metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tris­­(phenyl­seleno­lato-κSe)tris­­(tetra­hydro­furan-κO)thulium(III)

aDepartment of Chemistry, PO Box 3000, FI-90014 University of Oulu, Finland, and bMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
*Correspondence e-mail: risto.laitinen@oulu.fi

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 October 2014; accepted 28 October 2014; online 31 October 2014)

In the title compound, [Tm(C6H5Se)3(C4H8O)3], the TmIII atom lies on a threefold rotation axis and is coordinated by three phenyl­seleno­late ligands and three tetra­hydro­furan ligands leading to a distorted fac-octa­hedral coordination environment. The Tm—Se and Tm—O bond lengths are 2.7692 (17) and 2.345 (10) Å, respectively, and the bond angles are 91.32 (6)° for Se—Tm—Se, 92.6 (2) and 94.4 (2)° for Se—Tm—O, and 81.2 (3)° for O—Tm—O. In the crystal, the discrete complexes are linked by van der Waals inter­actions only. The crystal was refined as a non-merohedral twin (ratio = 0.65:0.35).

1. Related literature

For the synthesis of the title compound, see: Lee et al. (1998[Lee, J., Freedman, D., Melman, J. H., Brewer, M., Sun, L., Emge, T. J., Long, F. H. & Brennan, J. G. (1998). Inorg. Chem. 37, 2512-2519.]). For the crystal structures of the isotypic compounds [Er(SePh)3(THF)3] and [Yb(SePh)3(THF)3], see: Lee et al. (1998[Lee, J., Freedman, D., Melman, J. H., Brewer, M., Sun, L., Emge, T. J., Long, F. H. & Brennan, J. G. (1998). Inorg. Chem. 37, 2512-2519.]); Geissinger & Magull (1995[Geissinger, M. & Magull, J. (1995). Z. Anorg. Allg. Chem. 621, 2043-2048.]). For a binuclear seleno­late complex of thulium, see: Lee et al. (1995[Lee, J., Brewer, M., Berardini, M. & Brennan, J. G. (1995). Inorg. Chem. 34, 3215-3219.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Tm(C6H5Se)3(C4H8O)3]

  • Mr = 853.42

  • Trigonal, P 31c

  • a = 15.277 (2) Å

  • c = 7.8708 (16) Å

  • V = 1590.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.25 mm−1

  • T = 120 K

  • 0.40 × 0.20 × 0.10 mm

2.2. Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (XPREP in SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.189, Tmax = 0.574

  • 5660 measured reflections

  • 2151 independent reflections

  • 2053 reflections with I > 2σ(I)

  • Rint = 0.053

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.087

  • S = 1.10

  • 2151 reflections

  • 127 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −1.43 e Å−3

  • Absolute structure: Flack x determined using 812 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: −0.03 (3)

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol 276. Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet pp. 307-326. New York, Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GmbH, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Synthesis and crystallization top

The title compound was synthesized by the literature procedure [Lee et al. (1998)]. The crystals were obtained from THF at 255 K.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 - 0.99 Å and with Uiso(H) = 1.2Ueq(C). The crystal is a non-merohedral with twin law of -1 0 0, 0 -1 0, 0 0 1 and a ratio of 0.65:0.35. The THF ligands show positional disorder with an occupancy ratio of 0.79 (3):0.21 (3).

Related literature top

For the synthesis of the title compound, see: Lee et al. (1998). For the crystal structures of the isotypic compounds [Er(SePh)3(THF)3] and [Yb(SePh)3(THF)3], see: Lee et al. (1998); Geissinger & Magull (1995). For a binuclear selenolate complex of thulium, see: Lee et al. (1995).

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only the more abundant orientation of the disordered THF ligands is shown (symmetry codes: (i) x, y, z; (ii) -y, x-y, z; (iii) -x + y, -x, z; (iv) y, x, z + 1/2; (v) x-y, -y, z + 1/2; (vi) -x, -x + y, z + 1/2.

A perspective view along the c axis of the crystal packing of the title compound.
Tris(phenylselenolato-κSe)tris(tetrahydrofuran-κO)thulium(III) top
Crystal data top
[Tm(C6H5Se)3(C4H8O)3]Dx = 1.782 Mg m3
Mr = 853.42Mo Kα radiation, λ = 0.71073 Å
Trigonal, P31cCell parameters from 2053 reflections
a = 15.277 (2) Åθ = 3.1–28.1°
c = 7.8708 (16) ŵ = 6.25 mm1
V = 1590.9 (6) Å3T = 120 K
Z = 2Block, pale yellow-green
F(000) = 8280.40 × 0.20 × 0.10 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2053 reflections with I > 2σ(I)
ϕ scans, and ω scans with κ offsetsRint = 0.053
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
θmax = 28.1°, θmin = 3.1°
Tmin = 0.189, Tmax = 0.574h = 1620
5660 measured reflectionsk = 1814
2151 independent reflectionsl = 910
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + 8.380P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max < 0.001
wR(F2) = 0.087Δρmax = 0.76 e Å3
S = 1.10Δρmin = 1.43 e Å3
2151 reflectionsExtinction correction: SHELXL2013 (Sheldrick, 20008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
127 parametersExtinction coefficient: 0.0089 (14)
9 restraintsAbsolute structure: Flack x determined using 812 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.03 (3)
Crystal data top
[Tm(C6H5Se)3(C4H8O)3]Z = 2
Mr = 853.42Mo Kα radiation
Trigonal, P31cµ = 6.25 mm1
a = 15.277 (2) ÅT = 120 K
c = 7.8708 (16) Å0.40 × 0.20 × 0.10 mm
V = 1590.9 (6) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2151 independent reflections
Absorption correction: multi-scan
(XPREP in SHELXTL; Sheldrick, 2008)
2053 reflections with I > 2σ(I)
Tmin = 0.189, Tmax = 0.574Rint = 0.053
5660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.76 e Å3
S = 1.10Δρmin = 1.43 e Å3
2151 reflectionsAbsolute structure: Flack x determined using 812 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
127 parametersAbsolute structure parameter: 0.03 (3)
9 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tm10.66670.33330.08579 (18)0.0326 (3)
Se10.63991 (14)0.46785 (13)0.11260 (16)0.0456 (4)
O10.7727 (7)0.4562 (7)0.2822 (12)0.034 (2)
C10.7309 (12)0.5979 (12)0.0110 (17)0.040 (4)
C20.6951 (13)0.6510 (11)0.081 (3)0.055 (4)
H20.62470.62220.10230.066*
C30.7629 (18)0.7463 (15)0.142 (2)0.069 (6)
H30.73770.78290.20250.082*
C40.8656 (14)0.7899 (15)0.119 (2)0.061 (6)
H40.91070.85450.16550.074*
C50.9021 (15)0.7375 (14)0.026 (2)0.056 (5)
H50.97250.76690.00570.067*
C60.8341 (15)0.6407 (12)0.038 (2)0.051 (5)
H60.85910.60430.09980.061*
C7A0.7418 (19)0.5034 (16)0.406 (2)0.044 (5)0.79 (3)
H7AA0.69920.45340.49320.052*0.79 (3)
H7BA0.70170.53020.35140.052*0.79 (3)
C8A0.8335 (15)0.587 (2)0.487 (3)0.061 (8)0.79 (3)
H8AA0.82180.59460.60820.074*0.79 (3)
H8BA0.85560.65210.42760.074*0.79 (3)
C9A0.9087 (15)0.5529 (15)0.465 (2)0.044 (6)0.79 (3)
H9AA0.90090.50340.55390.053*0.79 (3)
H9BA0.97890.61040.46660.053*0.79 (3)
C10A0.879 (2)0.505 (3)0.293 (4)0.045 (7)0.79 (3)
H0AA0.91040.55680.20320.055*0.79 (3)
H0BA0.90210.45510.27820.055*0.79 (3)
C7B0.743 (9)0.484 (8)0.454 (9)0.044 (5)0.21 (3)
H7AB0.70770.52310.43790.052*0.21 (3)
H7BB0.70100.42390.52460.052*0.21 (3)
C8B0.850 (6)0.551 (8)0.532 (12)0.061 (8)0.21 (3)
H8AB0.85210.60750.59670.074*0.21 (3)
H8BB0.86550.50990.61070.074*0.21 (3)
C9B0.928 (5)0.592 (6)0.386 (9)0.044 (6)0.21 (3)
H9AB0.99610.60940.42760.053*0.21 (3)
H9BB0.93200.65330.33500.053*0.21 (3)
C10B0.888 (7)0.505 (13)0.26 (2)0.045 (7)0.21 (3)
H0AB0.91220.45680.28140.055*0.21 (3)
H0BB0.90840.53040.13780.055*0.21 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm10.0385 (3)0.0385 (3)0.0206 (4)0.01927 (16)0.0000.000
Se10.0548 (9)0.0551 (10)0.0316 (7)0.0311 (9)0.0015 (8)0.0096 (8)
O10.036 (5)0.041 (6)0.024 (4)0.020 (5)0.007 (4)0.001 (4)
C10.054 (11)0.045 (8)0.028 (8)0.031 (8)0.005 (7)0.017 (6)
C20.070 (10)0.056 (10)0.052 (9)0.041 (9)0.036 (12)0.019 (11)
C30.13 (2)0.072 (13)0.042 (9)0.077 (15)0.016 (11)0.012 (9)
C40.066 (12)0.045 (9)0.054 (13)0.013 (8)0.005 (8)0.007 (8)
C50.061 (11)0.045 (9)0.069 (12)0.033 (9)0.012 (8)0.006 (9)
C60.045 (10)0.053 (9)0.043 (8)0.016 (9)0.009 (8)0.002 (6)
C7A0.059 (11)0.048 (11)0.014 (9)0.020 (10)0.006 (11)0.010 (8)
C8A0.064 (14)0.062 (18)0.038 (14)0.016 (12)0.003 (10)0.017 (12)
C9A0.040 (11)0.043 (12)0.026 (10)0.004 (10)0.001 (9)0.011 (8)
C10A0.053 (12)0.060 (11)0.03 (2)0.034 (10)0.001 (11)0.003 (13)
C7B0.059 (11)0.048 (11)0.014 (9)0.020 (10)0.006 (11)0.010 (8)
C8B0.064 (14)0.062 (18)0.038 (14)0.016 (12)0.003 (10)0.017 (12)
C9B0.040 (11)0.043 (12)0.026 (10)0.004 (10)0.001 (9)0.011 (8)
C10B0.053 (12)0.060 (11)0.03 (2)0.034 (10)0.001 (11)0.003 (13)
Geometric parameters (Å, º) top
Tm1—O1i2.345 (10)C7A—C8A1.49 (2)
Tm1—O12.345 (10)C7A—H7AA0.9900
Tm1—O1ii2.345 (10)C7A—H7BA0.9900
Tm1—Se1i2.7692 (17)C8A—C9A1.49 (2)
Tm1—Se1ii2.7692 (17)C8A—H8AA0.9900
Tm1—Se12.7692 (17)C8A—H8BA0.9900
Se1—C11.938 (18)C9A—C10A1.50 (2)
O1—C10A1.41 (3)C9A—H9AA0.9900
O1—C7A1.42 (3)C9A—H9BA0.9900
O1—C10B1.55 (10)C10A—H0AA0.9900
O1—C7B1.56 (10)C10A—H0BA0.9900
C1—C21.39 (2)C7B—C8B1.55 (9)
C1—C61.39 (3)C7B—H7AB0.9900
C2—C31.38 (3)C7B—H7BB0.9900
C2—H20.9500C8B—C9B1.55 (9)
C3—C41.38 (3)C8B—H8AB0.9900
C3—H30.9500C8B—H8BB0.9900
C4—C51.39 (2)C9B—C10B1.55 (9)
C4—H40.9500C9B—H9AB0.9900
C5—C61.41 (2)C9B—H9BB0.9900
C5—H50.9500C10B—H0AB0.9900
C6—H60.9500C10B—H0BB0.9900
O1i—Tm1—O181.2 (3)C8A—C7A—H7BA110.0
O1i—Tm1—O1ii81.2 (3)H7AA—C7A—H7BA108.3
O1—Tm1—O1ii81.2 (3)C7A—C8A—C9A102 (2)
O1i—Tm1—Se1i94.4 (2)C7A—C8A—H8AA111.4
O1—Tm1—Se1i92.6 (2)C9A—C8A—H8AA111.4
O1ii—Tm1—Se1i173.0 (2)C7A—C8A—H8BA111.4
O1i—Tm1—Se1ii92.6 (2)C9A—C8A—H8BA111.4
O1—Tm1—Se1ii173.0 (2)H8AA—C8A—H8BA109.2
O1ii—Tm1—Se1ii94.4 (2)C8A—C9A—C10A100 (2)
Se1i—Tm1—Se1ii91.32 (6)C8A—C9A—H9AA111.7
O1i—Tm1—Se1173.0 (2)C10A—C9A—H9AA111.7
O1—Tm1—Se194.4 (2)C8A—C9A—H9BA111.7
O1ii—Tm1—Se192.6 (2)C10A—C9A—H9BA111.7
Se1i—Tm1—Se191.32 (6)H9AA—C9A—H9BA109.5
Se1ii—Tm1—Se191.32 (6)O1—C10A—C9A107.3 (17)
C1—Se1—Tm1103.4 (4)O1—C10A—H0AA110.3
C10A—O1—C7A106.2 (19)C9A—C10A—H0AA110.3
C10B—O1—C7B114 (7)O1—C10A—H0BA110.3
C10A—O1—Tm1127.8 (12)C9A—C10A—H0BA110.3
C7A—O1—Tm1125.8 (11)H0AA—C10A—H0BA108.5
C10B—O1—Tm1117 (4)C8B—C7B—O1100 (7)
C7B—O1—Tm1128 (4)C8B—C7B—H7AB111.8
C2—C1—C6119.4 (16)O1—C7B—H7AB111.8
C2—C1—Se1121.6 (13)C8B—C7B—H7BB111.8
C6—C1—Se1118.9 (12)O1—C7B—H7BB111.8
C3—C2—C1119.3 (16)H7AB—C7B—H7BB109.5
C3—C2—H2120.3C9B—C8B—C7B109 (7)
C1—C2—H2120.3C9B—C8B—H8AB110.0
C4—C3—C2122.4 (17)C7B—C8B—H8AB110.0
C4—C3—H3118.8C9B—C8B—H8BB110.0
C2—C3—H3118.8C7B—C8B—H8BB110.0
C3—C4—C5118.7 (17)H8AB—C8B—H8BB108.3
C3—C4—H4120.7C8B—C9B—C10B105 (7)
C5—C4—H4120.7C8B—C9B—H9AB110.9
C4—C5—C6119.8 (17)C10B—C9B—H9AB110.9
C4—C5—H5120.1C8B—C9B—H9BB110.9
C6—C5—H5120.1C10B—C9B—H9BB110.9
C1—C6—C5120.4 (17)H9AB—C9B—H9BB108.9
C1—C6—H6119.8C9B—C10B—O1101 (7)
C5—C6—H6119.8C9B—C10B—H0AB111.7
O1—C7A—C8A108.6 (19)O1—C10B—H0AB111.7
O1—C7A—H7AA110.0C9B—C10B—H0BB111.7
C8A—C7A—H7AA110.0O1—C10B—H0BB111.7
O1—C7A—H7BA110.0H0AB—C10B—H0BB109.4
C6—C1—C2—C31 (3)C10B—O1—C10A—C9A170 (51)
Se1—C1—C2—C3176.1 (14)C7B—O1—C10A—C9A3 (5)
C1—C2—C3—C42 (3)Tm1—O1—C10A—C9A163.7 (15)
C2—C3—C4—C52 (3)C8A—C9A—C10A—O137 (4)
C3—C4—C5—C62 (3)C10A—O1—C7B—C8B1 (7)
C2—C1—C6—C51 (2)C7A—O1—C7B—C8B103 (15)
Se1—C1—C6—C5176.5 (12)C10B—O1—C7B—C8B2 (11)
C4—C5—C6—C11 (3)Tm1—O1—C7B—C8B168 (5)
C10A—O1—C7A—C8A3 (3)O1—C7B—C8B—C9B23 (10)
C10B—O1—C7A—C8A3 (10)C7B—C8B—C9B—C10B37 (14)
C7B—O1—C7A—C8A85 (15)C8B—C9B—C10B—O132 (14)
Tm1—O1—C7A—C8A171.5 (13)C10A—O1—C10B—C9B33 (38)
O1—C7A—C8A—C9A27 (2)C7A—O1—C10B—C9B1 (15)
C7A—C8A—C9A—C10A37 (3)C7B—O1—C10B—C9B19 (14)
C7A—O1—C10A—C9A21 (4)Tm1—O1—C10B—C9B170 (7)
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z.

Experimental details

Crystal data
Chemical formula[Tm(C6H5Se)3(C4H8O)3]
Mr853.42
Crystal system, space groupTrigonal, P31c
Temperature (K)120
a, c (Å)15.277 (2), 7.8708 (16)
V3)1590.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)6.25
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(XPREP in SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.189, 0.574
No. of measured, independent and
observed [I > 2σ(I)] reflections
5660, 2151, 2053
Rint0.053
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.10
No. of reflections2151
No. of parameters127
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 1.43
Absolute structureFlack x determined using 812 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.03 (3)

Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1993), SHELXL2013 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 2012).

 

Acknowledgements

EMT thanks the Jenni and Antti Wihuri Foundation for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GmbH, Bonn, Germany.  Google Scholar
First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeissinger, M. & Magull, J. (1995). Z. Anorg. Allg. Chem. 621, 2043–2048.  CSD CrossRef CAS Web of Science Google Scholar
First citationLee, J., Brewer, M., Berardini, M. & Brennan, J. G. (1995). Inorg. Chem. 34, 3215–3219.  CSD CrossRef CAS Web of Science Google Scholar
First citationLee, J., Freedman, D., Melman, J. H., Brewer, M., Sun, L., Emge, T. J., Long, F. H. & Brennan, J. G. (1998). Inorg. Chem. 37, 2512–2519.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol 276. Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet pp. 307–326. New York, Academic Press.  Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds