organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1189-o1190

Crystal structure of (5-methyl­imidazo[1,2-a]pyridin-2-yl)methanol

aLaboratory of Applied Chemistry and Environments (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: abdelmalik_elaatiaoui@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 October 2014; accepted 20 October 2014; online 24 October 2014)

In the title compound, C9H10N2O, the imidazo[1,2-a]pyridine moiety is approximately planar (r.m.s. deviation = 0.024 Å). The methanol group is nearly perpendicular to its mean plane as indicated by the C—C—C—O and N—C—C—O torsion angles of 80.04 (16) and −96.30 (17)°, respectively. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming inversion dimers with an R22(10) ring motif. The dimers are liked via C—H⋯O hydrogen bonds, enclosing R22(10) ring motifs and forming ribbons along [201]. The ribbons are linked via a number of ππ inter­actions [centroid–centroid distances vary from 3.4819 (8) to 3.7212 (8) Å], forming a three-dimensional structure.

1. Related literature

For the biological activities of derivatives of the title compound, see: Silvestre et al. (1998[Silvestre, J., Leeson, P. A. & Castañer, J. (1998). Drugs Fut. 23, 598-601.]); Hamdouchi et al. (1999[Hamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50-59.]); Lhassani et al. (1999[Lhassani, M., Chavignon, O., Chezal, J. M., Teulade, J. C., Chapat, J. P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. & Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271-274.]); Ertl et al. (2000[Ertl, P., Rohde, B. & Selzer, P. (2000). J. Med. Chem. 43, 3714-3717.]). For the synthesis, see: Öhler et al. (1983[Öhler, E., Zbiral, E. & El-Badawi, M. (1983). Tetrahedron Lett. 24, 5599-5602.]); Chavignon et al. (1992[Chavignon, O., Teulade, J. C., Madesclaire, M., Gueiffier, A., Blache, T., Viols, H. & Chapat, J. P. (1992). J. Heterocycl. Chem. 26, 691-697.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H10N2O

  • Mr = 162.19

  • Triclinic, [P \overline 1]

  • a = 7.3637 (2) Å

  • b = 8.1589 (2) Å

  • c = 8.3966 (2) Å

  • α = 62.355 (1)°

  • β = 67.291 (2)°

  • γ = 88.386 (2)°

  • V = 405.14 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.38 × 0.32 × 0.27 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • 10226 measured reflections

  • 2089 independent reflections

  • 1865 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.04

  • 2089 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.98 2.7734 (17) 163
C6—H6⋯O1ii 0.93 2.55 3.4395 (18) 160
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Imidazo[1,2-a]pyridine moieties represent important building blocks in both natural and synthetic bioactive compounds, which have been shown to possess diverse therapeutic activities (Silvestre et al., 1998; Hamdouchi et al., 1999; Lhassani et al., 1999; Ertl et al., 2000). The synthesis of the title compound is based on the methods described in the literature (Ohler et al., 1983; Chavignon et al., 1992).

The title compound is formed by a fused five- and six-membered rings almost coplanar, with a maximum deviation of 0.029 (1) Å for C7 atom (Fig. 1). The mean plane through the fused ring system (N1/N2/C1-C7) is nearly perpendicular to the hydroxide group as indicated by the torsion angle C6–C7–C8–O1 of -96.30 (17) °.

The cohesion of the crystal structure is ensured by C6—H6···O1 and O1–H1···N1 hydrogen bonds, forming ribbons lying nearly perpendicular to the a axis, as shown in Fig. 2 and Table 1. There are a number of π-π interactions present linking the ribbons and forming a three-dimensional structure [Cg1···Cg1i = 3.6025 (7) Å, Cg1··· Cg2i = 3.6610 (8) Å, Cg1··· Cg2ii = 3.7212 (8) Å, and Cg2··· Cg2ii = 3.4819 (8) Å; where Cg1and Cg2 are the centroids of the N1/N2/C1/C6/C7 and N2/C1-C5 rings, respectively; symmetry codes: (i) -x , -y+2, -z; (ii) -x+1, -y+2, -z].

Related literature top

For the biological activities of derivatives of the title compound, see: Silvestre et al. (1998); Hamdouchi et al. (1999); Lhassani et al. (1999); Ertl et al. (2000). For the synthesis, see: Ohler et al. (1983); Chavignon et al. (1992).

Experimental top

The process for the synthesis of (5-methyl-imidazo[1,2-a]pyridine-2-yl) methanol described here occurs in two distinct stages: 1) Condensation of the 6-methylpyridin-2-amine with the ethyl bromopyruvate in boiling methanol. The mixture was then heated at 343 K for 4 h and neutralized at 273 K with Na2CO3. The product was extracted with dichloromethane. The organic layer was dried over sodium sulfate and the dichloromethane removed under reduced pressure. The crude product was purified on a silica gel column and identified as ethyl-5-methylimidazo [1,2-a]pyridine -2-carboxylate with 60% yield; 2) The reduction of the ester prepared above with lithium hydride and aluminium at room temperature in methanol for 2 h leads to a solid phase which was recrystallized from ethanol. Colourless crystals of the title compound were obtained with a yield of 67% (m.p. 413 K).

Refinement top

H atoms were located in a difference Fourier map and treated as riding atoms with C–H = 0.93-0.98 Å, O–H = 0.82 Å and with Uiso(H) = 1.5Ueq (C,O) for methyl and OH H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

A partial view perpendicular to a axis of the crystal packing of the title compound, showing a layer of molecules linked by hydrogen bonds (dashed lines; see Table 1 for details).
(5-Methylimidazo[1,2-a]pyridin-2-yl)methanol top
Crystal data top
C9H10N2OZ = 2
Mr = 162.19F(000) = 172
Triclinic, P1Dx = 1.330 Mg m3
Hall symbol: -p 1Melting point: 413 K
a = 7.3637 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1589 (2) ÅCell parameters from 2089 reflections
c = 8.3966 (2) Åθ = 2.9–28.7°
α = 62.355 (1)°µ = 0.09 mm1
β = 67.291 (2)°T = 296 K
γ = 88.386 (2)°Block, colourless
V = 405.14 (2) Å30.38 × 0.32 × 0.27 mm
Data collection top
Bruker X8 APEX
diffractometer
1865 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 28.7°, θmin = 2.9°
ϕ and ω scansh = 99
10226 measured reflectionsk = 1110
2089 independent reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.0845P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2089 reflectionsΔρmax = 0.24 e Å3
110 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.061 (14)
Crystal data top
C9H10N2Oγ = 88.386 (2)°
Mr = 162.19V = 405.14 (2) Å3
Triclinic, P1Z = 2
a = 7.3637 (2) ÅMo Kα radiation
b = 8.1589 (2) ŵ = 0.09 mm1
c = 8.3966 (2) ÅT = 296 K
α = 62.355 (1)°0.38 × 0.32 × 0.27 mm
β = 67.291 (2)°
Data collection top
Bruker X8 APEX
diffractometer
1865 reflections with I > 2σ(I)
10226 measured reflectionsRint = 0.019
2089 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2089 reflectionsΔρmin = 0.18 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23574 (17)0.88694 (15)0.02939 (17)0.0374 (3)
C20.3772 (2)0.8861 (2)0.1413 (2)0.0487 (3)
H20.38900.77430.14560.058*
C30.49565 (19)1.0507 (2)0.29887 (19)0.0502 (3)
H30.59071.05100.41100.060*
C40.47630 (19)1.22086 (19)0.29465 (18)0.0466 (3)
H40.56011.33180.40380.056*
C50.33794 (18)1.22657 (16)0.13469 (16)0.0399 (3)
C90.3049 (2)1.39916 (18)0.1173 (2)0.0565 (4)
H9B0.32361.38500.00490.085*
H9A0.17091.41830.10040.085*
H9C0.39871.50570.23550.085*
C60.07560 (16)1.02021 (15)0.21002 (15)0.0363 (3)
H60.03111.10660.25290.044*
C70.01244 (16)0.82991 (15)0.31517 (16)0.0383 (3)
C80.1332 (2)0.71513 (18)0.52658 (18)0.0496 (3)
H8A0.22110.79360.56520.060*
H8B0.21510.61400.54060.060*
N10.10972 (15)0.74701 (14)0.20387 (15)0.0420 (3)
N20.21944 (13)1.05816 (12)0.02646 (13)0.0339 (2)
O10.03554 (17)0.63769 (13)0.65406 (14)0.0566 (3)
H10.07050.52290.71800.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0427 (6)0.0355 (5)0.0412 (6)0.0108 (4)0.0231 (5)0.0201 (4)
C20.0558 (7)0.0532 (7)0.0519 (7)0.0214 (6)0.0269 (6)0.0342 (6)
C30.0463 (6)0.0690 (9)0.0402 (6)0.0161 (6)0.0178 (5)0.0310 (6)
C40.0450 (6)0.0538 (7)0.0341 (5)0.0009 (5)0.0155 (5)0.0170 (5)
C50.0445 (6)0.0379 (6)0.0335 (5)0.0009 (4)0.0176 (5)0.0134 (4)
C90.0760 (9)0.0358 (6)0.0433 (6)0.0035 (6)0.0164 (6)0.0147 (5)
C60.0392 (5)0.0342 (5)0.0336 (5)0.0073 (4)0.0146 (4)0.0158 (4)
C70.0388 (5)0.0343 (5)0.0381 (5)0.0057 (4)0.0178 (4)0.0139 (4)
C80.0488 (7)0.0407 (6)0.0411 (6)0.0028 (5)0.0115 (5)0.0119 (5)
N10.0494 (6)0.0332 (5)0.0445 (5)0.0086 (4)0.0222 (4)0.0179 (4)
N20.0376 (5)0.0325 (4)0.0329 (4)0.0063 (3)0.0171 (4)0.0151 (4)
O10.0880 (7)0.0361 (5)0.0419 (5)0.0043 (4)0.0303 (5)0.0136 (4)
Geometric parameters (Å, º) top
C1—N11.3299 (15)C9—H9A0.9600
C1—N21.3884 (14)C9—H9C0.9600
C1—C21.4126 (17)C6—C71.3631 (15)
C2—C31.356 (2)C6—N21.3815 (13)
C2—H20.9300C6—H60.9300
C3—C41.407 (2)C7—N11.3735 (15)
C3—H30.9300C7—C81.4907 (16)
C4—C51.3576 (17)C8—O11.4154 (16)
C4—H40.9300C8—H8A0.9700
C5—N21.3823 (14)C8—H8B0.9700
C5—C91.4857 (18)O1—H10.8200
C9—H9B0.9600
N1—C1—N2110.57 (10)H9B—C9—H9C109.5
N1—C1—C2131.10 (11)H9A—C9—H9C109.5
N2—C1—C2118.32 (11)C7—C6—N2105.70 (10)
C3—C2—C1119.09 (12)C7—C6—H6127.1
C3—C2—H2120.5N2—C6—H6127.1
C1—C2—H2120.5C6—C7—N1111.22 (10)
C2—C3—C4120.76 (12)C6—C7—C8127.34 (11)
C2—C3—H3119.6N1—C7—C8121.36 (11)
C4—C3—H3119.6O1—C8—C7111.84 (10)
C5—C4—C3121.41 (12)O1—C8—H8A109.2
C5—C4—H4119.3C7—C8—H8A109.2
C3—C4—H4119.3O1—C8—H8B109.2
C4—C5—N2117.59 (11)C7—C8—H8B109.2
C4—C5—C9125.31 (11)H8A—C8—H8B107.9
N2—C5—C9117.10 (10)C1—N1—C7105.62 (9)
C5—C9—H9B109.5C6—N2—C5130.27 (10)
C5—C9—H9A109.5C6—N2—C1106.89 (9)
H9B—C9—H9A109.5C5—N2—C1122.79 (10)
C5—C9—H9C109.5C8—O1—H1109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.982.7734 (17)163
C6—H6···O1ii0.932.553.4395 (18)160
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.982.7734 (17)163
C6—H6···O1ii0.932.553.4395 (18)160
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChavignon, O., Teulade, J. C., Madesclaire, M., Gueiffier, A., Blache, T., Viols, H. & Chapat, J. P. (1992). J. Heterocycl. Chem. 26, 691–697.  CrossRef Google Scholar
First citationErtl, P., Rohde, B. & Selzer, P. (2000). J. Med. Chem. 43, 3714–3717.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamdouchi, C., de Blas, J., del Prado, M., Gruber, J., Heinz, B. A. & Vance, L. (1999). J. Med. Chem. 42, 50–59.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLhassani, M., Chavignon, O., Chezal, J. M., Teulade, J. C., Chapat, J. P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. & Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271–274.  Web of Science CrossRef CAS Google Scholar
First citationÖhler, E., Zbiral, E. & El-Badawi, M. (1983). Tetrahedron Lett. 24, 5599–5602.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilvestre, J., Leeson, P. A. & Castañer, J. (1998). Drugs Fut. 23, 598–601.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 11| November 2014| Pages o1189-o1190
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds