organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-acetyl-5-(3-methoxyphenyl)-3,7-di­methyl-5H-1,3-thiazolo[3,2-a]pyrimidine-6-carboxylate

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 17 September 2014; accepted 21 October 2014; online 29 October 2014)

In the title mol­ecule, C20H22N2O4S, the pyrimidine ring is in a flattened half-chair conformation and the 3-meth­oxyphenyl substituent is in an axial arrangement. The thia­zole ring forms a dihedral angle of 81.3 (1)° with the benzene ring. In the crystal, weak C—H⋯S inter­actions link mol­ecules into chains along [001]. In addition, there are ππ inter­actions between inversion-related thia­zole rings with a centroid–centroid distance of 3.529 (2) Å. The ethyl group was refined as disordered over two sets of sites with an occupancy ratio of 0.52 (3):0.48 (2).

1. Related literature

For pharmacological and biological properties of pyrimidine derivatives, see: Alam et al. (2010a[Alam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010a). Med. Chem. Res. 19, 1245-1258.],b[Alam, O., Khan, S. A., Siddiqui, N., Ahsan, W., Verma, S. P. & Gilani, S. J. (2010b). Eur. J. Med. Chem. 45, 5113-5119.]). For the therapeutic potential of thia­zolo­pyrimidine derivatives, see: Zhi et al. (2008[Zhi, H., Chen, L., Zhang, L., Liu, S., Wan, D. C. C., Lin, H. & Hu, C. (2008). ARKIVOC, xiii, 266-277.]). For related crystal structures, see: Jotani et al. (2010[Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010). Acta Cryst. E66, o599-o600.]); Nagarajaiah et al. (2012[Nagarajaiah, H., Khazi, I. M. & Begum, N. S. (2012). J. Chem. Sci. 124, 847-855.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H22N2O4S

  • Mr = 386.46

  • Triclinic, [P \overline 1]

  • a = 8.281 (3) Å

  • b = 9.680 (4) Å

  • c = 12.821 (5) Å

  • α = 76.423 (10)°

  • β = 86.308 (10)°

  • γ = 74.641 (11)°

  • V = 963.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.16 mm

2.2. Data collection

  • Bruker SMART APEX CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.969

  • 7744 measured reflections

  • 4170 independent reflections

  • 2529 reflections with I > 2σ(I)

  • Rint = 0.040

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.173

  • S = 0.93

  • 4170 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯S1i 0.98 2.87 3.822 (3) 162
Symmetry code: (i) x, y, z-1.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker. (1998). SMART, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Pyrimidine derivatives are of interest because of their pharmacological properties (Alam et al., 2010a). A thiazole ring fused to a pyrimidine ring resulting in thiazolopyrimidine is found to possess remarkable biological activities such as antiviral, anticancer, anti-inflammatory and anti-hypertensive properties (Alam et al., 2010b). In addition, thiazolopyrimidine derivatives possess therapeutic potential (Zhi et al., 2008). Herein, we report the crystal structure of the title compound. The molecular structure of the title compound is shown in Fig. 1. The mean-plane of the 3-methoxy phenyl group adopts a syn periplanar conformation with respect to the C5—H5 bond of the pyrimidine ring. The pyrimidine ring is in a flattened half chair conformation with atoms N1 and C5 displaced by -0.082 (3) and 0.189 (4)Å, respectively from the mean plane of the other four atoms (N2/C6/C7/C9). The 3-methoxy phenyl substituent bonded to atom C5 is in an axial position. The ethyl group was refined as disordered over two sets of sites with an occupancy ratio of 0.52 (3):0.48 (2). The bond lengths and angles in the title compound are in good agreement with the corresponding bond distances and angles reported in closely related structures (Nagarajaiah et al., 2012; Jotani et al., 2010). In the crystal, weak C—H···S interactions link molecules into chains along [001] (Fig. 2). In addition, there are π···π interactions between inversion related thiazole rings with a centroid–centroid distance of 3.529 (2) Å.

Related literature top

For pharmacological and biological properties of pyrimidine derivatives, see: Alam et al. (2010a,b). For the therapeutic potential of thiazolopyrimidine derivatives, see: Zhi et al. (2008). For related crystal structures, see: Jotani et al. (2010); Nagarajaiah et al. (2012).

Experimental top

A mixture of 4-(3-methoxy-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid ethyl ester (10 mmol) and 3-chloro-2,4-pentanedione (10 mmol) was refluxed in dry ethanol (20 mmol) for 12 h. The excess of solvent was distilled off and the solid hydrochloride salt that separated was collected by filtration, suspended in water and neutralized by aqueous sodium carbonate solution to yield the free base. The solution was filtered, the solid washed with water, dried and recrystallized from ethyl acetate to give the title compound (76% yield, mp 380 K). The compound was recrystallized by slow evaporation from 1:1 mixture of ethyl acetate and methanol , yielding pale-yellow single crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were placed at calculated positions in the riding-model approximation with C—H = 0.95° A, 1.00 Å and 0.96 Å for aromatic, methyne and methyl H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The primed atoms indicate the disorder.

Figure 2. Part of the crystal structure with weak C—H···S interactions shown as dashed lines. H atoms not involved in hydrogen bonding have been excluded.
2-Acetyl-5-(3-methoxy-phenyl)-3,7-dimethyl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylic acid ethyl ester top
Crystal data top
C20H22N2O4SZ = 2
Mr = 386.46F(000) = 408
Triclinic, P1Dx = 1.332 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.281 (3) ÅCell parameters from 2529 reflections
b = 9.680 (4) Åθ = 2.2–27.0°
c = 12.821 (5) ŵ = 0.20 mm1
α = 76.423 (10)°T = 100 K
β = 86.308 (10)°Block, yellow
γ = 74.641 (11)°0.18 × 0.16 × 0.16 mm
V = 963.3 (7) Å3
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
4170 independent reflections
Radiation source: fine-focus sealed tube2529 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1010
Tmin = 0.966, Tmax = 0.969k = 1212
7744 measured reflectionsl = 1116
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.076P)2 + 0.6885P]
where P = (Fo2 + 2Fc2)/3
4170 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C20H22N2O4Sγ = 74.641 (11)°
Mr = 386.46V = 963.3 (7) Å3
Triclinic, P1Z = 2
a = 8.281 (3) ÅMo Kα radiation
b = 9.680 (4) ŵ = 0.20 mm1
c = 12.821 (5) ÅT = 100 K
α = 76.423 (10)°0.18 × 0.16 × 0.16 mm
β = 86.308 (10)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
4170 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2529 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.969Rint = 0.040
7744 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 0.93Δρmax = 0.34 e Å3
4170 reflectionsΔρmin = 0.39 e Å3
263 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.30579 (11)0.36333 (9)0.10093 (6)0.0571 (3)
N10.3525 (3)0.4674 (2)0.09649 (16)0.0408 (5)
N20.1316 (3)0.6205 (3)0.01435 (19)0.0522 (6)
O10.6747 (4)0.0390 (3)0.0353 (3)0.0991 (9)
O20.0460 (5)0.9217 (3)0.3230 (3)0.1344 (14)
O30.2781 (4)0.7833 (3)0.37460 (18)0.0887 (9)
O40.2791 (3)0.3934 (3)0.53399 (17)0.0815 (7)
C10.0158 (5)0.8666 (4)0.0993 (3)0.0738 (10)
H1A0.03920.94700.12010.111*
H1B0.05300.85810.02440.111*
H1C0.11280.88700.14570.111*
C20.4657 (4)0.2623 (3)0.0315 (2)0.0505 (7)
C30.4737 (3)0.3342 (3)0.0718 (2)0.0448 (6)
C40.5672 (5)0.1135 (4)0.0842 (3)0.0678 (9)
C50.3089 (3)0.5520 (3)0.2070 (2)0.0422 (6)
H50.41320.57100.24440.051*
C60.1873 (4)0.6996 (3)0.2021 (2)0.0474 (7)
C70.1055 (4)0.7250 (3)0.1109 (2)0.0505 (7)
C80.5262 (6)0.0589 (5)0.1991 (3)0.0958 (14)
H8A0.41580.03850.20400.144*
H8B0.52490.13390.23920.144*
H8C0.61090.03150.22960.144*
C90.2502 (3)0.5029 (3)0.0135 (2)0.0435 (6)
C100.314 (4)0.886 (2)0.4736 (17)0.116 (7)0.48 (3)
H10A0.42800.89990.47110.139*0.48 (3)
H10B0.23170.98320.48290.139*0.48 (3)
C10'0.224 (2)0.8853 (18)0.4809 (13)0.085 (4)0.52 (3)
H10C0.11190.87970.50010.102*0.52 (3)
H10D0.21640.98800.47770.102*0.52 (3)
C110.300 (2)0.8136 (19)0.5624 (8)0.102 (6)0.48 (3)
H11A0.41020.75060.57540.152*0.48 (3)
H11B0.26220.88890.62790.152*0.48 (3)
H11C0.21990.75370.54220.152*0.48 (3)
C11'0.339 (2)0.8426 (2)0.5548 (10)0.182 (14)0.52 (3)
H11D0.45170.83130.52850.273*0.52 (3)
H11E0.31910.91720.62230.273*0.52 (3)
H11F0.33080.74850.56690.273*0.52 (3)
C120.2372 (2)0.4638 (2)0.26787 (15)0.0422 (6)
C130.2885 (2)0.4605 (3)0.37231 (16)0.0495 (7)
H130.36990.51050.40440.059*
C140.2219 (4)0.3846 (3)0.4306 (2)0.0561 (8)
C150.1116 (4)0.3055 (4)0.3822 (3)0.0669 (9)
H150.06900.25020.42080.080*
C160.0622 (4)0.3063 (4)0.2764 (3)0.0648 (9)
H160.01440.25150.24320.078*
C170.1232 (4)0.3860 (3)0.2192 (2)0.0504 (7)
H170.08760.38750.14740.060*
C180.2065 (6)0.3271 (5)0.6001 (3)0.0995 (15)
H18A0.23300.22060.57110.149*
H18B0.25170.34750.67310.149*
H18C0.08470.36760.60190.149*
C190.1592 (5)0.8125 (4)0.3027 (3)0.0715 (10)
C200.5962 (4)0.2884 (4)0.1555 (3)0.0626 (8)
H20A0.68100.19910.12300.094*
H20B0.65060.36730.18640.094*
H20C0.53750.26860.21220.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0654 (5)0.0657 (5)0.0413 (4)0.0239 (4)0.0025 (3)0.0068 (3)
N10.0435 (12)0.0428 (11)0.0375 (11)0.0094 (10)0.0013 (9)0.0143 (9)
N20.0498 (14)0.0546 (14)0.0562 (15)0.0136 (12)0.0120 (11)0.0231 (12)
O10.086 (2)0.0692 (16)0.123 (2)0.0134 (15)0.0095 (18)0.0203 (16)
O20.163 (3)0.090 (2)0.097 (2)0.038 (2)0.022 (2)0.0100 (17)
O30.145 (3)0.0573 (14)0.0516 (14)0.0198 (15)0.0099 (15)0.0022 (11)
O40.1022 (19)0.0988 (18)0.0448 (13)0.0126 (15)0.0014 (12)0.0338 (12)
C10.065 (2)0.0558 (19)0.103 (3)0.0046 (17)0.004 (2)0.0358 (19)
C20.0505 (17)0.0482 (15)0.0546 (17)0.0154 (14)0.0096 (13)0.0094 (13)
C30.0438 (15)0.0420 (14)0.0518 (16)0.0090 (12)0.0074 (12)0.0172 (12)
C40.063 (2)0.060 (2)0.082 (2)0.0211 (18)0.0222 (19)0.0070 (18)
C50.0461 (15)0.0435 (14)0.0367 (14)0.0118 (12)0.0024 (11)0.0088 (11)
C60.0532 (17)0.0395 (14)0.0509 (16)0.0122 (13)0.0054 (13)0.0114 (12)
C70.0480 (17)0.0445 (15)0.0637 (19)0.0122 (13)0.0008 (14)0.0215 (14)
C80.105 (3)0.091 (3)0.083 (3)0.042 (3)0.031 (2)0.025 (2)
C90.0454 (15)0.0511 (15)0.0408 (14)0.0191 (13)0.0057 (12)0.0176 (12)
C100.156 (18)0.101 (8)0.068 (9)0.029 (14)0.018 (13)0.017 (6)
C10'0.103 (9)0.066 (5)0.064 (6)0.013 (7)0.008 (7)0.020 (4)
C110.139 (12)0.113 (10)0.039 (7)0.022 (9)0.009 (7)0.001 (6)
C11'0.185 (19)0.136 (14)0.127 (17)0.035 (13)0.078 (15)0.052 (13)
C120.0430 (15)0.0424 (13)0.0394 (14)0.0039 (12)0.0023 (11)0.0133 (11)
C130.0559 (18)0.0520 (16)0.0394 (15)0.0100 (14)0.0015 (13)0.0126 (12)
C140.0628 (19)0.0617 (18)0.0406 (16)0.0011 (16)0.0048 (14)0.0211 (14)
C150.070 (2)0.068 (2)0.072 (2)0.0101 (18)0.0140 (18)0.0388 (18)
C160.062 (2)0.069 (2)0.075 (2)0.0282 (18)0.0025 (17)0.0256 (17)
C170.0510 (17)0.0561 (16)0.0472 (16)0.0147 (14)0.0023 (13)0.0176 (13)
C180.150 (4)0.093 (3)0.052 (2)0.004 (3)0.023 (2)0.035 (2)
C190.100 (3)0.0505 (19)0.060 (2)0.0115 (19)0.015 (2)0.0099 (16)
C200.0558 (19)0.0620 (18)0.067 (2)0.0026 (15)0.0006 (16)0.0283 (16)
Geometric parameters (Å, º) top
S1—C91.736 (3)C8—H8C0.9800
S1—C21.753 (3)C10—C111.50 (4)
N1—C91.368 (3)C10—H10A0.9900
N1—C31.391 (3)C10—H10B0.9900
N1—C51.475 (3)C10'—C11'1.358 (19)
N2—C91.290 (4)C10'—H10C0.9900
N2—C71.391 (4)C10'—H10D0.9900
O1—C41.228 (4)C11—H11A0.9800
O2—C191.201 (4)C11—H11B0.9800
O3—C191.325 (4)C11—H11C0.9800
O3—C101.486 (18)C11'—H11D0.9800
O3—C10'1.499 (15)C11'—H11E0.9800
O4—C141.370 (4)C11'—H11F0.9800
O4—C181.420 (4)C12—C131.3835
C1—C71.502 (4)C12—C171.389 (3)
C1—H1A0.9800C13—C141.388 (4)
C1—H1B0.9800C13—H130.9500
C1—H1C0.9800C14—C151.372 (5)
C2—C31.350 (4)C15—C161.392 (5)
C2—C41.487 (4)C15—H150.9500
C3—C201.491 (4)C16—C171.382 (4)
C4—C81.493 (5)C16—H160.9500
C5—C121.526 (3)C17—H170.9500
C5—C61.527 (4)C18—H18A0.9800
C5—H51.0000C18—H18B0.9800
C6—C71.353 (4)C18—H18C0.9800
C6—C191.468 (4)C20—H20A0.9800
C8—H8A0.9800C20—H20B0.9800
C8—H8B0.9800C20—H20C0.9800
C9—S1—C291.44 (13)C11—C10—H10B110.9
C9—N1—C3115.6 (2)H10A—C10—H10B108.9
C9—N1—C5119.6 (2)C11'—C10'—O3107.3 (13)
C3—N1—C5123.6 (2)C11'—C10'—H10C110.3
C9—N2—C7116.3 (2)O3—C10'—H10C110.3
C19—O3—C10127.2 (10)C11'—C10'—H10D110.3
C19—O3—C10'108.8 (8)O3—C10'—H10D110.3
C14—O4—C18117.5 (3)H10C—C10'—H10D108.5
C7—C1—H1A109.5C10'—C11'—H11D109.5
C7—C1—H1B109.5C10'—C11'—H11E109.5
H1A—C1—H1B109.5H11D—C11'—H11E109.5
C7—C1—H1C109.5C10'—C11'—H11F109.5
H1A—C1—H1C109.5H11D—C11'—H11F109.5
H1B—C1—H1C109.5H11E—C11'—H11F109.5
C3—C2—C4127.6 (3)C13—C12—C17119.90 (16)
C3—C2—S1111.2 (2)C13—C12—C5119.31 (16)
C4—C2—S1121.2 (2)C17—C12—C5120.8 (2)
C2—C3—N1112.5 (2)C12—C13—C14120.55 (19)
C2—C3—C20127.7 (3)C12—C13—H13119.7
N1—C3—C20119.8 (2)C14—C13—H13119.7
O1—C4—C2121.9 (3)O4—C14—C15125.4 (3)
O1—C4—C8122.3 (4)O4—C14—C13114.9 (3)
C2—C4—C8115.8 (3)C15—C14—C13119.7 (3)
N1—C5—C12110.26 (19)C14—C15—C16119.9 (3)
N1—C5—C6108.5 (2)C14—C15—H15120.1
C12—C5—C6112.6 (2)C16—C15—H15120.1
N1—C5—H5108.5C17—C16—C15120.8 (3)
C12—C5—H5108.5C17—C16—H16119.6
C6—C5—H5108.5C15—C16—H16119.6
C7—C6—C19121.2 (3)C16—C17—C12119.2 (3)
C7—C6—C5122.3 (2)C16—C17—H17120.4
C19—C6—C5116.5 (3)C12—C17—H17120.4
C6—C7—N2122.2 (3)O4—C18—H18A109.5
C6—C7—C1125.6 (3)O4—C18—H18B109.5
N2—C7—C1112.1 (3)H18A—C18—H18B109.5
C4—C8—H8A109.5O4—C18—H18C109.5
C4—C8—H8B109.5H18A—C18—H18C109.5
H8A—C8—H8B109.5H18B—C18—H18C109.5
C4—C8—H8C109.5O2—C19—O3120.5 (3)
H8A—C8—H8C109.5O2—C19—C6127.3 (4)
H8B—C8—H8C109.5O3—C19—C6112.2 (3)
N2—C9—N1127.9 (3)C3—C20—H20A109.5
N2—C9—S1122.8 (2)C3—C20—H20B109.5
N1—C9—S1109.3 (2)H20A—C20—H20B109.5
O3—C10—C11104.5 (18)C3—C20—H20C109.5
O3—C10—H10A110.9H20A—C20—H20C109.5
C11—C10—H10A110.9H20B—C20—H20C109.5
O3—C10—H10B110.9
C9—S1—C2—C30.6 (2)C3—N1—C9—S10.6 (3)
C9—S1—C2—C4176.3 (2)C5—N1—C9—S1167.21 (17)
C4—C2—C3—N1175.6 (3)C2—S1—C9—N2178.8 (2)
S1—C2—C3—N11.0 (3)C2—S1—C9—N10.02 (19)
C4—C2—C3—C206.0 (5)C19—O3—C10—C11122.6 (13)
S1—C2—C3—C20177.3 (2)C10'—O3—C10—C1164 (3)
C9—N1—C3—C21.1 (3)C19—O3—C10'—C11'173.7 (13)
C5—N1—C3—C2166.2 (2)C10—O3—C10'—C11'52 (3)
C9—N1—C3—C20177.4 (2)N1—C5—C12—C13136.62 (19)
C5—N1—C3—C2015.4 (4)C6—C5—C12—C13102.0 (2)
C3—C2—C4—O10.5 (5)N1—C5—C12—C1742.6 (3)
S1—C2—C4—O1176.9 (3)C6—C5—C12—C1778.8 (3)
C3—C2—C4—C8177.6 (3)C17—C12—C13—C142.6 (3)
S1—C2—C4—C81.2 (4)C5—C12—C13—C14178.2 (2)
C9—N1—C5—C12103.6 (2)C18—O4—C14—C156.5 (5)
C3—N1—C5—C1263.1 (3)C18—O4—C14—C13175.5 (3)
C9—N1—C5—C620.1 (3)C12—C13—C14—O4178.1 (2)
C3—N1—C5—C6173.1 (2)C12—C13—C14—C153.8 (4)
N1—C5—C6—C715.3 (3)O4—C14—C15—C16179.6 (3)
C12—C5—C6—C7107.0 (3)C13—C14—C15—C162.5 (5)
N1—C5—C6—C19166.4 (2)C14—C15—C16—C170.1 (5)
C12—C5—C6—C1971.2 (3)C15—C16—C17—C121.1 (5)
C19—C6—C7—N2179.1 (3)C13—C12—C17—C160.2 (4)
C5—C6—C7—N22.7 (4)C5—C12—C17—C16179.4 (3)
C19—C6—C7—C11.8 (5)C10—O3—C19—O214.9 (17)
C5—C6—C7—C1180.0 (3)C10'—O3—C19—O211.8 (9)
C9—N2—C7—C66.6 (4)C10—O3—C19—C6164.6 (16)
C9—N2—C7—C1171.1 (2)C10'—O3—C19—C6168.8 (8)
C7—N2—C9—N10.9 (4)C7—C6—C19—O215.5 (6)
C7—N2—C9—S1177.68 (19)C5—C6—C19—O2162.8 (4)
C3—N1—C9—N2178.1 (2)C7—C6—C19—O3163.9 (3)
C5—N1—C9—N214.1 (4)C5—C6—C19—O317.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···S1i0.982.873.822 (3)162
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···S1i0.982.873.822 (3)162
Symmetry code: (i) x, y, z1.
 

Acknowledgements

NLP thanks for the UGC for the CSIR–NET fellowship and MSK thanks the UGC for the UGC–BSR Meritorious fellowship.

References

First citationAlam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010a). Med. Chem. Res. 19, 1245–1258.  Web of Science CrossRef CAS Google Scholar
First citationAlam, O., Khan, S. A., Siddiqui, N., Ahsan, W., Verma, S. P. & Gilani, S. J. (2010b). Eur. J. Med. Chem. 45, 5113–5119.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker. (1998). SMART, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2010). Acta Cryst. E66, o599–o600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNagarajaiah, H., Khazi, I. M. & Begum, N. S. (2012). J. Chem. Sci. 124, 847–855.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhi, H., Chen, L., Zhang, L., Liu, S., Wan, D. C. C., Lin, H. & Hu, C. (2008). ARKIVOC, xiii, 266–277.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds