organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-nitro­phen­yl)methane

aDepartment of Chemistry and Biochemistry, St Catherine University, 2004 Randolph Avenue, St Paul, MN 55105, USA
*Correspondence e-mail: dejanzen@stkate.edu

Edited by S. Parkin, University of Kentucky, USA (Received 23 June 2014; accepted 2 July 2014; online 5 July 2014)

In the title compound, C13H10N2O4, the nitro groups are twisted significantly relative to the benzene rings [dihedral angles = 16.64 (18) and 28.02 (11)°]. The benzene groups are nearly perpendicular to each other [dihedral angle = 87.72 (6)°]. Short inter­molecular N⋯O and C⋯O [2.981 (2) and 3.060 (2) Å, respectively] contacts suggest possible weak π-inter­actions between nitro groups and between benzene and nitro groups. In addition, there are ππ inter­actions between one benzene group and an inversion-related equivalent [inter­planar separation = 3.494 (2) Å].

Keywords: crystal structure.

Related literature

The synthesis of the title compound has been previously reported (Allinger & Youngdale, 1962[Allinger, N. L. & Youngdale, G. A. (1962). J. Am. Chem. Soc. 84, 1020-1026.]), although by different methods from the preparation of the sample used for this study [a modification of the method given by Lu et al. (2006[Lu, F., Chi, S.-W., Kim, D.-H., Han, K.-H., Kuntz, I. D. & Guy, R. K. (2006). J. Comb. Chem. 8, 315-325.])]. For related structures, see: Barnes et al. (1981[Barnes, J. C., Paton, J. D., Damewood, J. R. Jr & Mislow, K. (1981). J. Org. Chem. 46, 4975-4979.]); Brito et al. (2007[Brito, I., Mundaca, A., Cárdenas, A., López-Rodríguez, M. & Vargas, D. (2007). Acta Cryst. E63, o3351-o3352.]); Cousson et al. (1993[Cousson, A., Lelièvre, J., Chatrousse, A. P., Terrier, F. & Farrell, P. G. (1993). Acta Cryst. C49, 609-612.]); Housty (1961[Housty, M. J. (1961). Acta Cryst. 14, 92.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O4

  • Mr = 258.23

  • Triclinic, [P \overline 1]

  • a = 7.628 (3) Å

  • b = 8.340 (3) Å

  • c = 9.464 (4) Å

  • α = 103.544 (8)°

  • β = 92.555 (7)°

  • γ = 94.870 (7)°

  • V = 582.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.17 × 0.15 × 0.10 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.735, Tmax = 0.989

  • 6052 measured reflections

  • 2648 independent reflections

  • 1866 reflections with F2 > 2σ(F2)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.114

  • S = 1.02

  • 2648 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

4,4'-Methylene dianiline (4,4'-MDA) is principally used to produce 4,4'-methylene dianiline diisocyanate and other polymeric isocyanates, which are used to manufacture polyurethane foams. 4,4'-MDA is also used as a curing agent for epoxy resins and urethane elastomers, as a corrosion preventative for iron, as an antioxidant for lubricating oils, as a rubber processing chemical, and as an intermediate in the manufacture of elastomeric fibers. In the manufacturing process of 4,4'-MDA, by-products including 2,2'-methylene dianiline (2,2'-MDA) are produced. 2,2'-MDA can have hazardous health effects such as irritation to the skin and eyes, liver damage through acute oral or dermal exposure, and is a possible human carcinogen. In an effort to access 2,2'-MDA for use as a standard to measure the by-products created in the manufacturing process to synthesize 4,4'-MDA, we have developed a new synthesis of the intermediate 2,2'-dinitrodiphenylmethane and determined its crystal structure.

2,2'-MDA can be produced in a two-step synthesis from 2-nitrophenyl boronic acid and 2-nitrobenzyl bromide. First, 2-nitrophenyl boronic acid is reacted with 2-nitrobenzyl bromide using a Suzuki reaction to produce 2,2'-dinitrodiphenylmethane. Next, the nitro groups on the 2,2'-dinitrodiphenylmethane can be reduced using a catalytic hydrogenation reaction to produce the compound 2,2'-MDA.

The molecular structure of bis(2-nitrophenyl)methane (Fig. 1) is composed of an asymmetric unit containing one whole molecule. The N-O bond lengths (range 1.227 (2)-1.233 (2) Å) are consistent with a high degree of resonance in the nitro groups. Each nitro group is twisted from the bonded benzene moiety with angles between least-squares planes (N1, O1, O2 and C1-C6; N2, O3, O4 and C8-C13) of 16.64 (18)° and 28.02 (11)°, respectively. The benzene groups are nearly perpendicular with angles between least-squares planes of 87.72 (6)°. The orientation of the nitro groups allows for close intramolecular contacts between the oxygen atoms and methylene H atoms.

Close intermolecular contacts are also present in this structure. A short contact between N1 (x,y,z) and O2 (1 - x,2 - y, 1 - z) with a distance of 2.981 (2) Å (distance -van der Waals sum = -0.089 Å) is consistent with a weak nitro π - nitro π type interaction. These nitro groups, related by inversion, are parallel with an intermolecular distance between least-squares planes of 2.861 (3) Å. Likewise, C1 (x,y,z) and O2 (1-x, 2-y, 1-z) engage in a similar weak benzene π - nitro π type interaction at a distance of 3.060 (2) Å (distance -van der Waals sum = -0.161 Å). Short intermolecular contacts are also present between O4(x,y,z) ···H3(x,y + 1,z + 1) (2.53 Å) and O1(x, y,z)···H5 x - 1,y,z) (2.58 Å).

Related literature top

The synthesis of the title compound has been previously reported (Allinger & Youngdale, 1962), although by different methods from the preparation of the sample used for this study [a modification of the method given by Lu et al. (2006)]. For related structures, see: Barnes et al. (1981); Brito et al. (2007); Cousson et al. (1993); Housty (1961).

Experimental top

Compound (I) was prepared by a modification of the method used by Lu et al. (2006).

Under nitrogen, a mixture of THF (5.8 ml) and aqueous K2CO3 (2M, 2.3 ml, 9.3 mmol) were added to 2-nitrophenylboronic acid (0.257 g, 3.08 mmol), 2-nitrobenzylbromide (0.514 g, 2.8 mmol) and Pd(PPh3)4 (0.081 g, 0.07 mmol). The reaction mixture was heated under reflux and protected from light for 24h. Aqueous HCl (1M, 50 ml) was added, the reaction mixture was extracted with ethyl acetate (3 x 20 ml), dried using MgSO4, and concentrated to yield a brown oil. The crude product was purified by flash chormatography (silica gel, hexanes/ethyl acetate (12:1)). Yellow X-ray quality crystals were obtained by evaporation of a hexanes/ethyl acetate (12:1) solution. Yield: 0.059 g, 16%. mp 84-85°C.

Refinement top

Hydrogen atoms were placed at calculated positions and refined in the riding model approximation with distances of C–H = 0.95 and 0.99 Å for the benzene and methylene groups, respectively, and with Uiso(H) = 1.2×Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. A thermal ellipsoid plot (50% probability ellipsoids for non-H atoms) of the structure of (I).
[Figure 2] Fig. 2. View of two molecules of (I) showing the close N1···O2 and C1···O2 contacts between two molecules related by inversion (symm. code 1 - x, 2 - y, 1 - z).
[Figure 3] Fig. 3. Unit cell packing diagram of (I) viewed parallel to the b axis.
Bis(2-nitrophenyl)methane top
Crystal data top
C13H10N2O4Z = 2
Mr = 258.23F(000) = 268.00
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.628 (3) ÅCell parameters from 4826 reflections
b = 8.340 (3) Åθ = 3.4–27.5°
c = 9.464 (4) ŵ = 0.11 mm1
α = 103.544 (8)°T = 173 K
β = 92.555 (7)°Prism, colorless
γ = 94.870 (7)°0.17 × 0.15 × 0.10 mm
V = 582.0 (4) Å3
Data collection top
Rigaku XtaLAB mini
diffractometer
1866 reflections with F2 > 2σ(F2)
Detector resolution: 6.849 pixels mm-1Rint = 0.038
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 99
Tmin = 0.735, Tmax = 0.989k = 1010
6052 measured reflectionsl = 1212
2648 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.1223P]
where P = (Fo2 + 2Fc2)/3
2648 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C13H10N2O4γ = 94.870 (7)°
Mr = 258.23V = 582.0 (4) Å3
Triclinic, P1Z = 2
a = 7.628 (3) ÅMo Kα radiation
b = 8.340 (3) ŵ = 0.11 mm1
c = 9.464 (4) ÅT = 173 K
α = 103.544 (8)°0.17 × 0.15 × 0.10 mm
β = 92.555 (7)°
Data collection top
Rigaku XtaLAB mini
diffractometer
2648 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
1866 reflections with F2 > 2σ(F2)
Tmin = 0.735, Tmax = 0.989Rint = 0.038
6052 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
2648 reflectionsΔρmin = 0.23 e Å3
172 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29405 (17)0.79051 (18)0.56711 (16)0.0471 (4)
O20.50674 (17)0.97856 (16)0.66006 (14)0.0363 (4)
O30.86890 (18)1.24938 (16)0.80274 (14)0.0382 (4)
O40.6835 (2)1.29123 (18)0.97055 (17)0.0530 (5)
N10.45029 (19)0.84465 (19)0.57775 (16)0.0301 (4)
N20.7777 (2)1.20163 (18)0.89199 (16)0.0309 (4)
C10.5742 (2)0.7451 (2)0.48873 (18)0.0249 (4)
C20.4972 (3)0.6214 (3)0.37138 (19)0.0310 (4)
C30.6030 (3)0.5236 (3)0.2806 (2)0.0343 (5)
C40.7836 (3)0.5484 (3)0.3085 (2)0.0356 (5)
C50.8591 (3)0.6726 (3)0.42590 (19)0.0317 (4)
C60.7571 (3)0.7774 (2)0.51854 (18)0.0257 (4)
C70.8516 (3)0.9162 (3)0.63788 (18)0.0280 (4)
C80.8178 (2)0.9011 (2)0.79215 (18)0.0249 (4)
C90.8194 (3)0.7458 (3)0.8234 (2)0.0307 (4)
C100.7870 (3)0.7201 (3)0.9604 (2)0.0348 (5)
C110.7497 (3)0.8504 (3)1.0715 (2)0.0358 (5)
C120.7464 (3)1.0059 (3)1.04560 (19)0.0317 (4)
C130.7820 (2)1.0299 (2)0.90776 (18)0.0258 (4)
H20.37260.60470.35410.0372*
H30.55200.44000.19950.0412*
H40.85700.48020.24710.0428*
H50.98370.68650.44350.0381*
H7A0.81411.02310.62550.0336*
H7B0.98000.91840.62590.0336*
H90.84340.65420.74830.0369*
H100.79070.61260.97770.0418*
H110.72650.83281.16480.0429*
H120.72021.09641.12080.0380*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0241 (8)0.0549 (10)0.0606 (10)0.0036 (7)0.0085 (7)0.0093 (8)
O20.0407 (8)0.0371 (8)0.0293 (7)0.0118 (6)0.0025 (6)0.0016 (6)
O30.0466 (8)0.0319 (7)0.0369 (8)0.0007 (6)0.0079 (7)0.0107 (6)
O40.0715 (11)0.0364 (8)0.0522 (10)0.0200 (8)0.0250 (8)0.0041 (7)
N10.0284 (9)0.0365 (9)0.0280 (9)0.0084 (7)0.0023 (7)0.0115 (7)
N20.0344 (9)0.0282 (8)0.0279 (9)0.0024 (7)0.0002 (7)0.0032 (7)
C10.0254 (9)0.0278 (9)0.0235 (9)0.0059 (7)0.0040 (7)0.0085 (7)
C20.0279 (10)0.0350 (10)0.0298 (10)0.0004 (8)0.0030 (8)0.0096 (8)
C30.0399 (11)0.0310 (10)0.0281 (10)0.0000 (8)0.0001 (8)0.0008 (8)
C40.0409 (11)0.0337 (10)0.0314 (10)0.0088 (8)0.0078 (9)0.0030 (8)
C50.0272 (10)0.0388 (11)0.0285 (10)0.0045 (8)0.0037 (8)0.0059 (8)
C60.0282 (9)0.0278 (9)0.0220 (9)0.0020 (7)0.0027 (7)0.0078 (7)
C70.0242 (9)0.0291 (9)0.0288 (10)0.0008 (7)0.0032 (7)0.0039 (8)
C80.0198 (9)0.0276 (9)0.0259 (9)0.0006 (7)0.0016 (7)0.0052 (7)
C90.0283 (10)0.0282 (10)0.0331 (10)0.0025 (8)0.0032 (8)0.0031 (8)
C100.0366 (11)0.0317 (10)0.0374 (11)0.0006 (8)0.0042 (9)0.0133 (9)
C110.0367 (11)0.0430 (12)0.0294 (10)0.0021 (9)0.0002 (8)0.0146 (9)
C120.0312 (10)0.0371 (11)0.0246 (10)0.0004 (8)0.0003 (8)0.0043 (8)
C130.0227 (9)0.0255 (9)0.0281 (9)0.0001 (7)0.0010 (7)0.0055 (7)
Geometric parameters (Å, º) top
O1—N11.229 (2)C8—C131.397 (3)
O2—N11.2331 (18)C9—C101.393 (3)
O3—N21.233 (3)C10—C111.382 (3)
O4—N21.227 (3)C11—C121.378 (3)
N1—C11.473 (3)C12—C131.400 (3)
N2—C131.478 (3)C2—H20.950
C1—C21.395 (3)C3—H30.950
C1—C61.401 (3)C4—H40.950
C2—C31.379 (3)C5—H50.950
C3—C41.380 (3)C7—H7A0.990
C4—C51.394 (3)C7—H7B0.990
C5—C61.398 (3)C9—H90.950
C6—C71.519 (3)C10—H100.950
C7—C81.526 (3)C11—H110.950
C8—C91.395 (3)C12—H120.950
O1···C22.688 (3)O3···H2i2.8392
O1···C63.590 (3)O3···H4v3.0767
O2···O33.426 (2)O3···H5v2.7744
O2···O43.566 (2)O3···H9x3.5525
O2···N23.0953 (19)O3···H10x3.2126
O2···C23.532 (3)O3···H10vi3.2061
O2···C62.824 (3)O3···H11vi3.2348
O2···C72.732 (3)O4···H2i3.4020
O2···C82.825 (3)O4···H3vii2.5274
O2···C133.004 (3)O4···H4vii2.9142
O3···C72.840 (3)O4···H10x2.7197
O3···C82.875 (3)O4···H11iv3.3111
O3···C123.512 (3)N1···H3ii3.5241
O4···C83.554 (3)N1···H7Ai3.1639
O4···C122.711 (3)N1···H11iv3.5821
N1···C73.070 (3)N1···H12iv3.1392
N1···C83.319 (3)N2···H2i3.3447
N2···C73.072 (3)N2···H10x3.3242
C1···C42.744 (3)N2···H10vi3.5553
C1···C83.280 (3)C1···H11xi3.5367
C2···C52.764 (3)C2···H9ii3.2897
C3···C62.836 (3)C2···H11xi3.3744
C5···C83.585 (3)C3···H9ii3.5691
C6···C92.979 (3)C3···H10xi3.4642
C8···C112.837 (3)C3···H11xi3.1208
C9···C122.759 (3)C4···H9xii3.4305
C10···C132.747 (3)C4···H10xi3.2996
O1···O2i3.518 (3)C4···H11xi3.0494
O1···O3i3.592 (3)C5···H7Av3.5358
O1···C3ii3.403 (3)C5···H11xi3.2356
O1···C4ii3.326 (3)C6···H11xi3.4859
O1···C5iii3.492 (3)C7···H7Bv3.3745
O2···O1i3.518 (3)C8···H12vi3.5807
O2···O2i3.131 (3)C9···H2ii3.2040
O2···N1i2.981 (3)C9···H3ii3.0850
O2···C1i3.060 (3)C9···H4xii3.2311
O2···C2i3.421 (3)C10···H3ii2.9802
O2···C11iv3.396 (3)C11···H7Bvi3.5194
O2···C12iv3.444 (3)C12···H7Bvi3.5635
O3···O1i3.592 (3)H2···O2i3.5542
O3···C2i3.551 (3)H2···O3i2.8392
O3···C4v3.362 (3)H2···O4i3.4020
O3···C5v3.200 (3)H2···N2i3.3447
O3···C10vi3.327 (3)H2···C9ii3.2040
O3···C11vi3.338 (3)H2···H5iii3.2056
O4···C3vii3.231 (3)H2···H7Ai3.4920
O4···C4vii3.421 (3)H2···H9ii2.5672
O4···C11iv3.387 (3)H2···H10ii3.3613
N1···O2i2.981 (3)H3···O1ii3.4775
N1···N1i3.318 (3)H3···O4viii2.5274
N2···C10vi3.492 (3)H3···N1ii3.5241
C1···O2i3.060 (3)H3···C9ii3.0850
C2···O2i3.421 (3)H3···C10ii2.9802
C2···O3i3.551 (3)H3···H9ii3.1418
C2···C2ii3.514 (3)H3···H10xi3.3329
C3···O1ii3.403 (3)H3···H10ii2.9846
C3···O4viii3.231 (3)H3···H11xi3.5234
C4···O1ii3.326 (3)H3···H12viii3.1816
C4···O3v3.362 (3)H4···O1ii3.3339
C4···O4viii3.421 (3)H4···O3v3.0767
C5···O1ix3.492 (3)H4···O4viii2.9142
C5···O3v3.200 (3)H4···C9xii3.2311
C8···C12vi3.544 (3)H4···H9xii2.6325
C10···O3vi3.327 (3)H4···H10xi3.0462
C10···N2vi3.492 (3)H4···H10xii3.5270
C11···O2iv3.396 (3)H4···H11xi3.4275
C11···O3vi3.338 (3)H4···H12viii3.2087
C11···O4iv3.387 (3)H5···O1ix2.5794
C12···O2iv3.444 (3)H5···O3v2.7744
C12···C8vi3.544 (3)H5···H2ix3.2056
O1···H22.3718H5···H5xii3.5426
O2···H7A2.3914H5···H7Av2.9778
O3···H7A2.2068H5···H7Bv3.4990
O3···H7B3.0821H5···H9xii3.3980
O4···H122.4218H7A···O1i2.7985
N1···H22.5571H7A···O2i3.5612
N1···H7A2.9988H7A···N1i3.1639
N2···H7A2.6509H7A···C5v3.5358
N2···H7B3.5330H7A···H2i3.4920
N2···H122.5617H7A···H5v2.9778
C1···H33.2585H7A···H7Bv3.0193
C1···H53.2340H7B···O1ix2.7316
C1···H7A2.8396H7B···C7v3.3745
C1···H7B3.3700H7B···C11vi3.5194
C1···H93.3932H7B···C12vi3.5635
C2···H43.2392H7B···H5v3.4990
C3···H53.2571H7B···H7Av3.0193
C4···H23.2424H7B···H7Bv3.0237
C5···H33.2674H7B···H11vi3.1837
C5···H7A3.1423H7B···H12vi3.2696
C5···H7B2.5180H9···O3xiii3.5525
C5···H93.0984H9···C2ii3.2897
C6···H23.3056H9···C3ii3.5691
C6···H43.2918H9···C4xii3.4305
C6···H92.6931H9···H2ii2.5672
C7···H52.6288H9···H3ii3.1418
C7···H92.6311H9···H4xii2.6325
C8···H103.2926H9···H5xii3.3980
C8···H123.3047H10···O3xiii3.2126
C9···H7A3.3006H10···O3vi3.2061
C9···H7B2.8685H10···O4xiii2.7197
C9···H113.2653H10···N2xiii3.3242
C10···H123.2441H10···N2vi3.5553
C11···H93.2542H10···C3xiv3.4642
C12···H103.2415H10···C4xiv3.2996
C13···H7A2.6811H10···H2ii3.3613
C13···H7B3.1139H10···H3xiv3.3329
C13···H93.2263H10···H3ii2.9846
C13···H113.2625H10···H4xiv3.0462
H2···H32.3363H10···H4xii3.5270
H3···H42.3305H11···O1iv3.5664
H4···H52.3258H11···O2iv2.8116
H5···H7A3.3275H11···O3vi3.2348
H5···H7B2.2737H11···O4iv3.3111
H5···H93.1830H11···N1iv3.5821
H7A···H93.5546H11···C1xiv3.5367
H7B···H92.8626H11···C2xiv3.3744
H9···H102.3236H11···C3xiv3.1208
H10···H112.3354H11···C4xiv3.0494
H11···H122.3352H11···C5xiv3.2356
O1···H3ii3.4775H11···C6xiv3.4859
O1···H4ii3.3339H11···H3xiv3.5234
O1···H5iii2.5794H11···H4xiv3.4275
O1···H7Ai2.7985H11···H7Bvi3.1837
O1···H7Biii2.7316H12···O1iv2.8926
O1···H11iv3.5664H12···O2iv2.9037
O1···H12iv2.8926H12···N1iv3.1392
O2···H2i3.5542H12···C8vi3.5807
O2···H7Ai3.5612H12···H3vii3.1816
O2···H11iv2.8116H12···H4vii3.2087
O2···H12iv2.9037H12···H7Bvi3.2696
O1—N1—O2122.50 (15)N2—C13—C8121.89 (16)
O1—N1—C1118.50 (14)N2—C13—C12115.29 (14)
O2—N1—C1119.01 (14)C8—C13—C12122.81 (17)
O3—N2—O4122.91 (17)C1—C2—H2120.212
O3—N2—C13119.29 (15)C3—C2—H2120.213
O4—N2—C13117.80 (16)C2—C3—H3120.313
N1—C1—C2115.46 (15)C4—C3—H3120.314
N1—C1—C6121.63 (13)C3—C4—H4119.728
C2—C1—C6122.88 (16)C5—C4—H4119.739
C1—C2—C3119.57 (16)C4—C5—H5118.995
C2—C3—C4119.37 (16)C6—C5—H5119.000
C3—C4—C5120.53 (18)C6—C7—H7A108.677
C4—C5—C6122.00 (17)C6—C7—H7B108.684
C1—C6—C5115.58 (14)C8—C7—H7A108.672
C1—C6—C7126.13 (15)C8—C7—H7B108.679
C5—C6—C7118.27 (15)H7A—C7—H7B107.606
C6—C7—C8114.32 (15)C8—C9—H9118.783
C7—C8—C9118.53 (15)C10—C9—H9118.770
C7—C8—C13125.89 (17)C9—C10—H10119.901
C9—C8—C13115.57 (17)C11—C10—H10119.902
C8—C9—C10122.45 (16)C10—C11—H11120.303
C9—C10—C11120.2 (2)C12—C11—H11120.312
C10—C11—C12119.39 (19)C11—C12—H12120.215
C11—C12—C13119.57 (16)C13—C12—H12120.219
O1—N1—C1—C217.2 (3)C4—C5—C6—C12.3 (3)
O1—N1—C1—C6164.73 (16)C4—C5—C6—C7176.20 (17)
O2—N1—C1—C2162.89 (15)C1—C6—C7—C865.5 (3)
O2—N1—C1—C615.2 (3)C5—C6—C7—C8116.10 (18)
O3—N2—C13—C828.6 (2)C6—C7—C8—C942.9 (2)
O3—N2—C13—C12151.93 (13)C6—C7—C8—C13136.09 (15)
O4—N2—C13—C8152.16 (14)C7—C8—C9—C10178.93 (13)
O4—N2—C13—C1227.3 (2)C7—C8—C13—N21.7 (3)
N1—C1—C2—C3178.99 (15)C7—C8—C13—C12177.81 (13)
N1—C1—C6—C5179.61 (15)C9—C8—C13—N2179.33 (13)
N1—C1—C6—C72.0 (3)C9—C8—C13—C121.2 (3)
C2—C1—C6—C52.5 (3)C13—C8—C9—C100.2 (3)
C2—C1—C6—C7175.89 (17)C8—C9—C10—C110.7 (3)
C6—C1—C2—C31.0 (3)C9—C10—C11—C120.6 (3)
C1—C2—C3—C40.8 (3)C10—C11—C12—C130.4 (3)
C2—C3—C4—C51.0 (3)C11—C12—C13—N2179.15 (14)
C3—C4—C5—C60.7 (3)C11—C12—C13—C81.4 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+2, z+2; (v) x+2, y+2, z+1; (vi) x+2, y+2, z+2; (vii) x, y+1, z+1; (viii) x, y1, z1; (ix) x+1, y, z; (x) x, y+1, z; (xi) x, y, z1; (xii) x+2, y+1, z+1; (xiii) x, y1, z; (xiv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10N2O4
Mr258.23
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.628 (3), 8.340 (3), 9.464 (4)
α, β, γ (°)103.544 (8), 92.555 (7), 94.870 (7)
V3)582.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.17 × 0.15 × 0.10
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.735, 0.989
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6052, 2648, 1866
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.02
No. of reflections2648
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: CrystalClear (Rigaku, 2011), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

The authors gratefully acknowledge the Endowed Chair in the Sciences, School of Humanitites, Arts, and Sciences, St Catherine University as well as the NSF–MRI award No. 1125975 "MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility".

References

First citationAllinger, N. L. & Youngdale, G. A. (1962). J. Am. Chem. Soc. 84, 1020–1026.  CrossRef CAS Web of Science Google Scholar
First citationBarnes, J. C., Paton, J. D., Damewood, J. R. Jr & Mislow, K. (1981). J. Org. Chem. 46, 4975–4979.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrito, I., Mundaca, A., Cárdenas, A., López-Rodríguez, M. & Vargas, D. (2007). Acta Cryst. E63, o3351–o3352.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCousson, A., Lelièvre, J., Chatrousse, A. P., Terrier, F. & Farrell, P. G. (1993). Acta Cryst. C49, 609–612.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHousty, M. J. (1961). Acta Cryst. 14, 92.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationLu, F., Chi, S.-W., Kim, D.-H., Han, K.-H., Kuntz, I. D. & Guy, R. K. (2006). J. Comb. Chem. 8, 315-325.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds