organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1144-o1145

Crystal structure of 6-chloro-5-iso­propyl­pyrimidine-2,4(1H,3H)-dione

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, bKing Abdullah Institute for Nanotechnology (KAIN), King Saud University, Riyadh 11451, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hfun.c@ksu.edu.sa

Edited by J. Simpson, University of Otago, New Zealand (Received 23 September 2014; accepted 26 September 2014; online 4 October 2014)

In the mol­ecule of the title compound, C7H9ClN2O2, the conformation is determined by intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds, which generate S(6) and S(5) ring motifs. The isopropyl group is almost perpendicular to the pyrimidine ring with torsion angles of −70.8 (3) and 56.0 (3)°. In the crystal, two inversion-related mol­ecules are linked via a pair of N—H⋯O hydrogen bonds into R22(8) dimers; these dimers are connected into chains extending along the bc plane via an additional N—H⋯O hydrogen bond and weaker C—H⋯O hydrogen bonds. The crystal structure is further stabilized by a weak ππ inter­action [3.6465 (10) Å] between adjacent pyrimidine-dione rings arranged in a head-to-tail fashion, producing a three-dimensional network.

1. Related literature

For the biological activity of pyrimidine-2,4(1H,3H)-diones, see: Miyasaka et al. (1989[Miyasaka, T., Tanaka, H., Baba, M., Hayakawa, H., Walker, R. T., Balzarini, J. & De Clercq, E. (1989). J. Med. Chem. 32, 2507-2509.]); Tanaka et al. (1995[Tanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., De Clercq, E. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860-2865.]); Hopkins et al. (1996[Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589-1600.]); El-Brollosy et al. (2009[El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. 342, 663-670.]); Klein et al. (2001[Klein, R. S., Lenzi, M., Lim, T. H., Hotchkiss, K. A., Wilson, P. & Schwartz, E. L. (2001). Biochem. Pharmacol. 62, 1257-1263.]); Nencka et al. (2006[Nencka, R., Votruba, I., Hrebabecký, H., Tloust'ová, E., Horská, K., Masojídková, M. & Holý, A. (2006). Bioorg. Med. Chem. Lett. 16, 1335-1337.]); El-Emam et al. (2004[El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc., 25, 991-996.]). For the use of 5-alkyl-6-chloro­pyrimidine-2,4(1H,3H)-diones in synthesis, see: El-Emam et al. (2004[El-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc., 25, 991-996.]). For related pyrimidine-2,4-dione structures, see: El-Brollosy et al. (2011[El-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839.]); Al-Omary et al. (2014[Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o179-o180.]); Haress et al. (2014[Haress, N. G., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o768-o769.]). For the synthesis of the title compound, see: Al-Turkistani et al. (2011[Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El-Emam, A. A. (2011). Molecules, 16, 4764-4774.]); Koroniak et al. (1993[Koroniak, H., Jankowski, A. & Krasnowski, M. (1993). Org. Prep. Proced. Int. 25, 563-568.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H9ClN2O2

  • Mr = 188.61

  • Monoclinic, P 21 /c

  • a = 11.2244 (4) Å

  • b = 6.8288 (3) Å

  • c = 11.6641 (5) Å

  • β = 104.577 (2)°

  • V = 865.26 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.62 mm−1

  • T = 296 K

  • 0.45 × 0.28 × 0.26 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.292, Tmax = 0.458

  • 5647 measured reflections

  • 1553 independent reflections

  • 1444 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.06

  • 1553 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.83 (3) 2.01 (3) 2.833 (2) 169 (2)
N2—H1N2⋯O2ii 0.83 (3) 2.03 (3) 2.854 (2) 171 (2)
C5—H5⋯Cl1 0.94 (3) 2.57 (2) 3.132 (2) 118.7 (17)
C6—H6A⋯O1iii 0.96 2.56 3.455 (3) 156
C6—H6B⋯O2 0.96 2.45 3.034 (3) 119
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrimidine-2,4-diones and their related derivatives have long been known for their diverse chemotherapeutic activities including antiviral activity against HIV (Miyasaka et al., 1989; Tanaka et al., 1995; Hopkins et al., 1996; El-Emam et al., 2004). In addition, potent anticancer activity was observed for several pyrimidine-2,4-diones (Klein et al., 2001; Nencka et al., 2006). In a continuation of our interest in the chemical and pharmacological properties of pyrimidine and uracil derivatives (Al-Omary et al., 2014; Haress et al., 2014, El-Brollosy et al., 2009), we have synthesized the title compound (I) as a precursor to the synthesis of a potential chemotherapeutic agent (Al-Turkistani et al., 2011).

In the title compound (Fig. 1), the molecular conformation is stabilized by intramolecular C6–H6B···O2 and C5–H5···Cl1 hydrogen bonds incorporating S(6) and S(5) ring motifs respectively (Bernstein et al., 1995). The isopropyl group is almost perpendicular to the N1/N2/C1–C4 ring with the C3–C4–C5–C7 and C3–C4–C5–C6 torsion angles of -70.8 (3)° and 56.0 (3)° respectively. In the crystal structure, two adjacent molecules are linked via a pair of N2–H1N2···O2 intermolecular hydrogen bonds forming inversion related R22(8) dimers (Fig. 2).; these dimers are connected into chains via N1–H1N1···O1 and weak C6–H6A···O1 hydrogen bonds extending along the bc plane. The crystal structure is further stabilized by a weak π···π interaction [3.6465 (10) Å] producing a three-dimensional network.

Related literature top

For the biological activity of pyrimidine-2,4(1H,3H)-diones, see: Miyasaka et al. (1989); Tanaka et al. (1995); Hopkins et al. (1996); El-Brollosy et al. (2009); Klein et al. (2001); Nencka et al. (2006); El-Emam et al. (2004). For the use of 5-alkyl-6-chloropyrimidine-2,4(1H,3H)-diones in synthesis, see: El-Emam et al. (2004). For related pyrimidine-2,4-dione structures, see: El-Brollosy et al. (2011); Al-Omary et al. (2014); Haress et al. (2014), For the synthesis of the title compound, see: Al-Turkistani et al. (2011); Koroniak et al. (1993). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

5-Isopropylbarbituric acid (8.51 g, 0.05 mol) was added portionwise with stirring to a mixture of phosphorus oxychloride (19.2 ml) and N,N-dimethyl aniline (10.3 ml) over a period of 10 minutes. The mixture was then heated under reflux for one hour. On cooling, the mixture was poured onto crushed ice (200 g m), stirred for 30 minutes and extracted with diethyl ether (400 ml). The ethereal extract was dried over anhydrous sodium sulfate and evaporated under vacuum at room temperature to yield the intermediate 5-isopropyl-2,4,6-trichloropyrimidine as a white waxy solid. 10% Sodium hydroxide (20 ml) was then added to the intermediate and the mixture was heated under reflux for 30 minutes. On cooling, the mixture was acidified with hydrochloric acid to pH 1–2 and the separated precipitate was filtered, washed with cold water and crystallized from ethanol to yield 6.98 g (74%) of the title compound (C7H9ClN2O2) as colourless crystals. M.P.: 257–259 °C.

1H NMR (DMSO-d6, 500.13 MHz): δ 1.14 (d, 6H, CH3, J = 7.2 Hz), 2.51–2.63 (m, 1H, CH), 11.22 (s, 1H, NH), 11.79 (s, 1H, NH). 13C NMR (DMSO-d6, 125.76 MHz): δ 20.02 (CH3), 26.52 (CH), 113.95 (C–5), 140.95 (C-6), 149.75 (C=O), 162.75 (C=O).

Refinement top

The nitrogen-bound H-atoms were located in a difference Fourier map and were refined freely [N–H 0.83 (2) and 0.84 (3) Å]. Other H atoms were positioned geometrically (C=H 0.95–0.96 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.

Fig. 2. Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H-atoms not involved in the hydrogen bonding are omited for clarity.
6-Chloro-5-isopropylpyrimidine-2,4(1H,3H)-dione top
Crystal data top
C7H9ClN2O2F(000) = 392
Mr = 188.61Dx = 1.448 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 3341 reflections
a = 11.2244 (4) Åθ = 3.9–69.4°
b = 6.8288 (3) ŵ = 3.62 mm1
c = 11.6641 (5) ÅT = 296 K
β = 104.577 (2)°Block, colourless
V = 865.26 (6) Å30.45 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1553 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 69.7°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1213
Tmin = 0.292, Tmax = 0.458k = 87
5647 measured reflectionsl = 1310
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.3263P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1553 reflectionsΔρmax = 0.27 e Å3
122 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0181 (15)
Crystal data top
C7H9ClN2O2V = 865.26 (6) Å3
Mr = 188.61Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2244 (4) ŵ = 3.62 mm1
b = 6.8288 (3) ÅT = 296 K
c = 11.6641 (5) Å0.45 × 0.28 × 0.26 mm
β = 104.577 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1553 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1444 reflections with I > 2σ(I)
Tmin = 0.292, Tmax = 0.458Rint = 0.027
5647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
1553 reflectionsΔρmin = 0.32 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20279 (5)0.71985 (9)0.34179 (6)0.0644 (3)
O10.55744 (12)0.3674 (2)0.28760 (12)0.0465 (4)
O20.35879 (13)0.0719 (2)0.53323 (13)0.0522 (4)
N10.39383 (14)0.5227 (2)0.32786 (14)0.0386 (4)
N20.45727 (14)0.2261 (2)0.41291 (14)0.0394 (4)
C10.29636 (16)0.5181 (3)0.37878 (16)0.0371 (4)
C20.47498 (15)0.3710 (3)0.33892 (15)0.0354 (4)
C30.36295 (16)0.2134 (3)0.46972 (15)0.0371 (4)
C40.27390 (15)0.3729 (3)0.44806 (15)0.0368 (4)
C50.16037 (17)0.3635 (3)0.49593 (17)0.0437 (5)
C60.1871 (2)0.3338 (5)0.6280 (2)0.0697 (7)
H6A0.24380.43220.66750.105*
H6B0.22260.20650.64800.105*
H6C0.11190.34370.65270.105*
C70.0719 (2)0.2127 (5)0.4302 (3)0.0815 (9)
H7A0.05680.23550.34650.122*
H7B0.00410.22170.45330.122*
H7C0.10650.08450.44860.122*
H1N10.403 (2)0.617 (4)0.2856 (19)0.043 (6)*
H1N20.506 (2)0.132 (4)0.422 (2)0.059 (7)*
H50.125 (2)0.489 (4)0.481 (2)0.058 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0662 (4)0.0486 (4)0.0892 (5)0.0249 (2)0.0395 (3)0.0243 (3)
O10.0481 (7)0.0421 (8)0.0587 (9)0.0001 (6)0.0307 (6)0.0012 (6)
O20.0522 (8)0.0506 (9)0.0614 (9)0.0157 (6)0.0286 (6)0.0227 (7)
N10.0458 (8)0.0321 (8)0.0424 (9)0.0018 (6)0.0197 (7)0.0042 (6)
N20.0394 (8)0.0381 (8)0.0451 (9)0.0095 (7)0.0187 (7)0.0061 (6)
C10.0392 (9)0.0358 (9)0.0379 (10)0.0053 (7)0.0124 (7)0.0011 (7)
C20.0373 (8)0.0343 (9)0.0365 (9)0.0012 (7)0.0129 (7)0.0044 (7)
C30.0376 (9)0.0394 (10)0.0361 (10)0.0033 (7)0.0125 (7)0.0025 (7)
C40.0380 (9)0.0393 (10)0.0346 (9)0.0044 (7)0.0120 (7)0.0005 (7)
C50.0420 (9)0.0460 (11)0.0485 (11)0.0095 (8)0.0215 (8)0.0060 (8)
C60.0585 (13)0.108 (2)0.0512 (14)0.0016 (14)0.0296 (11)0.0019 (13)
C70.0472 (13)0.120 (3)0.0849 (19)0.0208 (14)0.0314 (13)0.0335 (17)
Geometric parameters (Å, º) top
Cl1—C11.7200 (18)C4—C51.516 (2)
O1—C21.222 (2)C5—C71.500 (3)
O2—C31.226 (2)C5—C61.507 (3)
N1—C21.364 (2)C5—H50.95 (3)
N1—C11.370 (2)C6—H6A0.9600
N1—H1N10.83 (2)C6—H6B0.9600
N2—C21.360 (2)C6—H6C0.9600
N2—C31.386 (2)C7—H7A0.9600
N2—H1N20.84 (3)C7—H7B0.9600
C1—C41.342 (3)C7—H7C0.9600
C3—C41.457 (2)
C2—N1—C1121.92 (16)C7—C5—C6111.5 (2)
C2—N1—H1N1117.6 (15)C7—C5—C4110.49 (17)
C1—N1—H1N1120.4 (15)C6—C5—C4114.38 (17)
C2—N2—C3126.87 (16)C7—C5—H5109.6 (16)
C2—N2—H1N2116.1 (17)C6—C5—H5106.3 (15)
C3—N2—H1N2116.9 (17)C4—C5—H5104.3 (15)
C4—C1—N1124.69 (16)C5—C6—H6A109.5
C4—C1—Cl1123.17 (14)C5—C6—H6B109.5
N1—C1—Cl1112.13 (13)H6A—C6—H6B109.5
O1—C2—N2123.07 (17)C5—C6—H6C109.5
O1—C2—N1122.60 (17)H6A—C6—H6C109.5
N2—C2—N1114.32 (15)H6B—C6—H6C109.5
O2—C3—N2119.22 (16)C5—C7—H7A109.5
O2—C3—C4124.43 (16)C5—C7—H7B109.5
N2—C3—C4116.35 (16)H7A—C7—H7B109.5
C1—C4—C3115.60 (16)C5—C7—H7C109.5
C1—C4—C5123.76 (16)H7A—C7—H7C109.5
C3—C4—C5120.54 (16)H7B—C7—H7C109.5
C2—N1—C1—C43.4 (3)N1—C1—C4—C5175.22 (17)
C2—N1—C1—Cl1175.53 (14)Cl1—C1—C4—C53.6 (3)
C3—N2—C2—O1176.48 (18)O2—C3—C4—C1177.94 (19)
C3—N2—C2—N14.4 (3)N2—C3—C4—C12.5 (2)
C1—N1—C2—O1175.02 (17)O2—C3—C4—C55.7 (3)
C1—N1—C2—N25.8 (2)N2—C3—C4—C5173.89 (16)
C2—N2—C3—O2179.34 (18)C1—C4—C5—C7105.3 (2)
C2—N2—C3—C40.3 (3)C3—C4—C5—C770.8 (3)
N1—C1—C4—C31.0 (3)C1—C4—C5—C6128.0 (2)
Cl1—C1—C4—C3179.85 (13)C3—C4—C5—C656.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.83 (3)2.01 (3)2.833 (2)169 (2)
N2—H1N2···O2ii0.83 (3)2.03 (3)2.854 (2)171 (2)
C5—H5···Cl10.94 (3)2.57 (2)3.132 (2)118.7 (17)
C6—H6A···O1iii0.962.563.455 (3)156
C6—H6B···O20.962.453.034 (3)119
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.83 (3)2.01 (3)2.833 (2)169 (2)
N2—H1N2···O2ii0.83 (3)2.03 (3)2.854 (2)171 (2)
C5—H5···Cl10.94 (3)2.57 (2)3.132 (2)118.7 (17)
C6—H6A···O1iii0.96002.56003.455 (3)156.00
C6—H6B···O20.96002.45003.034 (3)119.00
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1.
 

Footnotes

Additonal correspondence author, e-mail: elemam5@hotmail.com.

§Thomson Reuters ResearcherID: C-3194-2011.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. CSCK thanks Universiti Sains Malaysia (USM) for a postdoctoral research fellowship.

References

First citationAl-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o179–o180.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAl-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El-Emam, A. A. (2011). Molecules, 16, 4764–4774.  Web of Science CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. 342, 663–670.  CAS Google Scholar
First citationEl-Brollosy, N. R., El-Emam, A. A., Al-Deeb, O. A. & Ng, S. W. (2011). Acta Cryst. E67, o2839.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A., Massoud, M. A., El-Bendary, E. R. & El-Sayed, M. A. (2004). Bull. Korean Chem. Soc., 25, 991–996.  CAS Google Scholar
First citationHaress, N. G., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o768–o769.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKlein, R. S., Lenzi, M., Lim, T. H., Hotchkiss, K. A., Wilson, P. & Schwartz, E. L. (2001). Biochem. Pharmacol. 62, 1257–1263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoroniak, H., Jankowski, A. & Krasnowski, M. (1993). Org. Prep. Proced. Int. 25, 563–568.  CrossRef CAS Google Scholar
First citationMiyasaka, T., Tanaka, H., Baba, M., Hayakawa, H., Walker, R. T., Balzarini, J. & De Clercq, E. (1989). J. Med. Chem. 32, 2507–2509.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNencka, R., Votruba, I., Hrebabecký, H., Tloust'ová, E., Horská, K., Masojídková, M. & Holý, A. (2006). Bioorg. Med. Chem. Lett. 16, 1335–1337.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, H., Takashima, H., Ubasawa, M., Sekiya, K., Inouye, N., Baba, M., Shigeta, S., Walker, R. T., De Clercq, E. & Miyasaka, T. (1995). J. Med. Chem. 38, 2860–2865.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1144-o1145
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds