O3—C101.212 (3)C8—C91.397 (3)
C1—C21.351 (4)C1—H10.950
C2—C31.461 (3)C4—H20.950
C2—C101.474 (3)C7—H30.950
C3—C81.465 (3)C10—H40.950
Cl1···F12.908 (2)F1···H32.5356
F1···C93.589 (4)O1···H32.5157
O1···C32.862 (3)O2···H22.6126
O1···C63.590 (4)O2···H42.5720
O2···C13.576 (4)O3···H12.5075
O2···C42.874 (3)C1···H43.2741
O2···C102.870 (3)C3···H13.2973
O3···C12.828 (3)C3···H22.6768
C1···C73.576 (4)C3···H42.6745
C1···C82.761 (4)C5···H33.2890
C2···C92.763 (4)C6···H23.2547
C4···C72.806 (4)C8···H33.2967
C5···C92.766 (4)C9···H13.1900
C6···C82.766 (4)C9···H23.2681
Cl1···F1i3.380 (3)C10···H12.5568
Cl1···F1ii3.049 (3)H1···H43.4924
F1···Cl1iii3.380 (3)Cl1···H2v3.3732
F1···Cl1iv3.049 (3)Cl1···H3i3.4511
F1···C4v3.297 (3)F1···H2vi3.4577
F1···C5v3.577 (4)F1···H2v3.5970
F1···C8v3.331 (3)O1···H2iii3.4090
O1···O2iii3.006 (3)O1···H3viii3.5035
O1···O2vi3.540 (3)O1···H4v3.5895
O1···O3v3.416 (3)O2···H1i3.0802
O1···C2v3.533 (4)O2···H3vii2.2707
O1···C3iii3.545 (3)O3···H1viii3.3969
O1···C10v3.307 (3)O3···H1xi2.4042
O2···O1vii3.540 (3)O3···H4ix2.9039
O2···O1i3.006 (3)O3···H4x2.6777
O2···C1i3.138 (3)C1···H3viii3.4372
O2···C4viii3.354 (4)C1···H4v3.5633
O2···C5viii3.411 (4)C1···H4x3.4837
O2···C7vii3.173 (3)C2···H3viii3.5279
O2···C8viii3.496 (4)C2···H4v3.5642
O3···O1viii3.416 (3)C2···H4x3.3373
O3···O3ix3.352 (3)C3···H3vii3.4320
O3···O3x3.352 (3)C4···H3i3.0253
O3···C1viii3.353 (4)C5···H2v3.5757
O3···C1xi3.242 (3)C5···H3i3.3268
O3···C2ix3.123 (3)C7···H2iii3.0416
O3···C3ix3.534 (4)C9···H2iii3.3732
O3···C10ix2.879 (3)C10···H1xi3.5669
O3···C10x3.349 (4)C10···H4ix3.5488
C1···O2iii3.138 (3)C10···H4x2.8982
C1···O3v3.353 (4)H1···O2iii3.0802
C1···O3xii3.242 (3)H1···O3v3.3969
C1···C10v3.481 (4)H1···O3xii2.4042
C2···O1viii3.533 (4)H1···C10xii3.5669
C2···O3x3.123 (3)H1···H1xi3.3725
C2···C7viii3.435 (4)H1···H1xii3.3725
C2···C9viii3.407 (4)H1···H4iii3.4116
C3···O1i3.545 (3)H1···H4x3.2403
C3···O3x3.534 (4)H2···Cl1viii3.3732
C3···C6viii3.404 (4)H2···F1viii3.5970
C3···C7viii3.349 (4)H2···F1vii3.4577
C3···C9viii3.542 (4)H2···O1i3.4090
C4···F1viii3.297 (3)H2···C5viii3.5757
C4···O2v3.354 (4)H2···C7i3.0416
C4···C6viii3.581 (4)H2···C9i3.3732
C4···C7i3.531 (4)H2···H3vii3.1828
C5···F1viii3.577 (4)H2···H3i2.7815
C5···O2v3.411 (4)H3···Cl1iii3.4511
C6···C3v3.404 (4)H3···O1v3.5035
C6···C4v3.581 (4)H3···O2vi2.2707
C6···C8v3.337 (4)H3···C1v3.4372
C7···O2vi3.173 (3)H3···C2v3.5279
C7···C2v3.435 (4)H3···C3vi3.4320
C7···C3v3.349 (4)H3···C4iii3.0253
C7···C4iii3.531 (4)H3···C5iii3.3268
C7···C8v3.571 (4)H3···H2iii2.7815
C8···F1viii3.331 (3)H3···H2vi3.1828
C8···O2v3.496 (4)H4···O1viii3.5895
C8···C6viii3.337 (4)H4···O3ix2.6777
C8···C7viii3.571 (4)H4···O3x2.9039
C9···C2v3.407 (4)H4···C1viii3.5633
C9···C3v3.542 (4)H4···C1ix3.4837
C9···C10v3.506 (4)H4···C2viii3.5642
C10···O1viii3.307 (3)H4···C2ix3.3373
C10···O3ix3.349 (4)H4···C10ix2.8982
C10···O3x2.879 (3)H4···C10x3.5488
C10···C1viii3.481 (4)H4···H1i3.4116
C10···C9viii3.506 (4)H4···H1ix3.2403
C10···C10ix3.289 (4)H4···H4ix3.3442
C10···C10x3.289 (4)H4···H4x3.3442
Cl1···H22.8259
C1—O1—C9118.64 (17)C3—C8—C4121.5 (2)
O1—C1—C2124.15 (19)C3—C8—C9120.02 (19)
C1—C2—C3121.03 (19)C4—C8—C9118.5 (2)
C1—C2—C10119.31 (19)O1—C9—C7115.77 (19)
C3—C2—C10119.7 (2)O1—C9—C8122.08 (19)
O2—C3—C2122.9 (2)C7—C9—C8122.1 (2)
O2—C3—C8123.02 (19)O3—C10—C2124.5 (2)
C2—C3—C8114.06 (19)O1—C1—H1117.920
C5—C4—C8120.3 (2)C2—C1—H1117.932
Cl1—C5—C4121.60 (18)C5—C4—H2119.879
Cl1—C5—C6119.27 (17)C8—C4—H2119.849
C4—C5—C6119.1 (2)C6—C7—H3121.234
F1—C6—C5118.87 (19)C9—C7—H3121.245
F1—C6—C7118.6 (2)O3—C10—H4117.735
C5—C6—C7122.5 (2)C2—C10—H4117.738
C6—C7—C9117.5 (2)
C1—O1—C9—C7179.81 (16)C8—C4—C5—Cl1176.25 (17)
C1—O1—C9—C81.4 (3)C8—C4—C5—C61.7 (3)
C9—O1—C1—C21.3 (3)H2—C4—C5—Cl13.7
C9—O1—C1—H1178.7H2—C4—C5—C6178.3
O1—C1—C2—C31.1 (4)H2—C4—C8—C31.2
O1—C1—C2—C10179.67 (17)H2—C4—C8—C9178.6
H1—C1—C2—C3178.9Cl1—C5—C6—F11.2 (3)
H1—C1—C2—C100.3Cl1—C5—C6—C7176.87 (14)
C1—C2—C3—O2178.64 (19)C4—C5—C6—F1179.17 (19)
C1—C2—C3—C80.9 (3)C4—C5—C6—C71.1 (4)
C1—C2—C10—O31.5 (4)F1—C6—C7—C9178.33 (16)
C1—C2—C10—H4178.5F1—C6—C7—H31.7
C3—C2—C10—O3177.79 (19)C5—C6—C7—C90.3 (4)
C3—C2—C10—H42.2C5—C6—C7—H3179.7
C10—C2—C3—O20.6 (3)C6—C7—C9—O1178.42 (18)
C10—C2—C3—C8179.86 (17)C6—C7—C9—C80.0 (3)
O2—C3—C8—C41.2 (4)H3—C7—C9—O11.6
O2—C3—C8—C9178.51 (18)H3—C7—C9—C8180.0
C2—C3—C8—C4179.22 (17)C3—C8—C9—O11.3 (3)
C2—C3—C8—C91.0 (3)C3—C8—C9—C7179.63 (17)
C5—C4—C8—C3178.79 (18)C4—C8—C9—O1178.90 (18)
C5—C4—C8—C91.5 (3)C4—C8—C9—C70.6 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+3; (iii) x1, y, z; (iv) x1/2, y+1/2, z+3; (v) x, y, z+1; (vi) x1, y, z+1; (vii) x+1, y, z1; (viii) x, y, z1; (ix) x+1/2, y+1, z1/2; (x) x+1/2, y+1, z+1/2; (xi) x1/2, y+1, z1/2; (xii) x1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H3···O2vi0.952.273.173 (3)158
C1—H1···O3xii0.952.403.242 (3)147
Symmetry codes: (vi) x1, y, z+1; (xii) x1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H3···O2i0.952.2713.173 (3)158
C1—H1···O3ii0.952.4043.242 (3)147
Symmetry codes: (i) x1, y, z+1; (ii) x1/2, y+1, z+1/2.
 

Acknowledgements

I acknowledge the University of Shizuoka for instrumental support.

References

First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHathwar, V. R. & Guru Row, T. N. (2011). Cryst. Growth Des. 11, 1338–1346.  Web of Science CSD CrossRef CAS Google Scholar
First citationIshikawa, Y. (2014). Acta Cryst. E70, o514.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetrangolo, P. & Resnati, G. (2014). IUCrJ, 1, 5–7.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds