organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1023-o1024

Crystal structure of 1-benzoyl-3-(4-fluoro­phen­yl)thio­urea

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bCenter of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
*Correspondence e-mail: mnachemist@hotmail.com, ghulam.mustafa@uog.edu.pk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 August 2014; accepted 12 August 2014; online 16 August 2014)

The title compound, C14H11FN2OS, contains two mol­ecules (A and B) in the asymmetric unit, with different conformations. In mol­ecule A, the dihedral angles between the central thio­urea grouping and the phenyl and fluoro­benzene rings are 28.77 (8) and 41.82 (8)°, respectively, and the dihedral angle between the ring planes is 70.02 (9)°. Equivalent data for mol­ecule B are 8.46 (8), 47.78 (8) and 52.99 (9)°, respectively. Both mol­ecules feature an intra­molecular N—H⋯O hydrogen bond, which closes an S(6) ring. In the crystal, A+B dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops.

1. Related literature

For related structures, see: Othman et al. (2010[Othman, N. E. A., Tahir, M. I. M. & Yamin, B. M. (2010). Acta Cryst. E66, o2241.]); Rauf et al. (2012[Rauf, M., Ebihara, M., Badshah, A. & Imtiaz-ud-Din (2012). Acta Cryst. E68, o119.]) Saeed & Flörke (2006a[Saeed, A. & Flörke, U. (2006a). Acta Cryst. E62, o2924-o2925.], 2006b[Saeed, A. & Flörke, U. (2006b). Acta Cryst. E62, o5036-o5037.]); Saeed et al. (2011[Saeed, A., Erben, M. F., Shaheen, U. & Flörke, U. (2011). J. Mol. Struct. 1000, 49-57.]); Yamin & Yusof (2003a[Yamin, B. M. & Yusof, M. S. M. (2003a). Acta Cryst. E59, o151-o152.],b[Yamin, B. M. & Yusof, M. S. M. (2003b). Acta Cryst. E59, o340-o341.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H11FN2OS

  • Mr = 274.31

  • Triclinic, [P \overline 1]

  • a = 9.6265 (4) Å

  • b = 11.1329 (4) Å

  • c = 13.8252 (5) Å

  • α = 110.646 (3)°

  • β = 100.708 (3)°

  • γ = 102.762 (3)°

  • V = 1294.58 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.28 mm−1

  • T = 296 K

  • 0.36 × 0.28 × 0.22 mm

2.2. Data collection

  • Agilent SuperNova, Dual, Cu at zero, Atlas, CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.817, Tmax = 1.000

  • 11636 measured reflections

  • 5354 independent reflections

  • 4757 reflections with I > 2σ(I)

  • Rint = 0.015

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.03

  • 5354 reflections

  • 346 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S2i 0.99 2.56 3.5433 (13) 170
N4—H4⋯S1i 0.93 2.74 3.5976 (13) 154
N1—H1⋯O1 0.86 (2) 1.95 (2) 2.6408 (17) 137.5 (19)
N3—H3⋯O2 0.98 1.81 2.6307 (17) 139
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Synthesis and crystallization top

Benzoyl­iso­thio­cyanate (1 g, 6.13 mmol) was dissolved in acetone (50 ml) and allowed to stirr for an hour. Then 4-flouroaniline(0.68 g, 6.13 mmol) was added to the above mixture and stirred for another 1 h. The completion of reaction was checked by thin layer chromatography (TLC). The mixture was poured into acidified water under stirring. The precipitate obtained were separated and washed with deionized cold distilled water and recrystallization from ethanol solution under slow evaporation method to produce colorless blocks of title compound.

Refinement top

All the aromatic C—H H-atoms were positioned with idealized geometry with C—H = 0.93 Å,for aromatic and refined as riding with Uiso(H) = 1.2Ueq(C). The N—H H-atoms were positioned in difference map and refined freely with N—H = 0.97 (4) Å, Uiso(H) = 1.2 for N atoms.

Related literature top

For related structures, see: Othman et al. (2010); Rauf et al. (2012) Saeed & Flörke (2006a, 2006b); Saeed et al. (2011); Yamin & Yusof (2003a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% displacement ellipsoids.
[Figure 2] Fig. 2. The inter and intramolecular hydrogen bonding shown using dashed lines.
1-Benzoyl-3-(4-fluorophenyl)thiourea top
Crystal data top
C14H11FN2OSV = 1294.58 (9) Å3
Mr = 274.31Z = 4
Triclinic, P1F(000) = 568
Hall symbol: -P 1Dx = 1.407 Mg m3
a = 9.6265 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.1329 (4) ŵ = 2.28 mm1
c = 13.8252 (5) ÅT = 296 K
α = 110.646 (3)°Block, colorless
β = 100.708 (3)°0.36 × 0.28 × 0.22 mm
γ = 102.762 (3)°
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas, CCD
diffractometer
5354 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4757 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
ω scansθmax = 76.5°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1211
Tmin = 0.817, Tmax = 1.000k = 1312
11636 measured reflectionsl = 1117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.268P]
where P = (Fo2 + 2Fc2)/3
5354 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H11FN2OSγ = 102.762 (3)°
Mr = 274.31V = 1294.58 (9) Å3
Triclinic, P1Z = 4
a = 9.6265 (4) ÅCu Kα radiation
b = 11.1329 (4) ŵ = 2.28 mm1
c = 13.8252 (5) ÅT = 296 K
α = 110.646 (3)°0.36 × 0.28 × 0.22 mm
β = 100.708 (3)°
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas, CCD
diffractometer
5354 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4757 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 1.000Rint = 0.015
11636 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
5354 reflectionsΔρmin = 0.35 e Å3
346 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10971 (5)0.71506 (4)0.58605 (3)0.05533 (12)
S20.99550 (5)1.23786 (4)0.68544 (4)0.06368 (14)
F10.42593 (15)0.61882 (14)1.00154 (8)0.0807 (3)
F21.30145 (16)1.00061 (14)1.00287 (10)0.0960 (4)
O10.30327 (17)0.41067 (15)0.38650 (9)0.0768 (4)
O20.67259 (14)0.81808 (11)0.48289 (10)0.0626 (3)
N10.28430 (16)0.55698 (14)0.57813 (10)0.0533 (3)
N20.17580 (15)0.56414 (13)0.41761 (9)0.0483 (3)
N30.91440 (14)0.97471 (12)0.64274 (10)0.0513 (3)
N40.78454 (14)1.03902 (13)0.52148 (10)0.0504 (3)
C10.19583 (17)0.60743 (14)0.52881 (11)0.0454 (3)
C20.31803 (16)0.57760 (15)0.68871 (11)0.0456 (3)
C30.3556 (2)0.70415 (16)0.77249 (13)0.0559 (4)
H3A0.35680.77970.75780.067*
C40.39115 (19)0.71680 (17)0.87823 (12)0.0586 (4)
H4A0.41530.80060.93540.070*
C50.39026 (18)0.60464 (18)0.89724 (12)0.0543 (4)
C60.3546 (2)0.47939 (18)0.81661 (14)0.0583 (4)
H60.35480.40460.83210.070*
C70.31813 (18)0.46637 (16)0.71082 (12)0.0526 (3)
H70.29350.38190.65440.063*
C80.22178 (18)0.46495 (16)0.35187 (12)0.0505 (3)
C90.16680 (16)0.42877 (14)0.23398 (11)0.0438 (3)
C100.02856 (17)0.43219 (15)0.18570 (12)0.0475 (3)
H100.03310.46030.22740.057*
C110.01708 (19)0.39336 (17)0.07491 (13)0.0549 (4)
H110.11000.39490.04230.066*
C120.0745 (2)0.35248 (17)0.01270 (12)0.0571 (4)
H120.04380.32750.06140.069*
C130.2114 (2)0.34884 (18)0.06075 (13)0.0585 (4)
H130.27330.32160.01890.070*
C140.25746 (18)0.38540 (16)0.17091 (12)0.0524 (3)
H140.34910.38090.20270.063*
C150.89789 (16)1.07566 (15)0.61595 (12)0.0466 (3)
C161.01650 (17)0.98710 (14)0.73730 (12)0.0470 (3)
C171.16625 (18)1.05699 (17)0.76648 (13)0.0541 (4)
H171.20191.10110.72590.065*
C181.2625 (2)1.06121 (19)0.85570 (15)0.0637 (4)
H181.36331.10820.87610.076*
C191.2071 (2)0.99480 (18)0.91389 (14)0.0635 (4)
C201.0604 (2)0.92345 (18)0.88583 (16)0.0668 (5)
H201.02580.87850.92620.080*
C210.9641 (2)0.91938 (16)0.79610 (15)0.0584 (4)
H210.86380.87080.77540.070*
C220.67355 (17)0.91742 (15)0.46324 (12)0.0482 (3)
C230.55378 (16)0.91245 (15)0.37529 (12)0.0475 (3)
C240.53131 (18)1.02572 (19)0.36376 (15)0.0609 (4)
H240.59281.11140.41260.073*
C250.4163 (2)1.0108 (2)0.27875 (18)0.0735 (5)
H250.40171.08690.27050.088*
C260.3241 (2)0.8846 (2)0.20673 (16)0.0721 (5)
H260.24830.87550.14950.086*
C270.3438 (2)0.7719 (2)0.21907 (15)0.0713 (5)
H270.28030.68660.17090.086*
C280.45776 (19)0.78475 (18)0.30293 (14)0.0610 (4)
H280.47050.70820.31120.073*
H20.11720.60950.38420.073*
H40.78191.10670.49740.073*
H30.83900.88780.59640.073*
H10.316 (2)0.497 (2)0.5386 (17)0.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0705 (3)0.0524 (2)0.0459 (2)0.02927 (18)0.02121 (17)0.01513 (16)
S20.0710 (3)0.0427 (2)0.0561 (2)0.00407 (18)0.00598 (19)0.01671 (17)
F10.0990 (8)0.1050 (9)0.0398 (5)0.0368 (7)0.0174 (5)0.0300 (5)
F20.1099 (10)0.0882 (9)0.0716 (7)0.0323 (7)0.0158 (7)0.0321 (7)
O10.1027 (10)0.0990 (10)0.0416 (6)0.0699 (9)0.0178 (6)0.0220 (6)
O20.0697 (7)0.0427 (6)0.0563 (7)0.0099 (5)0.0017 (5)0.0133 (5)
N10.0669 (8)0.0583 (8)0.0355 (6)0.0310 (7)0.0137 (6)0.0137 (5)
N20.0616 (7)0.0484 (7)0.0353 (6)0.0238 (6)0.0130 (5)0.0140 (5)
N30.0537 (7)0.0411 (6)0.0465 (7)0.0127 (5)0.0024 (5)0.0112 (5)
N40.0534 (7)0.0444 (6)0.0437 (6)0.0091 (5)0.0043 (5)0.0158 (5)
C10.0529 (8)0.0406 (7)0.0372 (7)0.0126 (6)0.0117 (6)0.0118 (5)
C20.0477 (7)0.0486 (8)0.0357 (7)0.0153 (6)0.0101 (6)0.0125 (6)
C30.0672 (10)0.0456 (8)0.0446 (8)0.0137 (7)0.0086 (7)0.0131 (6)
C40.0646 (10)0.0559 (9)0.0372 (7)0.0166 (7)0.0060 (7)0.0045 (6)
C50.0535 (8)0.0705 (10)0.0363 (7)0.0190 (7)0.0121 (6)0.0194 (7)
C60.0665 (10)0.0565 (9)0.0523 (9)0.0174 (8)0.0129 (7)0.0260 (7)
C70.0610 (9)0.0454 (8)0.0419 (7)0.0172 (7)0.0091 (6)0.0098 (6)
C80.0583 (9)0.0552 (8)0.0385 (7)0.0255 (7)0.0136 (6)0.0152 (6)
C90.0513 (7)0.0404 (7)0.0373 (7)0.0153 (6)0.0124 (6)0.0130 (5)
C100.0515 (8)0.0466 (7)0.0440 (7)0.0179 (6)0.0142 (6)0.0163 (6)
C110.0580 (9)0.0562 (9)0.0472 (8)0.0172 (7)0.0067 (7)0.0220 (7)
C120.0724 (10)0.0552 (9)0.0378 (7)0.0145 (8)0.0122 (7)0.0174 (7)
C130.0662 (10)0.0641 (10)0.0443 (8)0.0213 (8)0.0246 (7)0.0162 (7)
C140.0520 (8)0.0582 (9)0.0449 (8)0.0206 (7)0.0148 (6)0.0164 (7)
C150.0488 (7)0.0439 (7)0.0411 (7)0.0128 (6)0.0100 (6)0.0130 (6)
C160.0516 (8)0.0388 (7)0.0444 (7)0.0181 (6)0.0095 (6)0.0100 (6)
C170.0512 (8)0.0591 (9)0.0493 (8)0.0194 (7)0.0151 (7)0.0177 (7)
C180.0534 (9)0.0623 (10)0.0594 (10)0.0188 (8)0.0046 (7)0.0125 (8)
C190.0767 (11)0.0530 (9)0.0506 (9)0.0284 (8)0.0005 (8)0.0143 (7)
C200.0863 (13)0.0541 (9)0.0666 (11)0.0264 (9)0.0169 (9)0.0322 (8)
C210.0587 (9)0.0454 (8)0.0697 (10)0.0152 (7)0.0107 (8)0.0268 (7)
C220.0510 (8)0.0445 (7)0.0404 (7)0.0131 (6)0.0115 (6)0.0096 (6)
C230.0444 (7)0.0531 (8)0.0406 (7)0.0131 (6)0.0142 (6)0.0143 (6)
C240.0480 (8)0.0605 (10)0.0698 (11)0.0093 (7)0.0105 (7)0.0298 (8)
C250.0551 (10)0.0889 (14)0.0904 (14)0.0205 (9)0.0156 (9)0.0564 (12)
C260.0524 (9)0.1022 (15)0.0569 (10)0.0162 (10)0.0074 (8)0.0364 (10)
C270.0607 (10)0.0747 (12)0.0524 (10)0.0125 (9)0.0015 (8)0.0093 (9)
C280.0578 (9)0.0569 (9)0.0507 (9)0.0143 (7)0.0055 (7)0.0093 (7)
Geometric parameters (Å, º) top
S1—C11.6623 (15)C10—C111.388 (2)
S2—C151.6608 (15)C10—H100.9300
F1—C51.3616 (17)C11—C121.381 (2)
F2—C191.3585 (19)C11—H110.9300
O1—C81.2181 (19)C12—C131.377 (2)
O2—C221.2269 (19)C12—H120.9300
N1—C11.3309 (19)C13—C141.383 (2)
N1—C21.4250 (18)C13—H130.9300
N1—H10.86 (2)C14—H140.9300
N2—C81.3781 (19)C16—C211.379 (2)
N2—C11.3998 (18)C16—C171.383 (2)
N2—H20.9905C17—C181.378 (2)
N3—C151.3327 (19)C17—H170.9300
N3—C161.4246 (19)C18—C191.372 (3)
N3—H30.9761C18—H180.9300
N4—C221.3767 (19)C19—C201.364 (3)
N4—C151.4004 (19)C20—C211.384 (2)
N4—H40.9287C20—H200.9300
C2—C71.376 (2)C21—H210.9300
C2—C31.388 (2)C22—C231.488 (2)
C3—C41.386 (2)C23—C241.383 (2)
C3—H3A0.9300C23—C281.396 (2)
C4—C51.362 (2)C24—C251.390 (3)
C4—H4A0.9300C24—H240.9300
C5—C61.362 (2)C25—C261.374 (3)
C6—C71.386 (2)C25—H250.9300
C6—H60.9300C26—C271.372 (3)
C7—H70.9300C26—H260.9300
C8—C91.4904 (19)C27—C281.382 (2)
C9—C141.388 (2)C27—H270.9300
C9—C101.389 (2)C28—H280.9300
C1—N1—C2127.39 (13)C12—C13—C14120.38 (15)
C1—N1—H1117.5 (14)C12—C13—H13119.8
C2—N1—H1114.6 (14)C14—C13—H13119.8
C8—N2—C1127.90 (12)C13—C14—C9119.97 (15)
C8—N2—H2118.4C13—C14—H14120.0
C1—N2—H2113.6C9—C14—H14120.0
C15—N3—C16126.08 (12)N3—C15—N4115.58 (13)
C15—N3—H3114.0N3—C15—S2126.05 (11)
C16—N3—H3119.4N4—C15—S2118.34 (11)
C22—N4—C15127.94 (13)C21—C16—C17120.04 (15)
C22—N4—H4116.5C21—C16—N3118.07 (14)
C15—N4—H4115.5C17—C16—N3121.74 (14)
N1—C1—N2115.29 (13)C18—C17—C16119.95 (16)
N1—C1—S1126.60 (11)C18—C17—H17120.0
N2—C1—S1118.10 (11)C16—C17—H17120.0
C7—C2—C3120.12 (14)C19—C18—C17118.83 (17)
C7—C2—N1117.19 (13)C19—C18—H18120.6
C3—C2—N1122.63 (14)C17—C18—H18120.6
C4—C3—C2119.32 (15)F2—C19—C20118.72 (18)
C4—C3—H3A120.3F2—C19—C18118.92 (18)
C2—C3—H3A120.3C20—C19—C18122.36 (16)
C5—C4—C3119.02 (15)C19—C20—C21118.61 (17)
C5—C4—H4A120.5C19—C20—H20120.7
C3—C4—H4A120.5C21—C20—H20120.7
F1—C5—C6118.81 (16)C16—C21—C20120.20 (17)
F1—C5—C4118.31 (15)C16—C21—H21119.9
C6—C5—C4122.88 (15)C20—C21—H21119.9
C5—C6—C7118.19 (15)O2—C22—N4121.91 (14)
C5—C6—H6120.9O2—C22—C23121.47 (14)
C7—C6—H6120.9N4—C22—C23116.62 (13)
C2—C7—C6120.45 (14)C24—C23—C28119.36 (15)
C2—C7—H7119.8C24—C23—C22123.87 (14)
C6—C7—H7119.8C28—C23—C22116.76 (14)
O1—C8—N2123.06 (13)C23—C24—C25119.67 (17)
O1—C8—C9121.47 (13)C23—C24—H24120.2
N2—C8—C9115.47 (13)C25—C24—H24120.2
C14—C9—C10119.75 (13)C26—C25—C24120.52 (19)
C14—C9—C8117.40 (13)C26—C25—H25119.7
C10—C9—C8122.81 (13)C24—C25—H25119.7
C11—C10—C9119.64 (14)C27—C26—C25120.09 (18)
C11—C10—H10120.2C27—C26—H26120.0
C9—C10—H10120.2C25—C26—H26120.0
C12—C11—C10120.43 (15)C26—C27—C28120.17 (18)
C12—C11—H11119.8C26—C27—H27119.9
C10—C11—H11119.8C28—C27—H27119.9
C13—C12—C11119.81 (14)C27—C28—C23120.16 (18)
C13—C12—H12120.1C27—C28—H28119.9
C11—C12—H12120.1C23—C28—H28119.9
C2—N1—C1—N2176.44 (14)C16—N3—C15—N4176.80 (14)
C2—N1—C1—S13.8 (2)C16—N3—C15—S21.6 (2)
C8—N2—C1—N18.3 (2)C22—N4—C15—N311.7 (2)
C8—N2—C1—S1171.98 (13)C22—N4—C15—S2166.79 (13)
C1—N1—C2—C7136.52 (17)C15—N3—C16—C21132.89 (17)
C1—N1—C2—C346.1 (2)C15—N3—C16—C1751.5 (2)
C7—C2—C3—C40.8 (3)C21—C16—C17—C181.3 (2)
N1—C2—C3—C4178.15 (15)N3—C16—C17—C18176.91 (14)
C2—C3—C4—C50.9 (3)C16—C17—C18—C190.3 (3)
C3—C4—C5—F1179.79 (15)C17—C18—C19—F2178.97 (16)
C3—C4—C5—C60.5 (3)C17—C18—C19—C200.8 (3)
F1—C5—C6—C7179.82 (15)F2—C19—C20—C21179.03 (16)
C4—C5—C6—C70.2 (3)C18—C19—C20—C210.7 (3)
C3—C2—C7—C60.4 (2)C17—C16—C21—C201.4 (2)
N1—C2—C7—C6177.91 (15)N3—C16—C21—C20177.13 (15)
C5—C6—C7—C20.1 (3)C19—C20—C21—C160.4 (3)
C1—N2—C8—O18.6 (3)C15—N4—C22—O28.8 (3)
C1—N2—C8—C9172.24 (14)C15—N4—C22—C23170.92 (14)
O1—C8—C9—C1429.9 (2)O2—C22—C23—C24165.86 (16)
N2—C8—C9—C14149.29 (15)N4—C22—C23—C2413.8 (2)
O1—C8—C9—C10147.74 (18)O2—C22—C23—C2812.5 (2)
N2—C8—C9—C1033.1 (2)N4—C22—C23—C28167.86 (14)
C14—C9—C10—C110.6 (2)C28—C23—C24—C251.8 (3)
C8—C9—C10—C11178.13 (14)C22—C23—C24—C25179.94 (16)
C9—C10—C11—C120.5 (2)C23—C24—C25—C260.6 (3)
C10—C11—C12—C130.7 (3)C24—C25—C26—C270.8 (3)
C11—C12—C13—C140.3 (3)C25—C26—C27—C281.0 (3)
C12—C13—C14—C91.4 (3)C26—C27—C28—C230.3 (3)
C10—C9—C14—C131.5 (2)C24—C23—C28—C271.6 (3)
C8—C9—C14—C13179.19 (15)C22—C23—C28—C27179.96 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S2i0.992.563.5433 (13)170
N4—H4···S1i0.932.743.5976 (13)154
N1—H1···O10.86 (2)1.95 (2)2.6408 (17)137.5 (19)
N3—H3···O20.981.812.6307 (17)139
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S2i0.992.563.5433 (13)170.3
N4—H4···S1i0.932.743.5976 (13)154.2
N1—H1···O10.86 (2)1.95 (2)2.6408 (17)137.5 (19)
N3—H3···O20.981.812.6307 (17)139.2
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This paper was funded by King Abdulaziz University, under grant No. (T-001/431). The authors, therefore, acknowledge technical and financial support of KAU.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOthman, N. E. A., Tahir, M. I. M. & Yamin, B. M. (2010). Acta Cryst. E66, o2241.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRauf, M., Ebihara, M., Badshah, A. & Imtiaz-ud-Din (2012). Acta Cryst. E68, o119.  CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Erben, M. F., Shaheen, U. & Flörke, U. (2011). J. Mol. Struct. 1000, 49–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationSaeed, A. & Flörke, U. (2006a). Acta Cryst. E62, o2924–o2925.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A. & Flörke, U. (2006b). Acta Cryst. E62, o5036–o5037.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003a). Acta Cryst. E59, o151–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M. & Yusof, M. S. M. (2003b). Acta Cryst. E59, o340–o341.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 9| September 2014| Pages o1023-o1024
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds