metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m380-m381

Crystal structure of {2,2′-[ethyl­enebis(nitrilo­methanylyl­­idene)]diphenolato-κ4O,N,N′,O′}oxidovanadium(IV) methanol monosolvate

aSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England
*Correspondence e-mail: a.j.blake@nottingham.ac.uk

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 19 October 2014; accepted 22 October 2014; online 29 October 2014)

Two independent mol­ecules of the title solvated complex, [V(C16H14N2O2)O]·CH3OH, also known as [N,N′-bis­(salicyl­idene)ethyl­enedi­amine]­oxidovanadium(IV) or vanadyl salen, crystallize in the asymmetric unit. Each disordered methanol solvent mol­ecule [occupancy ratios 0.678 (4):0.322 (4) and 0.750 (5):0.250 (5)] is linked to a [N,N′-bis­(salicyl­idene)ethyl­enedi­amine]­oxidovanadium(IV) mol­ecule by an O—H⋯O hydrogen bond and to others by C—H⋯O hydrogen bonds. The resulting extended structure consists of a bilayer of mol­ecules parallel to the ab plane. Despite the fact that solvates are common in complexes derived from substituted analogues of the N,N′-bis­(salicyl­idene)ethyl­enedi­amine ligand, the title solvate is the first one of [N,N′-bis­(salicyl­idene)ethyl­enedi­amine]­oxidovanadium(IV) to be structurally characterized. The two vanadyl species have very similar inter­nal geometries, which are best characterized as distorted square-based pyramidal with the vanadium atom displaced from the N2O2 basal plane by 0.5966 (9) Å in the direction of the doubly-bonded oxide ligand.

1. Related literature

The literature reports three structure determinations on the unsolvated title complex, also known as [N,N′-bis­(salicyl­idene)ethyl­enedi­amine]­oxidovanadium(IV). The first was in the monoclinic space group P21/c by Riley et al. (1986[Riley, P. E., Pecoraro, V. L., Carrano, C. J., Bonadies, J. A. & Raymond, K. N. (1986). Inorg. Chem. 25, 154-160.]), the second by Li et al. (2004[Li, L. Z., Xu, T., Wang, D.-Q. & Du, L.-Y. (2004). Huaxue Yanjiu Yu Yingyong (Chem. Res. Appl.), 16, 664-666.]) in the triclinic space group P[\overline{1}] and the third in the monoclinic space group P21 (Wang et al., 2008[Wang, C., Yuan, J.-H., Xie, G., Yu, M.-J. & Li, J. (2008). Acta Cryst. E64, m775-m776.]). All three determinations were carried out at ambient temperature. According to the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) no solvates of [N,N′-bis­(salicyl­idene)ethyl­enedi­amine]­oxidovanadium(IV) have been rep­orted previously, although these are common for substituted analogues of the N,N′-bis­(salicyl­idene)ethyl­enedi­amine ligand.

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [V(C16H14N2O2)O]·CH4O

  • Mr = 365.27

  • Orthorhombic, P n a 21

  • a = 12.9597 (4) Å

  • b = 8.8616 (2) Å

  • c = 28.5426 (7) Å

  • V = 3277.92 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 5.27 mm−1

  • T = 120 K

  • 0.31 × 0.14 × 0.05 mm

2.2. Data collection

  • Agilent GV1000 diffractometer with an Atlas CCD detector

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.480, Tmax = 0.959

  • 7416 measured reflections

  • 4634 independent reflections

  • 4350 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.04

  • 4634 reflections

  • 479 parameters

  • 32 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]). 1395 Friedel pairs

  • Absolute structure parameter: 0.066 (9)

Table 1
Selected geometric parameters (Å, °)

V1—O1 1.9155 (17)
V1—O2 1.9429 (16)
V1—O3 1.6070 (17)
V1—N1 2.0597 (19)
V1—N2 2.051 (2)
V2—O4 1.9164 (16)
V2—O5 1.6089 (16)
V2—O6 1.9314 (16)
V2—N3 2.062 (2)
V2—N4 2.060 (2)
O2—V1—N2 87.30 (8)
O2—V1—N1 150.78 (7)
O3—V1—O2 105.76 (8)
O3—V1—N2 107.35 (9)
O3—V1—O1 113.39 (8)
O3—V1—N1 102.90 (8)
N2—V1—N1 78.80 (8)
O1—V1—O2 86.60 (7)
O1—V1—N2 138.94 (8)
O1—V1—N1 87.26 (8)
O6—V2—N4 87.20 (8)
O6—V2—N3 150.79 (7)
O5—V2—O6 105.81 (8)
O5—V2—N4 107.66 (8)
O5—V2—O4 113.60 (8)
O5—V2—N3 102.81 (8)
N4—V2—N3 78.63 (8)
O4—V2—O6 86.66 (7)
O4—V2—N4 138.40 (8)
O4—V2—N3 87.25 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O8i 0.93 2.48 3.368 (4) 159
C14—H14⋯O8Ai 0.93 2.48 3.299 (7) 147
C25—H25⋯O7ii 0.93 2.51 3.391 (4) 158
C25—H25⋯O7Aii 0.93 2.66 3.457 (9) 144
C13—H13⋯O3iii 0.93 2.60 3.372 (3) 141
C23—H23⋯O5iv 0.93 2.59 3.364 (3) 141
O8—H8A⋯O2 0.82 2.12 2.926 (4) 167
O7—H7A⋯O6 0.82 2.18 2.940 (3) 153
O7—H7A⋯O4 0.82 2.64 3.246 (4) 132
O8A—H8AA⋯O1 0.82 2.18 2.984 (6) 166
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Related literature top

The literature reports three structure determinations on the unsolvated title complex, also known as [N,N'-bis(salicylidene)ethylenediamine]oxidovanadium(IV). The first was in the monoclinic space group P21/c by Riley et al. (1986), the second by Li et al. (2004) in the triclinic space group P1 and the third in the monoclinic space group P21 (Wang et al., 2008). All three determinations were carried out at ambient temperature. According to the Cambridge Structural Database (Groom & Allen, 2014) no solvates of [N,N'-bis(salicylidene)ethylenediamine]oxidovanadium(IV) have been reported previously, although these are common for substituted analogues of the N,N'-bis(salicylidene)ethylenediamine ligand.

Experimental top

Crystals of the title complex were obtained by slow cooling of a methanolic solution of {2,2'-[ethylenebis(nitrilomethylidyne)]diphenolato-κ4O,N,N',O'}oxidovanadium(IV).

Refinement top

With the exceptions of methyl groups (which were refined as rigid rotating groups) and OH groups (for which were idealized tetrahedral OH were refined as rigid rotating groups), H atoms were allowed to ride on their parent atoms with Uiso(H) = 1.5 × Ueq(C,O) for methyl and OH groups and 1.2 × Ueq(C) for others.

The O8–C34, O8A–C34A, O7–C33 and O7A–C33A distances were restrained to a target value of 1.43 (1) Å. SIMU and RIGU restraints (Sheldrick, 2008) were applied to the solvent molecules, and linked occupancies were used to stabilize the refinement of the MeOH solvent molecules.

For the absolute structure determination, the classical Flack method was preferred over Parsons because the s.u. was lower.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
Fig. 1. One of the two independent solvated molecules in the asymmetric unit, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Only one component of the disordered MeOH molecule is shown.
{2,2'-[Ethylenebis(nitrilomethanylylidene)]diphenolato-κ4O,N,N',O'}oxidovanadium(IV) methanol monosolvate top
Crystal data top
[V(C16H14N2O2)O]·CH4ODx = 1.480 Mg m3
Mr = 365.27Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21Cell parameters from 3840 reflections
a = 12.9597 (4) Åθ = 5.2–72.3°
b = 8.8616 (2) ŵ = 5.27 mm1
c = 28.5426 (7) ÅT = 120 K
V = 3277.92 (15) Å3Block, green
Z = 80.31 × 0.14 × 0.05 mm
F(000) = 1512
Data collection top
Agilent GV1000
diffractometer with an Atlas CCD detector
4634 independent reflections
Radiation source: Agilent GV1000 (Cu) X-ray Source4350 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.3271 pixels mm-1θmax = 74.4°, θmin = 5.2°
ω scansh = 1515
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
k = 106
Tmin = 0.480, Tmax = 0.959l = 3334
7416 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.065P)2 + 1.252P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.02
S = 1.04Δρmax = 0.42 e Å3
4634 reflectionsΔρmin = 0.29 e Å3
479 parametersAbsolute structure: Flack (1983), 1395 Friedel pairs
32 restraintsAbsolute structure parameter: 0.066 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
[V(C16H14N2O2)O]·CH4OV = 3277.92 (15) Å3
Mr = 365.27Z = 8
Orthorhombic, Pna21Cu Kα radiation
a = 12.9597 (4) ŵ = 5.27 mm1
b = 8.8616 (2) ÅT = 120 K
c = 28.5426 (7) Å0.31 × 0.14 × 0.05 mm
Data collection top
Agilent GV1000
diffractometer with an Atlas CCD detector
4634 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2013)
4350 reflections with I > 2σ(I)
Tmin = 0.480, Tmax = 0.959Rint = 0.025
7416 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.42 e Å3
S = 1.04Δρmin = 0.29 e Å3
4634 reflectionsAbsolute structure: Flack (1983), 1395 Friedel pairs
479 parametersAbsolute structure parameter: 0.066 (9)
32 restraints
Special details top

Experimental. Absorption correction: CrysAlisPro version 1.171.36.32 (Agilent, 2013). Numerical absorption correction based on Gaussian integration over a multifaceted crystal model.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.33525 (3)1.13029 (4)0.50170 (2)0.02409 (8)
V20.57988 (3)0.36777 (4)0.18892 (2)0.02364 (8)
O10.24854 (12)0.95916 (19)0.49027 (6)0.0305 (4)
O20.41375 (12)1.06657 (19)0.44719 (6)0.0277 (4)
O30.41104 (12)1.1086 (2)0.54575 (6)0.0298 (4)
O40.49307 (12)0.53856 (17)0.20089 (6)0.0292 (4)
O50.65555 (12)0.39010 (19)0.14477 (6)0.0292 (4)
O60.65825 (12)0.4296 (2)0.24318 (6)0.0294 (4)
N20.35312 (15)1.3476 (2)0.47830 (7)0.0275 (4)
N40.59693 (16)0.1492 (2)0.21225 (7)0.0289 (5)
C120.49325 (19)1.1394 (3)0.42862 (7)0.0283 (6)
C140.42784 (18)1.3949 (3)0.45247 (8)0.0295 (5)
H140.43271.49810.44710.035*
C300.73712 (18)0.3563 (3)0.26195 (8)0.0306 (6)
C30.15814 (17)0.9193 (3)0.50810 (8)0.0280 (5)
C250.6714 (2)0.1024 (3)0.23826 (8)0.0322 (6)
H250.67610.00100.24350.039*
N10.20834 (14)1.2335 (2)0.53104 (7)0.0269 (4)
C260.8334 (2)0.1282 (3)0.28130 (9)0.0409 (7)
H260.83970.02370.28030.049*
N30.45275 (15)0.2651 (2)0.15943 (7)0.0278 (4)
C40.09719 (17)1.0158 (3)0.53631 (7)0.0273 (5)
C100.6518 (2)1.1282 (4)0.38350 (9)0.0423 (8)
H100.70051.07100.36740.051*
C80.5908 (2)1.3668 (3)0.40987 (8)0.0396 (7)
H80.59861.47100.41130.048*
C150.2266 (2)1.3957 (3)0.53910 (9)0.0326 (6)
H15A0.27291.41020.56540.039*
H15B0.16211.44700.54570.039*
C220.40338 (16)0.5789 (3)0.18283 (8)0.0273 (5)
C170.36417 (19)0.7228 (3)0.19338 (10)0.0352 (6)
H170.40140.78600.21320.042*
C240.74815 (18)0.1970 (3)0.26002 (8)0.0316 (6)
C130.12347 (18)1.1718 (3)0.54445 (8)0.0295 (5)
H130.07611.23160.56040.035*
C180.2719 (2)0.7725 (3)0.17509 (9)0.0390 (6)
H180.24780.86800.18300.047*
C10.0269 (2)0.7261 (3)0.51707 (9)0.0375 (6)
H10.00320.62950.51020.045*
C90.50432 (18)1.2990 (3)0.43126 (7)0.0301 (6)
C70.6641 (2)1.2817 (4)0.38686 (9)0.0451 (8)
H70.72151.32810.37370.054*
C200.34189 (17)0.4834 (3)0.15433 (7)0.0278 (5)
C280.8976 (2)0.3678 (4)0.30590 (9)0.0440 (8)
H280.94760.42510.32110.053*
C20.11882 (19)0.7752 (3)0.49797 (9)0.0331 (6)
H20.15540.71170.47800.040*
C230.36811 (17)0.3277 (3)0.14619 (8)0.0283 (5)
H230.32050.26830.13020.034*
C160.27463 (19)1.4566 (3)0.49437 (9)0.0333 (6)
H16A0.22201.46950.47050.040*
H16B0.30641.55390.50030.040*
C50.00379 (18)0.9625 (3)0.55506 (8)0.0323 (6)
H50.03551.02630.57380.039*
C210.24831 (18)0.5379 (3)0.13563 (8)0.0334 (6)
H210.20880.47530.11660.040*
C110.56715 (19)1.0573 (3)0.40398 (8)0.0344 (6)
H110.55980.95330.40110.041*
C190.21417 (19)0.6823 (3)0.14501 (9)0.0377 (6)
H190.15380.71860.13150.045*
C270.9082 (2)0.2117 (4)0.30372 (9)0.0508 (8)
H270.96500.16440.31720.061*
C60.03109 (19)0.8186 (3)0.54647 (9)0.0362 (6)
H60.09190.78390.56000.043*
C290.81364 (18)0.4385 (4)0.28575 (8)0.0360 (6)
H290.80760.54290.28800.043*
C310.51874 (19)0.0415 (3)0.19582 (9)0.0328 (6)
H31A0.46620.02790.21960.039*
H31B0.55050.05550.18960.039*
C320.4706 (2)0.1028 (3)0.15151 (9)0.0332 (6)
H32A0.51650.08790.12510.040*
H32B0.40590.05180.14510.040*
O80.3881 (3)0.7530 (4)0.41726 (11)0.0533 (9)0.678 (4)
H8A0.39530.83540.42990.080*0.678 (4)
O70.6257 (3)0.7431 (3)0.27352 (11)0.0573 (9)0.750 (5)
H7A0.62950.66850.25660.086*0.750 (5)
C330.5510 (3)0.7185 (6)0.30846 (13)0.0506 (11)0.750 (5)
H33A0.48510.70110.29400.076*0.750 (5)
H33B0.54690.80560.32840.076*0.750 (5)
H33C0.57000.63200.32680.076*0.750 (5)
C340.3009 (4)0.7570 (6)0.38743 (15)0.0614 (14)0.678 (4)
H34A0.31380.69660.36020.092*0.678 (4)
H34B0.28760.85930.37810.092*0.678 (4)
H34C0.24190.71800.40380.092*0.678 (4)
O7A0.5715 (10)0.7560 (9)0.2706 (2)0.068 (3)0.250 (5)
H7AA0.51070.76270.26290.103*0.250 (5)
C33A0.5784 (9)0.6910 (16)0.3163 (3)0.073 (4)0.250 (5)
H33D0.63910.62930.31820.110*0.250 (5)
H33E0.51850.63020.32210.110*0.250 (5)
H33F0.58230.77000.33930.110*0.250 (5)
C34A0.3143 (7)0.7847 (9)0.37978 (19)0.041 (2)0.322 (4)
H34D0.33150.70860.35720.061*0.322 (4)
H34E0.35110.87590.37260.061*0.322 (4)
H34F0.24140.80380.37880.061*0.322 (4)
O8A0.3422 (6)0.7342 (7)0.42510 (16)0.0481 (19)0.322 (4)
H8AA0.32710.79900.44440.072*0.322 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.02276 (15)0.02190 (17)0.02763 (14)0.00204 (14)0.00088 (14)0.00101 (14)
V20.02314 (15)0.02248 (17)0.02531 (14)0.00205 (14)0.00061 (14)0.00063 (14)
O10.0274 (7)0.0247 (8)0.0394 (8)0.0009 (6)0.0042 (7)0.0034 (7)
O20.0263 (7)0.0274 (8)0.0295 (7)0.0023 (7)0.0018 (6)0.0025 (6)
O30.0232 (7)0.0338 (9)0.0325 (7)0.0038 (7)0.0038 (6)0.0015 (7)
O40.0276 (7)0.0246 (8)0.0355 (7)0.0019 (6)0.0030 (7)0.0032 (7)
O50.0249 (7)0.0318 (8)0.0310 (7)0.0031 (7)0.0021 (6)0.0000 (7)
O60.0282 (7)0.0312 (8)0.0289 (6)0.0007 (7)0.0021 (6)0.0023 (7)
N20.0288 (8)0.0239 (9)0.0297 (8)0.0006 (8)0.0091 (8)0.0023 (8)
N40.0326 (9)0.0250 (9)0.0290 (8)0.0013 (8)0.0067 (8)0.0004 (8)
C120.0333 (11)0.0334 (12)0.0183 (8)0.0018 (10)0.0057 (9)0.0025 (8)
C140.0329 (11)0.0300 (11)0.0255 (9)0.0055 (10)0.0071 (9)0.0028 (9)
C300.0270 (10)0.0426 (13)0.0222 (8)0.0018 (10)0.0061 (9)0.0022 (9)
C30.0259 (9)0.0266 (10)0.0316 (9)0.0010 (9)0.0035 (9)0.0032 (9)
C250.0432 (12)0.0287 (11)0.0248 (9)0.0079 (10)0.0086 (10)0.0029 (9)
N10.0230 (8)0.0278 (9)0.0301 (8)0.0034 (7)0.0022 (7)0.0059 (8)
C260.0420 (13)0.0542 (16)0.0266 (10)0.0179 (12)0.0028 (11)0.0024 (11)
N30.0285 (9)0.0256 (9)0.0294 (8)0.0043 (8)0.0036 (8)0.0056 (8)
C40.0263 (10)0.0307 (11)0.0248 (8)0.0021 (9)0.0051 (8)0.0022 (9)
C100.0376 (13)0.0658 (19)0.0234 (9)0.0038 (13)0.0046 (10)0.0017 (11)
C80.0449 (14)0.0480 (15)0.0260 (10)0.0143 (12)0.0023 (10)0.0045 (10)
C150.0321 (11)0.0289 (11)0.0368 (11)0.0081 (10)0.0023 (10)0.0079 (9)
C220.0228 (9)0.0292 (11)0.0300 (9)0.0006 (9)0.0034 (9)0.0061 (9)
C170.0319 (10)0.0290 (11)0.0447 (12)0.0012 (10)0.0053 (11)0.0022 (11)
C240.0346 (11)0.0369 (12)0.0233 (8)0.0073 (11)0.0044 (9)0.0012 (10)
C130.0254 (10)0.0372 (12)0.0257 (9)0.0077 (10)0.0029 (9)0.0041 (9)
C180.0391 (12)0.0319 (12)0.0458 (12)0.0081 (11)0.0133 (11)0.0098 (11)
C10.0357 (12)0.0302 (11)0.0468 (12)0.0025 (11)0.0094 (11)0.0112 (11)
C90.0310 (10)0.0420 (13)0.0172 (8)0.0051 (11)0.0043 (9)0.0023 (9)
C70.0394 (13)0.0687 (19)0.0272 (10)0.0097 (13)0.0092 (10)0.0072 (12)
C200.0225 (9)0.0351 (12)0.0258 (9)0.0038 (9)0.0030 (8)0.0002 (9)
C280.0322 (12)0.075 (2)0.0250 (10)0.0029 (13)0.0005 (10)0.0022 (11)
C20.0306 (11)0.0276 (11)0.0411 (11)0.0002 (10)0.0026 (10)0.0023 (10)
C230.0230 (9)0.0349 (12)0.0269 (9)0.0054 (10)0.0001 (8)0.0029 (9)
C160.0349 (11)0.0237 (11)0.0412 (11)0.0045 (10)0.0115 (10)0.0012 (9)
C50.0268 (10)0.0438 (14)0.0262 (9)0.0024 (10)0.0019 (9)0.0028 (10)
C210.0265 (10)0.0468 (14)0.0269 (9)0.0018 (11)0.0017 (9)0.0081 (10)
C110.0348 (11)0.0461 (14)0.0223 (8)0.0024 (11)0.0023 (9)0.0005 (10)
C190.0292 (11)0.0481 (14)0.0358 (10)0.0045 (11)0.0040 (10)0.0134 (11)
C270.0431 (13)0.079 (2)0.0301 (11)0.0202 (15)0.0037 (11)0.0057 (13)
C60.0263 (10)0.0466 (14)0.0356 (10)0.0044 (11)0.0024 (10)0.0126 (11)
C290.0291 (10)0.0553 (15)0.0238 (9)0.0055 (11)0.0001 (9)0.0019 (10)
C310.0377 (11)0.0225 (11)0.0383 (11)0.0061 (9)0.0077 (10)0.0031 (10)
C320.0340 (11)0.0263 (11)0.0394 (11)0.0039 (10)0.0084 (10)0.0086 (10)
O80.0693 (19)0.0407 (16)0.0501 (15)0.0048 (15)0.0044 (16)0.0062 (14)
O70.0792 (19)0.0308 (13)0.0618 (16)0.0094 (14)0.0178 (16)0.0105 (13)
C330.055 (2)0.058 (2)0.0383 (16)0.006 (2)0.0047 (17)0.0122 (16)
C340.086 (3)0.057 (3)0.0412 (19)0.025 (2)0.008 (2)0.0187 (19)
O7A0.122 (8)0.028 (4)0.055 (4)0.017 (5)0.020 (4)0.016 (3)
C33A0.043 (5)0.105 (9)0.071 (5)0.049 (5)0.002 (4)0.009 (5)
C34A0.076 (5)0.028 (4)0.019 (3)0.025 (4)0.012 (3)0.000 (3)
O8A0.090 (5)0.029 (3)0.025 (2)0.008 (3)0.002 (3)0.003 (2)
Geometric parameters (Å, º) top
V1—O11.9155 (17)C13—H130.9300
V1—O21.9429 (16)C18—H180.9300
V1—O31.6070 (17)C18—C191.392 (4)
V1—N12.0597 (19)C1—H10.9300
V1—N22.051 (2)C1—C21.381 (4)
V2—O41.9164 (16)C1—C61.393 (4)
V2—O51.6089 (16)C7—H70.9300
V2—O61.9314 (16)C20—C231.440 (4)
V2—N32.062 (2)C20—C211.410 (3)
V2—N42.060 (2)C28—H280.9300
O6—C301.324 (3)C28—C271.392 (5)
O2—C121.326 (3)C28—C291.381 (4)
N4—C251.286 (3)C2—H20.9300
N4—C311.469 (3)C23—H230.9300
N2—C141.287 (3)C16—H16A0.9700
N2—C161.476 (3)C16—H16B0.9700
O1—C31.325 (3)C5—H50.9300
C12—C91.424 (4)C5—C61.375 (4)
C12—C111.393 (4)C21—H210.9300
O4—C221.321 (3)C21—C191.380 (4)
C14—H140.9300C11—H110.9300
C14—C91.439 (3)C19—H190.9300
C30—C241.420 (4)C27—H270.9300
C30—C291.406 (4)C6—H60.9300
C3—C41.415 (3)C29—H290.9300
C3—C21.405 (4)C31—H31A0.9700
C25—H250.9300C31—H31B0.9700
C25—C241.442 (4)C31—C321.511 (4)
N1—C151.474 (3)C32—H32A0.9700
N1—C131.286 (3)C32—H32B0.9700
C26—H260.9300O8—H8A0.8200
C26—C241.401 (4)O8—C341.416 (6)
C26—C271.377 (4)O7—H7A0.8200
N3—C231.286 (3)O7—C331.407 (5)
N3—C321.474 (3)C33—H33A0.9600
C4—C131.443 (4)C33—H33B0.9600
C4—C51.405 (3)C33—H33C0.9600
C10—H100.9300C34—H34A0.9600
C10—C71.373 (5)C34—H34B0.9600
C10—C111.393 (4)C34—H34C0.9600
C8—H80.9300O7A—H7AA0.8200
C8—C91.411 (4)O7A—C33A1.428 (9)
C8—C71.379 (4)C33A—H33D0.9600
C15—H15A0.9700C33A—H33E0.9600
C15—H15B0.9700C33A—H33F0.9600
C15—C161.520 (4)C34A—H34D0.9600
C22—C171.405 (4)C34A—H34E0.9600
C22—C201.419 (3)C34A—H34F0.9600
C17—H170.9300C34A—O8A1.416 (7)
C17—C181.376 (4)O8A—H8AA0.8200
O2—V1—N287.30 (8)C6—C1—H1119.4
O2—V1—N1150.78 (7)C12—C9—C14122.6 (2)
O3—V1—O2105.76 (8)C8—C9—C12118.7 (2)
O3—V1—N2107.35 (9)C8—C9—C14118.6 (2)
O3—V1—O1113.39 (8)C10—C7—C8119.7 (3)
O3—V1—N1102.90 (8)C10—C7—H7120.2
N2—V1—N178.80 (8)C8—C7—H7120.2
O1—V1—O286.60 (7)C22—C20—C23122.1 (2)
O1—V1—N2138.94 (8)C21—C20—C22119.7 (2)
O1—V1—N187.26 (8)C21—C20—C23118.1 (2)
O6—V2—N487.20 (8)C27—C28—H28119.6
O6—V2—N3150.79 (7)C29—C28—H28119.6
O5—V2—O6105.81 (8)C29—C28—C27120.7 (3)
O5—V2—N4107.66 (8)C3—C2—H2119.4
O5—V2—O4113.60 (8)C1—C2—C3121.2 (2)
O5—V2—N3102.81 (8)C1—C2—H2119.4
N4—V2—N378.63 (8)N3—C23—C20124.6 (2)
O4—V2—O686.66 (7)N3—C23—H23117.7
O4—V2—N4138.40 (8)C20—C23—H23117.7
O4—V2—N387.25 (7)N2—C16—C15108.1 (2)
C30—O6—V2126.23 (15)N2—C16—H16A110.1
C12—O2—V1125.84 (15)N2—C16—H16B110.1
C25—N4—V2124.78 (18)C15—C16—H16A110.1
C25—N4—C31119.5 (2)C15—C16—H16B110.1
C31—N4—V2115.70 (15)H16A—C16—H16B108.4
C14—N2—V1125.24 (17)C4—C5—H5119.1
C14—N2—C16118.9 (2)C6—C5—C4121.8 (2)
C16—N2—V1115.82 (15)C6—C5—H5119.1
C3—O1—V1131.62 (15)C20—C21—H21119.3
O2—C12—C9122.7 (2)C19—C21—C20121.3 (2)
O2—C12—C11118.8 (2)C19—C21—H21119.3
C11—C12—C9118.4 (2)C12—C11—C10121.2 (3)
C22—O4—V2131.37 (15)C12—C11—H11119.4
N2—C14—H14117.7C10—C11—H11119.4
N2—C14—C9124.5 (2)C18—C19—H19120.7
C9—C14—H14117.7C21—C19—C18118.7 (2)
O6—C30—C24123.4 (2)C21—C19—H19120.7
O6—C30—C29119.0 (2)C26—C27—C28119.0 (3)
C29—C30—C24117.6 (2)C26—C27—H27120.5
O1—C3—C4123.5 (2)C28—C27—H27120.5
O1—C3—C2118.9 (2)C1—C6—H6120.8
C2—C3—C4117.6 (2)C5—C6—C1118.4 (2)
N4—C25—H25117.3C5—C6—H6120.8
N4—C25—C24125.4 (2)C30—C29—H29119.3
C24—C25—H25117.3C28—C29—C30121.4 (3)
C15—N1—V1111.60 (15)C28—C29—H29119.3
C13—N1—V1127.96 (17)N4—C31—H31A110.0
C13—N1—C15120.3 (2)N4—C31—H31B110.0
C24—C26—H26119.2N4—C31—C32108.60 (19)
C27—C26—H26119.2H31A—C31—H31B108.4
C27—C26—C24121.5 (3)C32—C31—H31A110.0
C23—N3—V2127.69 (17)C32—C31—H31B110.0
C23—N3—C32120.6 (2)N3—C32—C31106.66 (19)
C32—N3—V2111.60 (15)N3—C32—H32A110.4
C3—C4—C13122.6 (2)N3—C32—H32B110.4
C5—C4—C3119.7 (2)C31—C32—H32A110.4
C5—C4—C13117.6 (2)C31—C32—H32B110.4
C7—C10—H10119.7H32A—C32—H32B108.6
C7—C10—C11120.5 (3)C34—O8—H8A109.5
C11—C10—H10119.7C33—O7—H7A109.5
C9—C8—H8119.3O7—C33—H33A109.5
C7—C8—H8119.3O7—C33—H33B109.5
C7—C8—C9121.4 (3)O7—C33—H33C109.5
N1—C15—H15A110.5H33A—C33—H33B109.5
N1—C15—H15B110.5H33A—C33—H33C109.5
N1—C15—C16106.33 (19)H33B—C33—H33C109.5
H15A—C15—H15B108.7O8—C34—H34A109.5
C16—C15—H15A110.5O8—C34—H34B109.5
C16—C15—H15B110.5O8—C34—H34C109.5
O4—C22—C17118.7 (2)H34A—C34—H34B109.5
O4—C22—C20123.8 (2)H34A—C34—H34C109.5
C17—C22—C20117.5 (2)H34B—C34—H34C109.5
C22—C17—H17119.2C33A—O7A—H7AA109.5
C18—C17—C22121.5 (2)O7A—C33A—H33D109.5
C18—C17—H17119.2O7A—C33A—H33E109.5
C30—C24—C25121.7 (2)O7A—C33A—H33F109.5
C26—C24—C30119.7 (2)H33D—C33A—H33E109.5
C26—C24—C25118.6 (2)H33D—C33A—H33F109.5
N1—C13—C4124.1 (2)H33E—C33A—H33F109.5
N1—C13—H13117.9H34D—C34A—H34E109.5
C4—C13—H13117.9H34D—C34A—H34F109.5
C17—C18—H18119.4H34E—C34A—H34F109.5
C17—C18—C19121.2 (3)O8A—C34A—H34D109.5
C19—C18—H18119.4O8A—C34A—H34E109.5
C2—C1—H1119.4O8A—C34A—H34F109.5
C2—C1—C6121.2 (3)C34A—O8A—H8AA109.5
V2—O6—C30—C2429.7 (3)C4—C5—C6—C12.1 (4)
V2—O6—C30—C29151.31 (17)C15—N1—C13—C4177.3 (2)
V2—N4—C25—C247.9 (3)C22—C17—C18—C190.6 (4)
V2—N4—C31—C3222.2 (2)C22—C20—C23—N37.4 (4)
V2—O4—C22—C17170.69 (17)C22—C20—C21—C191.0 (3)
V2—O4—C22—C2011.4 (3)C17—C22—C20—C23172.0 (2)
V2—N3—C23—C207.0 (3)C17—C22—C20—C213.7 (3)
V2—N3—C32—C3146.0 (2)C17—C18—C19—C213.4 (4)
V1—O2—C12—C929.3 (3)C24—C30—C29—C281.1 (3)
V1—O2—C12—C11153.17 (16)C24—C26—C27—C281.1 (4)
V1—N2—C14—C97.7 (3)C13—N1—C15—C16137.4 (2)
V1—N2—C16—C1522.8 (2)C13—C4—C5—C6175.5 (2)
V1—O1—C3—C410.4 (3)C9—C12—C11—C101.9 (3)
V1—O1—C3—C2170.93 (17)C9—C8—C7—C101.7 (4)
V1—N1—C15—C1646.5 (2)C7—C10—C11—C120.5 (4)
V1—N1—C13—C47.2 (3)C7—C8—C9—C120.2 (4)
O6—C30—C24—C251.8 (3)C7—C8—C9—C14176.6 (2)
O6—C30—C24—C26179.2 (2)C20—C22—C17—C183.0 (4)
O6—C30—C29—C28179.9 (2)C20—C21—C19—C182.6 (4)
O2—C12—C9—C142.8 (3)C2—C3—C4—C13172.5 (2)
O2—C12—C9—C8179.1 (2)C2—C3—C4—C53.4 (3)
O2—C12—C11—C10179.6 (2)C2—C1—C6—C51.9 (4)
N4—C25—C24—C3012.3 (4)C23—N3—C32—C31137.4 (2)
N4—C25—C24—C26170.2 (2)C23—C20—C21—C19174.9 (2)
N4—C31—C32—N342.8 (2)C16—N2—C14—C9174.5 (2)
N2—C14—C9—C1213.4 (3)C5—C4—C13—N1176.9 (2)
N2—C14—C9—C8170.3 (2)C21—C20—C23—N3176.9 (2)
O1—C3—C4—C136.2 (3)C11—C12—C9—C14174.7 (2)
O1—C3—C4—C5177.9 (2)C11—C12—C9—C81.6 (3)
O1—C3—C2—C1177.6 (2)C11—C10—C7—C81.3 (4)
O4—C22—C17—C18179.0 (2)C27—C26—C24—C300.8 (4)
O4—C22—C20—C235.9 (3)C27—C26—C24—C25178.4 (2)
O4—C22—C20—C21178.4 (2)C27—C28—C29—C300.8 (4)
C14—N2—C16—C15155.1 (2)C6—C1—C2—C31.1 (4)
C3—C4—C13—N17.1 (4)C29—C30—C24—C25177.2 (2)
C3—C4—C5—C60.6 (3)C29—C30—C24—C260.3 (3)
C25—N4—C31—C32155.7 (2)C29—C28—C27—C260.3 (4)
N1—C15—C16—N243.4 (2)C31—N4—C25—C24174.5 (2)
C4—C3—C2—C13.7 (4)C32—N3—C23—C20177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O8i0.932.483.368 (4)159
C14—H14···O8Ai0.932.483.299 (7)147
C25—H25···O7ii0.932.513.391 (4)158
C25—H25···O7Aii0.932.663.457 (9)144
C13—H13···O3iii0.932.603.372 (3)141
C23—H23···O5iv0.932.593.364 (3)141
O8—H8A···O20.822.122.926 (4)167
O7—H7A···O60.822.182.940 (3)153
O7—H7A···O40.822.643.246 (4)132
O8A—H8AA···O10.822.182.984 (6)166
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1/2, y+5/2, z; (iv) x1/2, y+1/2, z.
Selected geometric parameters (Å, º) top
V1—O11.9155 (17)V2—O41.9164 (16)
V1—O21.9429 (16)V2—O51.6089 (16)
V1—O31.6070 (17)V2—O61.9314 (16)
V1—N12.0597 (19)V2—N32.062 (2)
V1—N22.051 (2)V2—N42.060 (2)
O2—V1—N287.30 (8)O6—V2—N487.20 (8)
O2—V1—N1150.78 (7)O6—V2—N3150.79 (7)
O3—V1—O2105.76 (8)O5—V2—O6105.81 (8)
O3—V1—N2107.35 (9)O5—V2—N4107.66 (8)
O3—V1—O1113.39 (8)O5—V2—O4113.60 (8)
O3—V1—N1102.90 (8)O5—V2—N3102.81 (8)
N2—V1—N178.80 (8)N4—V2—N378.63 (8)
O1—V1—O286.60 (7)O4—V2—O686.66 (7)
O1—V1—N2138.94 (8)O4—V2—N4138.40 (8)
O1—V1—N187.26 (8)O4—V2—N387.25 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O8i0.932.483.368 (4)159
C14—H14···O8Ai0.932.483.299 (7)147
C25—H25···O7ii0.932.513.391 (4)158
C25—H25···O7Aii0.932.663.457 (9)144
C13—H13···O3iii0.932.603.372 (3)141
C23—H23···O5iv0.932.593.364 (3)141
O8—H8A···O20.822.122.926 (4)167
O7—H7A···O60.822.182.940 (3)153
O7—H7A···O40.822.643.246 (4)132
O8A—H8AA···O10.822.182.984 (6)166
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x1/2, y+5/2, z; (iv) x1/2, y+1/2, z.
 

Acknowledgements

We thank Professor A. N. Khlobystov for the sample of unsolvated {2,2′-[ethyl­enebis(nitrilo­methyl­idyne)]di­pheno­lato-κ4O,N,N′,O′}oxidovanadium(IV). We thank EPSRC (UK) for support.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationLi, L. Z., Xu, T., Wang, D.-Q. & Du, L.-Y. (2004). Huaxue Yanjiu Yu Yingyong (Chem. Res. Appl.), 16, 664–666.  CAS Google Scholar
First citationRiley, P. E., Pecoraro, V. L., Carrano, C. J., Bonadies, J. A. & Raymond, K. N. (1986). Inorg. Chem. 25, 154–160.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C., Yuan, J.-H., Xie, G., Yu, M.-J. & Li, J. (2008). Acta Cryst. E64, m775–m776.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages m380-m381
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds