organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1221-o1222

Crystal structure of 1H,1′H-[2,2′-biimid­azol]-3-ium hydrogen tartrate hemi­hydrate

aDepartment of Chemistry, Taiyuan Normal College, Taiyuan, Shanxi 030031, People's Republic of China
*Correspondence e-mail: xiaoli.gao@sohu.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 October 2014; accepted 28 October 2014; online 31 October 2014)

In the crystal of the title hydrated salt, C6H7N4+·C4H5O6·0.5H2O, the bi­imidazole monocation, 1H,1′H-[2,2′-biimidazol]-3-ium, is hydrogen bonded, via N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds, to the hydrogen tartrate anion and the water mol­ecule, which is located on a twofold rotation axis, forming sheets parallel to (001). The sheets are linked via C—H⋯O hydrogen bonds, forming a three-dimensional structure. There are also C=O⋯π inter­actions present [O⋯π distances are 3.00 (9) and 3.21 (7) Å], involving the carbonyl O atoms and the imidazolium ring, which may help to consolidate the structure. In the cation, the dihedral angle between the rings is 11.6 (2)°.

1. Related literature

For background to the use of 2,2′-bi­imidazoles in crystal engineering, see: Shankar et al. (2013[Shankar, B., Elumalai, P., Hussain, F. & Sathiyendiran, M. (2013). J. Organomet. Chem. 732, 130-136.]); Gulbransen & Fitchett (2012[Gulbransen, J. L. & Fitchett, C. M. (2012). CrystEngComm, 14, 5394-5397.]); Tadokoro & Nakasuji (2000[Tadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205-218.]). For similar structures, see: Liu & Zhu (2010[Liu, X. & Zhu, W. (2010). Acta Cryst. E66, o1245.]); Gao et al. (2009[Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123-o127.]); Li & Yang (2006[Li, Y.-P. & Yang, P. (2006). Acta Cryst. E62, o3223-o3224.]); Mori & Miyoshi (2004[Mori, H. & Miyoshi, E. (2004). Bull. Chem. Soc. Jpn, 77, 687-690.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C4H5O6·C6H7N4+·0.5H2O

  • Mr = 293.25

  • Monoclinic, C 2

  • a = 19.3211 (13) Å

  • b = 4.8198 (2) Å

  • c = 16.1795 (10) Å

  • β = 122.694 (7)°

  • V = 1267.99 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.23 mm

2.2. Data collection

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.971

  • 4238 measured reflections

  • 2292 independent reflections

  • 2100 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.11

  • 2292 reflections

  • 202 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.92 (3) 1.78 (3) 2.683 (3) 169 (3)
N3—H3A⋯O5ii 0.94 (3) 1.81 (3) 2.729 (3) 167 (3)
N4—H4A⋯O1i 0.91 (3) 1.73 (3) 2.630 (3) 167 (3)
O3—H3⋯O7 0.83 2.05 2.871 (2) 168
O4—H4⋯O3iii 0.91 (4) 1.86 (4) 2.761 (3) 175 (3)
O6—H6A⋯N1iv 0.82 1.79 2.598 (3) 168
O7—H7A⋯O1 0.93 2.19 2.802 (2) 123
C2—H2⋯O2v 0.93 2.35 3.215 (3) 154
C5—H5⋯O4vi 0.93 2.55 3.415 (3) 155
C6—H6⋯O5vii 0.93 2.37 3.205 (3) 149
Symmetry codes: (i) x, y-1, z; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) x, y+1, z; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (vi) -x+1, y-1, -z+2; (vii) -x+1, y, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: pubCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

Di­imidazole (1.0 mmol) and tartaric acid (1.0 mmol) were dissolved in water (15 ml) by adding 1.2 ml of 2M HCl while stirring. The solution was left to stand at room temperature and colourless crystals of the title compound were obtained after several weeks.

Refinement top

The NH H atoms and the water molecule H atom were located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N,O). The O and C bound H atoms were placed in geometrically idealized positions with C—H = 0.93Å and O—H = 0.84 Å and constrained to refine with Uiso(H) = 1.2Ueq(O,C).

Comment top

Supramolecular assemblies built by means of hydrogen bonding interactions have provided numerous materials with very attractive properties (Gulbransen & Fitchett, 2012; Shankar et al., 2013). 2,2'-Biimidazole, H2biim, is not only a proton donor, but also a proton acceptor, so that it possesses five possible forms, viz. diprotonated (dication, H4biim2+), monoprotonated (monocation, H3biim+), dideprotonated (dianion, biim2-), monodeprotonated (monoanion, Hbiim-) (Tadokoro & Nakasuji, 2000; Mori & Miyoshi, 2004). Therefore, H2biim appears as an interesting molecular building block for the design of new multidimensional supramolecular arrangements, owing to its capacity to act as a donor or acceptor in the formation of hydrogen bonds (Li & Yang, 2006; Gao et al., 2009; Liu & Zhu, 2010).

The fundamental asymmetric unit of compound (I), contains two monoprotonated biimidazolium cations, two tatrate anions and one water molecular, in which the two imidazole rings of biimidazole are little tortile with the dihedral number is 11.5°. Strong N—H···O and O—H···N hydrogen bonds link neighbour tatrate and biimidazolium moities, then O—H···O hydrogen bonds between water molecular and tatrates link them to form two different zigzag layers as shown in Fig. 1. Two groups of these parallel layers on a twofold rotation axis and invension centre forming a zigzag conformation, then further assemble to tapes via weak C=O···π (centroid of imidazolium ring) interaction arranged alternatively in three-dimensional structure as described in Table 1 and shown in Fig. 2.

Related literature top

For background to the use of 2,2'-biimidazoles in crystal engineering, see: Shankar et al. (2013); Gulbransen & Fitchett (2012); Tadokoro & Nakasuji (2000). For similar structures, see: Liu & Zhu (2010); Gao et al. (2009); Li & Yang (2006); Mori & Miyoshi (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: pubCIF (Westrip, 2010).

Figures top
Molecular structure and atom labelling of the title compound, with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates hydrogen bonds [see Table 1 for details; symmetry codes: (i) x, y + 1, z; (ii) x + 3/2, y + 3/2, z + 2; (iii) x + 3/2, y + 1/2, z + 2].

Partial crystal packing of the title compound, with the hydrogen bonds (dashed lines) and CO···π interactions (dashed solid lines) between neighbouring tapes. Cg1 is the centroid of the C4/C5/C6/N3/N4 imidazole ring. [Symmetry codes: (i) x + 3/2, y + 1/2, z + 2; (ii) - x, y, - z; (iii) x, y + 1, z; (iv) x + 3/2, y - 3/2, z + 2; (v) - x - 1, y, - z.]
1H,1'H-[2,2'-Biimidazol]-3-ium 3-carboxy-2,3-dihydroxypropanoate hemihydrate top
Crystal data top
C4H5O6·C6H7N4+·0.5H2OF(000) = 612
Mr = 293.25Dx = 1.536 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2195 reflections
a = 19.3211 (13) Åθ = 3.5–25.0°
b = 4.8198 (2) ŵ = 0.13 mm1
c = 16.1795 (10) ÅT = 296 K
β = 122.694 (7)°Plate, colourless
V = 1267.99 (13) Å30.35 × 0.30 × 0.23 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
2292 independent reflections
Radiation source: fine-focus sealed tube2100 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0733 pixels mm-1θmax = 25.5°, θmin = 3.6°
phi and ω scansh = 2310
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 55
Tmin = 0.956, Tmax = 0.971l = 1819
4238 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.5619P]
where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C4H5O6·C6H7N4+·0.5H2OV = 1267.99 (13) Å3
Mr = 293.25Z = 4
Monoclinic, C2Mo Kα radiation
a = 19.3211 (13) ŵ = 0.13 mm1
b = 4.8198 (2) ÅT = 296 K
c = 16.1795 (10) Å0.35 × 0.30 × 0.23 mm
β = 122.694 (7)°
Data collection top
Bruker SMART
diffractometer
2292 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2100 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.971Rint = 0.030
4238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.16 e Å3
2292 reflectionsΔρmin = 0.27 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The line _refine_ls_abs_structure_Flack -1.5 (15) has been removed. According to the comment in an absolute configuration has been assigned, obtained using x by least-squares refinement. There is too high standard uncertainty on x and no information available that the assigned value is confirmed by the diffraction measurements.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12363 (19)0.3256 (7)0.54798 (19)0.0501 (8)
H10.08110.42210.49500.060*
C20.17427 (17)0.1439 (8)0.54276 (19)0.0465 (8)
H20.17290.09250.48650.056*
C30.20830 (14)0.1770 (6)0.69462 (16)0.0287 (6)
C40.25343 (14)0.1445 (5)0.80032 (16)0.0266 (5)
C50.33858 (17)0.0022 (6)0.95007 (19)0.0385 (7)
H50.37880.10571.00290.046*
C60.29783 (17)0.2162 (6)0.95549 (18)0.0380 (7)
H60.30440.29231.01210.046*
N10.14434 (14)0.3465 (5)0.64335 (15)0.0400 (6)
N20.22801 (13)0.0497 (5)0.63601 (15)0.0357 (5)
N30.24455 (13)0.3045 (5)0.86056 (14)0.0307 (5)
N40.31045 (13)0.0455 (5)0.85300 (15)0.0307 (5)
H2A0.2689 (17)0.079 (6)0.6544 (19)0.037*
H3A0.2032 (17)0.440 (6)0.8388 (18)0.037*
H4A0.3337 (16)0.172 (7)0.8333 (19)0.037*
C70.38284 (14)0.5315 (5)0.74083 (18)0.0295 (6)
C80.44290 (15)0.3252 (6)0.74053 (18)0.0308 (6)
C90.51381 (14)0.4868 (5)0.74572 (17)0.0288 (6)
H90.49160.60760.68810.035*
C100.57380 (15)0.2829 (6)0.74598 (17)0.0299 (6)
O10.37823 (11)0.5416 (4)0.81509 (13)0.0379 (5)
O20.34295 (11)0.6789 (4)0.66602 (12)0.0436 (5)
O30.47460 (11)0.1317 (4)0.81901 (13)0.0382 (5)
H30.47440.18360.86790.046*
O40.55700 (11)0.6495 (4)0.83171 (14)0.0402 (5)
O50.64334 (10)0.2498 (4)0.81780 (12)0.0353 (5)
O60.54328 (11)0.1477 (5)0.66429 (13)0.0475 (5)
H6A0.58030.06730.66350.057*
H40.5313 (19)0.807 (8)0.832 (2)0.057*
H80.4108 (19)0.231 (7)0.676 (2)0.057*
O70.50000.3371 (9)1.00000.0714 (10)
H7A0.46670.49340.97290.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0480 (17)0.063 (2)0.0286 (13)0.0215 (17)0.0139 (13)0.0062 (15)
C20.0506 (17)0.0589 (19)0.0278 (13)0.0134 (17)0.0196 (12)0.0000 (14)
C30.0276 (12)0.0321 (13)0.0280 (12)0.0028 (12)0.0161 (10)0.0002 (12)
C40.0262 (12)0.0257 (12)0.0282 (11)0.0020 (11)0.0149 (10)0.0017 (11)
C50.0380 (14)0.0426 (16)0.0297 (13)0.0072 (13)0.0149 (11)0.0046 (12)
C60.0405 (15)0.0437 (17)0.0273 (12)0.0023 (13)0.0168 (12)0.0015 (12)
N10.0373 (12)0.0501 (14)0.0286 (11)0.0179 (12)0.0152 (10)0.0038 (11)
N20.0348 (12)0.0400 (13)0.0305 (11)0.0110 (11)0.0165 (10)0.0011 (10)
N30.0327 (11)0.0322 (12)0.0293 (11)0.0050 (10)0.0180 (9)0.0005 (9)
N40.0318 (11)0.0310 (12)0.0295 (11)0.0067 (10)0.0167 (9)0.0033 (9)
C70.0245 (12)0.0283 (13)0.0354 (13)0.0009 (11)0.0160 (10)0.0059 (11)
C80.0300 (13)0.0297 (14)0.0312 (12)0.0041 (11)0.0155 (11)0.0018 (11)
C90.0299 (12)0.0254 (13)0.0286 (12)0.0069 (11)0.0141 (10)0.0028 (11)
C100.0322 (13)0.0296 (13)0.0318 (13)0.0007 (11)0.0198 (12)0.0003 (11)
O10.0442 (11)0.0357 (10)0.0423 (10)0.0090 (9)0.0290 (9)0.0043 (8)
O20.0412 (11)0.0545 (13)0.0332 (9)0.0233 (11)0.0190 (8)0.0074 (10)
O30.0501 (11)0.0284 (10)0.0445 (10)0.0103 (9)0.0311 (9)0.0066 (9)
O40.0355 (10)0.0283 (9)0.0462 (10)0.0036 (9)0.0151 (8)0.0117 (9)
O50.0268 (9)0.0365 (10)0.0347 (9)0.0052 (8)0.0114 (8)0.0045 (8)
O60.0349 (10)0.0641 (14)0.0352 (9)0.0139 (10)0.0135 (8)0.0140 (10)
O70.064 (2)0.078 (3)0.061 (2)0.0000.0266 (18)0.000
Geometric parameters (Å, º) top
C1—C21.350 (4)N4—H4A0.91 (3)
C1—N11.373 (3)C7—O21.247 (3)
C1—H10.9300C7—O11.253 (3)
C2—N21.367 (3)C7—C81.530 (4)
C2—H20.9300C8—O31.421 (3)
C3—N11.333 (3)C8—C91.538 (4)
C3—N21.346 (3)C8—H80.99 (3)
C3—C41.449 (3)C9—O41.412 (3)
C4—N31.325 (3)C9—C101.518 (3)
C4—N41.328 (3)C9—H90.9800
C5—C61.346 (4)C10—O51.222 (3)
C5—N41.372 (3)C10—O61.295 (3)
C5—H50.9300O3—H30.8309
C6—N31.375 (3)O4—H40.91 (4)
C6—H60.9300O6—H6A0.8200
N2—H2A0.92 (3)O7—H7A0.9324
N3—H3A0.94 (3)
C2—C1—N1109.7 (2)C4—N4—C5107.9 (2)
C2—C1—H1125.2C4—N4—H4A129.2 (17)
N1—C1—H1125.2C5—N4—H4A122.4 (17)
C1—C2—N2106.9 (2)O2—C7—O1125.6 (2)
C1—C2—H2126.6O2—C7—C8116.0 (2)
N2—C2—H2126.6O1—C7—C8118.4 (2)
N1—C3—N2111.2 (2)O3—C8—C7112.7 (2)
N1—C3—C4124.5 (2)O3—C8—C9110.02 (19)
N2—C3—C4124.3 (2)C7—C8—C9109.0 (2)
N3—C4—N4108.8 (2)O3—C8—H8111 (2)
N3—C4—C3124.8 (2)C7—C8—H8105.0 (19)
N4—C4—C3126.4 (2)C9—C8—H8108.7 (18)
C6—C5—N4108.0 (2)O4—C9—C10108.24 (19)
C6—C5—H5126.0O4—C9—C8111.7 (2)
N4—C5—H5126.0C10—C9—C8109.19 (19)
C5—C6—N3106.3 (2)O4—C9—H9109.2
C5—C6—H6126.8C10—C9—H9109.2
N3—C6—H6126.8C8—C9—H9109.2
C3—N1—C1105.3 (2)O5—C10—O6124.4 (2)
C3—N2—C2106.9 (2)O5—C10—C9122.2 (2)
C3—N2—H2A126.9 (17)O6—C10—C9113.4 (2)
C2—N2—H2A126.1 (17)C8—O3—H3115.5
C4—N3—C6109.0 (2)C9—O4—H4116 (2)
C4—N3—H3A123.3 (16)C10—O6—H6A109.5
C6—N3—H3A127.3 (16)
N1—C1—C2—N20.3 (4)N3—C4—N4—C50.2 (3)
N1—C3—C4—N39.7 (4)C3—C4—N4—C5179.2 (3)
N2—C3—C4—N3166.9 (3)C6—C5—N4—C40.1 (3)
N1—C3—C4—N4170.9 (3)O2—C7—C8—O3169.2 (2)
N2—C3—C4—N412.4 (4)O1—C7—C8—O311.6 (3)
N4—C5—C6—N30.1 (3)O2—C7—C8—C968.4 (3)
N2—C3—N1—C10.6 (3)O1—C7—C8—C9110.8 (3)
C4—C3—N1—C1176.5 (3)O3—C8—C9—O464.0 (2)
C2—C1—N1—C30.5 (4)C7—C8—C9—O460.0 (2)
N1—C3—N2—C20.4 (3)O3—C8—C9—C1055.7 (3)
C4—C3—N2—C2176.7 (3)C7—C8—C9—C10179.7 (2)
C1—C2—N2—C30.0 (4)O4—C9—C10—O59.8 (3)
N4—C4—N3—C60.3 (3)C8—C9—C10—O5112.0 (3)
C3—C4—N3—C6179.1 (3)O4—C9—C10—O6171.4 (2)
C5—C6—N3—C40.3 (3)C8—C9—C10—O666.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.92 (3)1.78 (3)2.683 (3)169 (3)
N3—H3A···O5ii0.94 (3)1.81 (3)2.729 (3)167 (3)
N4—H4A···O1i0.91 (3)1.73 (3)2.630 (3)167 (3)
O3—H3···O70.832.052.871 (2)168
O4—H4···O3iii0.91 (4)1.86 (4)2.761 (3)175 (3)
O6—H6A···N1iv0.821.792.598 (3)168
O7—H7A···O10.932.192.802 (2)123
C2—H2···O2v0.932.353.215 (3)154
C5—H5···O4vi0.932.553.415 (3)155
C6—H6···O5vii0.932.373.205 (3)149
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1/2, z; (iii) x, y+1, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y1/2, z+1; (vi) x+1, y1, z+2; (vii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.92 (3)1.78 (3)2.683 (3)169 (3)
N3—H3A···O5ii0.94 (3)1.81 (3)2.729 (3)167 (3)
N4—H4A···O1i0.91 (3)1.73 (3)2.630 (3)167 (3)
O3—H3···O70.832.052.871 (2)168
O4—H4···O3iii0.91 (4)1.86 (4)2.761 (3)175 (3)
O6—H6A···N1iv0.821.792.598 (3)168
O7—H7A···O10.932.192.802 (2)123
C2—H2···O2v0.932.353.215 (3)154
C5—H5···O4vi0.932.553.415 (3)155
C6—H6···O5vii0.932.373.205 (3)149
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1/2, z; (iii) x, y+1, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y1/2, z+1; (vi) x+1, y1, z+2; (vii) x+1, y, z+2.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (grant No. 51174275) for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123–o127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGulbransen, J. L. & Fitchett, C. M. (2012). CrystEngComm, 14, 5394–5397.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y.-P. & Yang, P. (2006). Acta Cryst. E62, o3223–o3224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X. & Zhu, W. (2010). Acta Cryst. E66, o1245.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMori, H. & Miyoshi, E. (2004). Bull. Chem. Soc. Jpn, 77, 687–690.  Web of Science CrossRef CAS Google Scholar
First citationShankar, B., Elumalai, P., Hussain, F. & Sathiyendiran, M. (2013). J. Organomet. Chem. 732, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadokoro, M. & Nakasuji, K. (2000). Coord. Chem. Rev. 198, 205–218.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1221-o1222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds