research communications
μ-diphenylphosphido-κ2P:P)(methyldiphenylsilyl-κSi)bis(triphenylphosphane-κP)iron(II)platinum(0)(Fe—Pt)
of tricarbonyl(aInstitut UTINAM UMR CNRS 6213, University of Franche-Comté, 16 route de Gray, Besançon 25030, France, and bICMUB UMR CNRS 6302, University of Burgundy, 9 avenue Alain Savary, Dijon 21078, France
*Correspondence e-mail: marek.kubicki@u-bourgogne.fr
The title compound, [FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2, represents an example of a phosphido-bridged heterobimetallic silyl complex; these are interesting precursors for the coordination and activation of small unsaturated organic molecules. The μ2-PPh2 ligand spans the iron and platinum atoms, which are connected via a metal–metal bond of 2.7738 (4) Å. In contrast to most other complexes of the [(OC)3Fe(SiR3)(μ-PR2)PtL2] family, where the iron-bound SiR3 group is trans-arranged with respect to the μ2-PPh2 ligand, the SiPh2Me ligand is roughly collinear with the Fe–Pt vector [Si—Fe—Pt = 169.07 (3)°].
Keywords: crystal structure; heterobimetallics; phosphido bridges; iron complexes; platinum complexes; diphenylmethylsilyl ligand; metal–metal bond.
CCDC reference: 1045140
1. Chemical context
The bridging of metal–metal-bonded heterodinuclear complexes with μ2-PR2 phosphido bridges allows both the stabilization of the metal–metal bond and permits a fine-tuning of the reactivity of heterodinuclear systems by steric and electronic variation of the R substituents. In addition to the numerous examples of homodinuclear complexes, many μ-phosphido heterobimetallic complexes (with and without a metal–metal bond) are nowadays well documented and both their structural and reactivity features have been investigated (Stephan, 1989; He et al., 1992; Comte et al., 1997; Lavastre et al., 1997). These compounds are usually prepared by the reaction of anionic [LnMPR2]− salts with a transition metal–halide complex (Jenkins & Loeb, 1989) or by of the P—H bond of an [LnMPR2H] complex across a second low-valent metal atom (Powell et al., 1987). This latter route has been used to prepare the title complex [FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2 (I) and related complexes by of [(OC)3Fe(H)(SiR3)(PPh2H)] across [Pt(CH2=CH2)(PPh3)2] (Fig. 1). These heterodinuclear systems display an interesting reactivity such as ligand-induced SiR3 migration from iron to platinum, which has been studied both experimentally (Braunstein et al., 1992) and theoretically (Messaoudi et al., 2007). Another reactivity pattern of these electron-rich [(OC)3Fe(SiR3)(μ2-PR2)Pt(PPh3)2] compounds is their conversion to hydride-bridged μ2-phospido-complexes by means of protonation with HBF4, with concomitant cleavage of the Fe—SiR3 bond (Knorr et al., 1994).
2. Structural commentary
Compound (I) crystallized from CH2Cl2/heptane as a dichloromethane solvate in the triclinic P. The molecular structure of the organometallic molecule is depicted in Fig. 2. The iron and platinum atoms are linked by a phosphide bridge and a formal metal–metal bond, whose Fe—Pt separation of 2.7738 (4) Å is somewhat longer, probably because of between the Ph groups of the PPh3 and PPh2 ligands, than those reported for [(OC)3Fe(SiPh3)(μ-PPh2)Pt(PMe3)2] [Fe—Pt = 2.701 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(μ-PPh2)Pt{Ph2C(=CH2)PPh2}] [Fe—Pt = 2.659 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(μ-PPh2)Pt(C≡N-Xylyl)(PPh3)] [Fe—Pt = 2.631 (1) Å; Braunstein et al., 2000] and [(OC)3Fe(SiPh3)(μ-PPh2)Pt(CO)(PPh3)] [Fe—Pt = 2.620 (2) Å; Reinhard et al., 1993]. The Fe—Si bond length of 2.3497 (9) Å is quite comparable with the Fe—Si bond lengths in the latter four compounds, which range from 2.330 (1) to 2.356 (3) Å. However, a striking difference concerns the relative position of the SiR3 substituent with respect to the bridging PPh2 group. Whereas in all four SiPh3-bearing complexes the silyl group is in a trans-position with respect to the PPh2 bridge, the SiPh2Me ligand of (I) is roughly colinear with the Fe–Pt vector, the Si—Fe—Pt angle being 169.07 (3)°. The P—Fe—Si angle in (I) amounts to 119.32 (3)°, whilst that of [(OC)3Fe(SiPh3)(μ-PPh2)Pt(C≡N-Xylyl)(PPh3)] [175.1 (1)°; Braunstein et al., 2000] is close to a theoretical linear trans-arrangement.
3. Supramolecular features
The is built of discrete dimetallic molecules without significant specific intermolecular interactions.
of (I)4. Database survey
Other examples of crystallographically characterized μ-PPh2 Fe–Pt complexes featuring a metal–metal bond are [(OC)3(H)Fe(μ-PPh2)Pt(PPh3)2] (Powell et al., 1987), [(OC)3Fe(SiPh3)(μ-PPh2)Pt(1,5-COD)] (COD = cyclooctadiene) (Braunstein et al., 1995) and [NMe4][(OC)3{(MeO)3Si}Fe(μ-PPh2)Pt{Ph2PCH=C(O)Ph}] (Braunstein et al., 1999). There is also one example of a heterodinuclear μ-PCy2 complex, namely [(OC)3(Cl)Fe(μ-PCy2)Pt(PEt3)2] (Jenkins et al., 1990).
5. Synthesis and crystallization
The synthesis of (I) has been already published (Reinhard et al., 1993). We synthesized (I) in a somewhat improved manner by reaction of [(OC)3Fe(H)(SiMePh2)(PPh2H)] (462 mg, 1 mmol) with [Pt(CH2=CH2)(PPh3)2] (749 mg, 1 mmol) in toluene (Fig. 1). The solution was stirred at 298 K for 1h and then concentrated until precipitation started. The precipitation of product (I) was completed by addition of hexane. The resulting yellow powder was filtered off, rinsed with hexane and dried under vacuum (969 mg, 78% yield). Suitable crystals were obtained by layering a CH2Cl2 solution with heptane and storing at 278 K in a refrigerator.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in calculated positions and allowed to ride on their parent atoms. C—H distances were set to 0.95 Å (aromatic) and 0.98 Å (methyl) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for aromatic H atoms. The CH2Cl2 solvent molecule has half occupancy and is disordered over two sites related by an inversion centre. Similar Uij constraints were applied within the disordered parts of dichloromethane solvent by using an EADP constraint to maintain a reasonable model.
details are summarized in Table 1Supporting information
CCDC reference: 1045140
10.1107/S2056989015001565/gk2624sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015001565/gk2624Isup2.hkl
The bridging of metal–metal-bonded heterodinuclear complexes with µ2-PR2 phosphido bridges allows both the stabilization of the metal–metal bond and permits a fine-tuning of the reactivity of heterodinuclear systems by steric and electronic variation of the R substituents. In addition to the numerous examples of homodinuclear complexes, many µ-phosphido heterobimetallic complexes (with and without a meta–l-metal bond) are nowadays well documented and both their structural and reactivity features have been investigated (Stephan, 1989; He et al., 1992; Comte et al., 1997; Lavastre et al., 1997). These compounds are usually prepared by the reaction of anionic [LnMPR2]- salts with a transition metal–halide complex (Jenkins & Loeb, 1989) or by
of the P—H bond of an [LnMPR2H] complex across a second low-valent metal centre (Powell et al., 1987). This latter route has been used to prepare the title complex [(OC)3Fe(SiMePh2)(µ2-PPh2)Pt(PPh3)2] (I) and related complexes by of [(OC)3Fe(H)(SiR3)(PPh2H)] across [Pt(CH2=CH2)(PPh3)2] (Fig. 1). These heterodinuclear systems display an interesting reactivity such as ligand-induced SiR3 migration from iron to platinum, which has been studied both experimentally (Braunstein et al., 1992) and theoretically (Messaoudi et al., 2007). Another reactivity pattern of these electron-rich [(OC)3Fe(SiR3)(µ2-PR2)Pt(PPh3)2] compounds is their conversion to hydride-bridged µ2-phospido-complexes by means of protonation with HBF4, with concomitant cleavage of the Fe—SiR3 bond (Knorr et al., 1994).Compound (I) crystallizes from CH2Cl2/heptane as a dichloromethane solvate in the triclinic 1. The molecular structure of the organometallic molecule is depicted in Fig. 1. The iron and platinum centres are linked by a phosphide bridge and a formal metal–metal bond, whose Fe—Pt separation of 2.7738 (4) Å is somewhat longer, probably because of between the Ph groups of the PPh3 and PPh2 ligands, than those reported for [(OC)3Fe(SiPh3)(µ-PPh2)Pt(PMe3)2] [Fe—Pt = 2.701 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(µ-PPh2)Pt{Ph2C(=CH2)PPh2}] [Fe—Pt = 2.659 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(µ-PPh2)Pt(C≡ N-Xylyl)(PPh3)] [Fe—Pt = 2.631 (1) Å; Braunstein et al., 2000] and [(OC)3Fe(SiPh3)(µ-PPh2)Pt(CO)(PPh3)] [Fe—Pt = 2.620 (2) Å; Reinhard et al., 1993]. The Fe—Si bond length of 2.3497 (9) Å is quite comparable with the Fe—Si bond lengths in the latter four compounds, which range from 2.330 (1) to 2.356 (3) Å. However, a striking difference concerns the relative position of the SiR3 substituent with respect to the bridging PPh2 group. Whereas in all four SiPh3-bearing complexes the silyl group is in a trans-position with respect to the PPh2 bridge, the SiPh2Me ligand of (I) is roughly colinear with the Fe–Pt vector, the Si—Fe—Pt angle being 169.07 (3)°. The P—Fe—Si angle in (I) amounts to 119.32 (3)°, whilst that of [(OC)3Fe(SiPh3)(µ-PPh2)Pt(C≡N-Xylyl)(PPh3)] [175.1 (1)°; Braunstein et al., 2000] is close to a theoretical linear trans-arrangement.
PThe
of (I) is built of discrete dimetallic molecules without significant specific intermolecular interactions.Other examples of crystallographically characterized µ-PPh2 Fe–Pt complexes featuring a metal–metal bond are [(OC)3(H)Fe(µ-PPh2)Pt(PPh3)2] (Powell et al., 1987), [(OC)3Fe(SiPh3)(µ-PPh2)Pt(1,5-COD)] (COD = cyclooctadiene) (Braunstein et al., 1995) and [NMe4][(OC)3{(MeO)3Si}Fe(µ-PPh2)Pt{Ph2PCH=C(O)Ph}] (Braunstein et al., 1999). There is also one example of a heterodinuclear µ-PCy2 complex, namely [(OC)3(Cl)Fe(µ-PCy2)Pt(PEt3)2] (Jenkins et al., 1990).
The synthesis of (I) has been already published (Reinhard et al., 1993). We synthesized (I) in a somewhat improved manner by reaction of [(OC)3Fe(H)(SiMePh2)(PPh2H)] (462 mg, 1 mmol) with [Pt(CH2=CH2)(PPh3)2] (749 mg, 1 mmol) in toluene (Fig. 1). The solution was stirred at 298 K for 1h and then concentrated until precipitation started. The precipitation of product (I) was completed by addition of hexane. The resulting yellow powder was filtered off, rinsed with hexane and dried under vacuum (969 mg, 78% yield). Suitable crystals were obtained by layering a CH2Cl2 solution with heptane and storing at 278 K in a refrigerator.
Crystal data, data collection and structure
details are summarized in Table 1. All H atoms were placed in calculated positions and allowed to ride on their parent atoms. C—H distances were set to 0.95 Å (aromatic) and 0.98 Å (methyl) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for aromatic H atoms. The CH2Cl2 solvent molecule has half occupancy and is disordered over two sites related by an inversion centre. Similar Uij constraints were applied within the disordered parts of dichloromethane solvent by using an EADP constraint to maintain a reasonable model.The bridging of metal–metal-bonded heterodinuclear complexes with µ2-PR2 phosphido bridges allows both the stabilization of the metal–metal bond and permits a fine-tuning of the reactivity of heterodinuclear systems by steric and electronic variation of the R substituents. In addition to the numerous examples of homodinuclear complexes, many µ-phosphido heterobimetallic complexes (with and without a meta–l-metal bond) are nowadays well documented and both their structural and reactivity features have been investigated (Stephan, 1989; He et al., 1992; Comte et al., 1997; Lavastre et al., 1997). These compounds are usually prepared by the reaction of anionic [LnMPR2]- salts with a transition metal–halide complex (Jenkins & Loeb, 1989) or by
of the P—H bond of an [LnMPR2H] complex across a second low-valent metal centre (Powell et al., 1987). This latter route has been used to prepare the title complex [(OC)3Fe(SiMePh2)(µ2-PPh2)Pt(PPh3)2] (I) and related complexes by of [(OC)3Fe(H)(SiR3)(PPh2H)] across [Pt(CH2=CH2)(PPh3)2] (Fig. 1). These heterodinuclear systems display an interesting reactivity such as ligand-induced SiR3 migration from iron to platinum, which has been studied both experimentally (Braunstein et al., 1992) and theoretically (Messaoudi et al., 2007). Another reactivity pattern of these electron-rich [(OC)3Fe(SiR3)(µ2-PR2)Pt(PPh3)2] compounds is their conversion to hydride-bridged µ2-phospido-complexes by means of protonation with HBF4, with concomitant cleavage of the Fe—SiR3 bond (Knorr et al., 1994).Compound (I) crystallizes from CH2Cl2/heptane as a dichloromethane solvate in the triclinic 1. The molecular structure of the organometallic molecule is depicted in Fig. 1. The iron and platinum centres are linked by a phosphide bridge and a formal metal–metal bond, whose Fe—Pt separation of 2.7738 (4) Å is somewhat longer, probably because of between the Ph groups of the PPh3 and PPh2 ligands, than those reported for [(OC)3Fe(SiPh3)(µ-PPh2)Pt(PMe3)2] [Fe—Pt = 2.701 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(µ-PPh2)Pt{Ph2C(=CH2)PPh2}] [Fe—Pt = 2.659 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(µ-PPh2)Pt(C≡ N-Xylyl)(PPh3)] [Fe—Pt = 2.631 (1) Å; Braunstein et al., 2000] and [(OC)3Fe(SiPh3)(µ-PPh2)Pt(CO)(PPh3)] [Fe—Pt = 2.620 (2) Å; Reinhard et al., 1993]. The Fe—Si bond length of 2.3497 (9) Å is quite comparable with the Fe—Si bond lengths in the latter four compounds, which range from 2.330 (1) to 2.356 (3) Å. However, a striking difference concerns the relative position of the SiR3 substituent with respect to the bridging PPh2 group. Whereas in all four SiPh3-bearing complexes the silyl group is in a trans-position with respect to the PPh2 bridge, the SiPh2Me ligand of (I) is roughly colinear with the Fe–Pt vector, the Si—Fe—Pt angle being 169.07 (3)°. The P—Fe—Si angle in (I) amounts to 119.32 (3)°, whilst that of [(OC)3Fe(SiPh3)(µ-PPh2)Pt(C≡N-Xylyl)(PPh3)] [175.1 (1)°; Braunstein et al., 2000] is close to a theoretical linear trans-arrangement.
PThe
of (I) is built of discrete dimetallic molecules without significant specific intermolecular interactions.Other examples of crystallographically characterized µ-PPh2 Fe–Pt complexes featuring a metal–metal bond are [(OC)3(H)Fe(µ-PPh2)Pt(PPh3)2] (Powell et al., 1987), [(OC)3Fe(SiPh3)(µ-PPh2)Pt(1,5-COD)] (COD = cyclooctadiene) (Braunstein et al., 1995) and [NMe4][(OC)3{(MeO)3Si}Fe(µ-PPh2)Pt{Ph2PCH=C(O)Ph}] (Braunstein et al., 1999). There is also one example of a heterodinuclear µ-PCy2 complex, namely [(OC)3(Cl)Fe(µ-PCy2)Pt(PEt3)2] (Jenkins et al., 1990).
For related literature, see: Braunstein et al. (1992, 1995, 1999, 2000); Comte et al. (1997); He et al. (1992); Jenkins & Loeb (1989); Jenkins et al. (1990); Knorr et al. (1994); Lavastre et al. (1997); Messaoudi et al. (2007); Powell et al. (1987); Reinhard et al. (1993).
The synthesis of (I) has been already published (Reinhard et al., 1993). We synthesized (I) in a somewhat improved manner by reaction of [(OC)3Fe(H)(SiMePh2)(PPh2H)] (462 mg, 1 mmol) with [Pt(CH2=CH2)(PPh3)2] (749 mg, 1 mmol) in toluene (Fig. 1). The solution was stirred at 298 K for 1h and then concentrated until precipitation started. The precipitation of product (I) was completed by addition of hexane. The resulting yellow powder was filtered off, rinsed with hexane and dried under vacuum (969 mg, 78% yield). Suitable crystals were obtained by layering a CH2Cl2 solution with heptane and storing at 278 K in a refrigerator.
detailsCrystal data, data collection and structure
details are summarized in Table 1. All H atoms were placed in calculated positions and allowed to ride on their parent atoms. C—H distances were set to 0.95 Å (aromatic) and 0.98 Å (methyl) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for aromatic H atoms. The CH2Cl2 solvent molecule has half occupancy and is disordered over two sites related by an inversion centre. Similar Uij constraints were applied within the disordered parts of dichloromethane solvent by using an EADP constraint to maintain a reasonable model.Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. The reaction scheme for the synthesis of (I). | |
Fig. 2. The molecular structure of the title compound (I), with displacement ellipsoids shown at the 50% probabily level. H atoms have been omitted for clarity. |
[FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2 | Z = 2 |
Mr = 1284.47 | F(000) = 1290 |
Triclinic, P1 | Dx = 1.532 Mg m−3 |
a = 10.3522 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.0010 (8) Å | Cell parameters from 9768 reflections |
c = 21.9803 (14) Å | θ = 2.4–27.2° |
α = 99.823 (2)° | µ = 2.97 mm−1 |
β = 99.061 (2)° | T = 115 K |
γ = 102.677 (2)° | Prism, clear dark red |
V = 2784.8 (3) Å3 | 0.15 × 0.05 × 0.02 mm |
Nonius Kappa APEXII diffractometer | 12883 independent reflections |
Radiation source: X-ray tube, Siemens KFF Mo 2K-180 | 11264 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 9 pixels mm-1 | θmax = 27.6°, θmin = 2.8° |
φ and ω scans' | h = −13→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −16→16 |
Tmin = 0.64, Tmax = 0.74 | l = −28→28 |
89421 measured reflections |
Refinement on F2 | 3 constraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0278P)2 + 3.2483P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
12883 reflections | Δρmax = 1.13 e Å−3 |
671 parameters | Δρmin = −1.29 e Å−3 |
0 restraints |
[FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2 | γ = 102.677 (2)° |
Mr = 1284.47 | V = 2784.8 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.3522 (6) Å | Mo Kα radiation |
b = 13.0010 (8) Å | µ = 2.97 mm−1 |
c = 21.9803 (14) Å | T = 115 K |
α = 99.823 (2)° | 0.15 × 0.05 × 0.02 mm |
β = 99.061 (2)° |
Nonius Kappa APEXII diffractometer | 12883 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 11264 reflections with I > 2σ(I) |
Tmin = 0.64, Tmax = 0.74 | Rint = 0.053 |
89421 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.13 e Å−3 |
12883 reflections | Δρmin = −1.29 e Å−3 |
671 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.1586 (3) | 0.6037 (2) | 0.37770 (14) | 0.0155 (6) | |
C2 | 0.0216 (3) | 0.5753 (2) | 0.35048 (15) | 0.0178 (6) | |
H2 | −0.0073 | 0.5477 | 0.3063 | 0.021* | |
C3 | −0.0736 (3) | 0.5873 (3) | 0.38767 (16) | 0.0250 (7) | |
H3 | −0.1670 | 0.5686 | 0.3689 | 0.030* | |
C4 | −0.0317 (4) | 0.6265 (3) | 0.45199 (17) | 0.0307 (8) | |
H4 | −0.0964 | 0.6337 | 0.4776 | 0.037* | |
C5 | 0.1042 (4) | 0.6550 (3) | 0.47889 (16) | 0.0318 (8) | |
H5 | 0.1326 | 0.6816 | 0.5231 | 0.038* | |
C6 | 0.1997 (3) | 0.6455 (3) | 0.44221 (15) | 0.0245 (7) | |
H6 | 0.2932 | 0.6674 | 0.4611 | 0.029* | |
C7 | 0.3470 (3) | 0.7318 (2) | 0.32479 (14) | 0.0166 (6) | |
C8 | 0.4762 (3) | 0.7690 (3) | 0.31449 (15) | 0.0235 (7) | |
H8 | 0.5343 | 0.7219 | 0.3110 | 0.028* | |
C9 | 0.5205 (4) | 0.8755 (3) | 0.30925 (19) | 0.0328 (9) | |
H9 | 0.6089 | 0.9007 | 0.3019 | 0.039* | |
C10 | 0.4375 (4) | 0.9447 (3) | 0.31459 (19) | 0.0344 (9) | |
H10 | 0.4684 | 1.0171 | 0.3105 | 0.041* | |
C11 | 0.3098 (4) | 0.9093 (3) | 0.32577 (17) | 0.0293 (8) | |
H11 | 0.2530 | 0.9572 | 0.3300 | 0.035* | |
C12 | 0.2646 (3) | 0.8032 (3) | 0.33081 (15) | 0.0221 (7) | |
H12 | 0.1764 | 0.7788 | 0.3385 | 0.027* | |
C13 | 0.4226 (3) | 0.5582 (3) | 0.37477 (14) | 0.0178 (6) | |
C14 | 0.5117 (3) | 0.6346 (3) | 0.42404 (15) | 0.0234 (7) | |
H14 | 0.5029 | 0.7066 | 0.4322 | 0.028* | |
C15 | 0.6140 (3) | 0.6062 (3) | 0.46162 (16) | 0.0294 (8) | |
H15 | 0.6736 | 0.6586 | 0.4957 | 0.035* | |
C16 | 0.6291 (3) | 0.5025 (3) | 0.44955 (18) | 0.0323 (9) | |
H16 | 0.6985 | 0.4834 | 0.4756 | 0.039* | |
C17 | 0.5430 (3) | 0.4256 (3) | 0.39946 (18) | 0.0290 (8) | |
H17 | 0.5545 | 0.3544 | 0.3906 | 0.035* | |
C18 | 0.4396 (3) | 0.4537 (3) | 0.36219 (16) | 0.0215 (7) | |
H18 | 0.3804 | 0.4013 | 0.3280 | 0.026* | |
C19 | 0.2220 (3) | 0.6610 (2) | 0.14442 (14) | 0.0141 (6) | |
C20 | 0.2587 (3) | 0.7106 (2) | 0.09621 (15) | 0.0171 (6) | |
H20 | 0.3094 | 0.6801 | 0.0689 | 0.020* | |
C21 | 0.2218 (3) | 0.8040 (3) | 0.08772 (15) | 0.0204 (7) | |
H21 | 0.2481 | 0.8377 | 0.0549 | 0.025* | |
C22 | 0.1463 (3) | 0.8487 (3) | 0.12713 (16) | 0.0233 (7) | |
H22 | 0.1233 | 0.9140 | 0.1222 | 0.028* | |
C23 | 0.1050 (3) | 0.7973 (3) | 0.17353 (16) | 0.0231 (7) | |
H23 | 0.0510 | 0.8263 | 0.1996 | 0.028* | |
C24 | 0.1420 (3) | 0.7037 (2) | 0.18217 (14) | 0.0175 (6) | |
H24 | 0.1127 | 0.6685 | 0.2139 | 0.021* | |
C25 | 0.4622 (3) | 0.5889 (2) | 0.18633 (13) | 0.0124 (6) | |
C26 | 0.5396 (3) | 0.6848 (2) | 0.17855 (15) | 0.0184 (6) | |
H26 | 0.4973 | 0.7310 | 0.1580 | 0.022* | |
C27 | 0.6792 (3) | 0.7145 (3) | 0.20055 (15) | 0.0210 (7) | |
H27 | 0.7312 | 0.7815 | 0.1958 | 0.025* | |
C28 | 0.7418 (3) | 0.6471 (3) | 0.22915 (16) | 0.0235 (7) | |
H28 | 0.8371 | 0.6673 | 0.2438 | 0.028* | |
C29 | 0.6662 (3) | 0.5501 (3) | 0.23649 (16) | 0.0248 (7) | |
H29 | 0.7098 | 0.5032 | 0.2558 | 0.030* | |
C30 | 0.5266 (3) | 0.5205 (2) | 0.21581 (15) | 0.0183 (6) | |
H30 | 0.4748 | 0.4542 | 0.2216 | 0.022* | |
C31 | 0.2576 (3) | 0.4652 (2) | 0.08079 (13) | 0.0130 (6) | |
C32 | 0.3652 (3) | 0.4374 (3) | 0.05658 (15) | 0.0198 (6) | |
H32 | 0.4525 | 0.4552 | 0.0829 | 0.024* | |
C33 | 0.3446 (3) | 0.3835 (3) | −0.00619 (15) | 0.0238 (7) | |
H33 | 0.4185 | 0.3659 | −0.0226 | 0.029* | |
C34 | 0.2182 (3) | 0.3557 (2) | −0.04440 (15) | 0.0209 (7) | |
H34 | 0.2049 | 0.3184 | −0.0869 | 0.025* | |
C35 | 0.1103 (3) | 0.3819 (3) | −0.02095 (15) | 0.0218 (7) | |
H35 | 0.0229 | 0.3627 | −0.0473 | 0.026* | |
C36 | 0.1304 (3) | 0.4362 (3) | 0.04104 (14) | 0.0184 (6) | |
H36 | 0.0560 | 0.4540 | 0.0568 | 0.022* | |
C37 | 0.1517 (3) | 0.2170 (2) | 0.13155 (14) | 0.0155 (6) | |
C38 | 0.2858 (3) | 0.2223 (3) | 0.15870 (15) | 0.0196 (6) | |
H38 | 0.3257 | 0.2676 | 0.1990 | 0.024* | |
C39 | 0.3610 (3) | 0.1630 (3) | 0.12791 (16) | 0.0228 (7) | |
H39 | 0.4516 | 0.1676 | 0.1469 | 0.027* | |
C40 | 0.3032 (3) | 0.0968 (3) | 0.06910 (16) | 0.0247 (7) | |
H40 | 0.3538 | 0.0547 | 0.0481 | 0.030* | |
C41 | 0.1728 (3) | 0.0918 (3) | 0.04094 (16) | 0.0243 (7) | |
H41 | 0.1343 | 0.0470 | 0.0003 | 0.029* | |
C42 | 0.0966 (3) | 0.1521 (3) | 0.07165 (15) | 0.0198 (6) | |
H42 | 0.0071 | 0.1490 | 0.0517 | 0.024* | |
C43 | −0.0975 (3) | 0.2911 (2) | 0.12651 (14) | 0.0148 (6) | |
C44 | −0.1362 (3) | 0.3862 (2) | 0.12109 (15) | 0.0184 (6) | |
H44 | −0.0738 | 0.4540 | 0.1394 | 0.022* | |
C45 | −0.2639 (3) | 0.3830 (3) | 0.08942 (16) | 0.0239 (7) | |
H45 | −0.2887 | 0.4482 | 0.0859 | 0.029* | |
C46 | −0.3560 (3) | 0.2844 (3) | 0.06278 (16) | 0.0242 (7) | |
H46 | −0.4437 | 0.2822 | 0.0409 | 0.029* | |
C47 | −0.3202 (3) | 0.1894 (3) | 0.06799 (15) | 0.0216 (7) | |
H47 | −0.3833 | 0.1219 | 0.0498 | 0.026* | |
C48 | −0.1916 (3) | 0.1929 (3) | 0.09989 (14) | 0.0177 (6) | |
H48 | −0.1676 | 0.1274 | 0.1036 | 0.021* | |
C49 | −0.1895 (3) | 0.0392 (2) | 0.21876 (15) | 0.0177 (6) | |
C50 | −0.1184 (3) | −0.0128 (2) | 0.17901 (15) | 0.0207 (7) | |
H50 | −0.0236 | −0.0019 | 0.1923 | 0.025* | |
C51 | −0.1827 (4) | −0.0793 (3) | 0.12126 (16) | 0.0253 (7) | |
H51 | −0.1321 | −0.1138 | 0.0956 | 0.030* | |
C52 | −0.3210 (4) | −0.0958 (3) | 0.10066 (16) | 0.0272 (8) | |
H52 | −0.3653 | −0.1412 | 0.0609 | 0.033* | |
C53 | −0.3936 (3) | −0.0457 (3) | 0.13849 (17) | 0.0262 (7) | |
H53 | −0.4882 | −0.0565 | 0.1246 | 0.031* | |
C54 | −0.3284 (3) | 0.0206 (3) | 0.19708 (16) | 0.0227 (7) | |
H54 | −0.3799 | 0.0540 | 0.2228 | 0.027* | |
C55 | −0.2275 (3) | 0.1690 (3) | 0.34062 (17) | 0.0267 (7) | |
H55A | −0.2952 | 0.1918 | 0.3132 | 0.040* | |
H55B | −0.1838 | 0.2277 | 0.3773 | 0.040* | |
H55C | −0.2717 | 0.1052 | 0.3548 | 0.040* | |
C56 | −0.0169 (3) | 0.0523 (3) | 0.34648 (15) | 0.0214 (7) | |
C57 | 0.0796 (4) | 0.1001 (3) | 0.40177 (17) | 0.0322 (8) | |
H57 | 0.1178 | 0.1758 | 0.4106 | 0.039* | |
C58 | 0.1216 (4) | 0.0408 (3) | 0.44428 (19) | 0.0412 (10) | |
H58 | 0.1879 | 0.0757 | 0.4813 | 0.049* | |
C59 | 0.0668 (4) | −0.0689 (3) | 0.43261 (19) | 0.0374 (9) | |
H59 | 0.0942 | −0.1099 | 0.4619 | 0.045* | |
C60 | −0.0282 (4) | −0.1191 (3) | 0.3781 (2) | 0.0363 (9) | |
H60 | −0.0659 | −0.1949 | 0.3697 | 0.044* | |
C61 | −0.0684 (4) | −0.0592 (3) | 0.33573 (17) | 0.0274 (7) | |
H61 | −0.1330 | −0.0951 | 0.2982 | 0.033* | |
C62 | −0.1061 (3) | 0.3215 (2) | 0.26394 (15) | 0.0188 (6) | |
C63 | 0.1099 (3) | 0.3508 (2) | 0.35684 (15) | 0.0190 (6) | |
C64 | 0.1618 (3) | 0.1991 (3) | 0.27758 (15) | 0.0196 (6) | |
O1 | −0.2091 (2) | 0.3414 (2) | 0.25651 (12) | 0.0302 (6) | |
O2 | 0.1469 (3) | 0.38590 (19) | 0.41022 (11) | 0.0283 (5) | |
O3 | 0.2311 (3) | 0.1409 (2) | 0.27948 (13) | 0.0334 (6) | |
Si1 | −0.09598 (8) | 0.13518 (7) | 0.29544 (4) | 0.01607 (17) | |
P1 | 0.28062 (7) | 0.58904 (6) | 0.32670 (4) | 0.01326 (15) | |
P2 | 0.27801 (7) | 0.54250 (6) | 0.16115 (3) | 0.01088 (14) | |
P3 | 0.06216 (7) | 0.29705 (6) | 0.17794 (4) | 0.01213 (14) | |
Fe1 | 0.05124 (4) | 0.28585 (3) | 0.27603 (2) | 0.01319 (9) | |
Pt1 | 0.18625 (2) | 0.45986 (2) | 0.23346 (2) | 0.01069 (4) | |
Cl1 | 0.4990 (4) | 0.8723 (3) | 0.5382 (2) | 0.1272 (12) | 0.5 |
Cl2 | 0.5633 (5) | 1.0759 (3) | 0.4954 (2) | 0.1272 (12) | 0.5 |
C65 | 0.4441 (7) | 0.9859 (6) | 0.5229 (7) | 0.1272 (12) | 0.5 |
H65A | 0.3586 | 0.9616 | 0.4910 | 0.153* | 0.5 |
H65B | 0.4251 | 1.0245 | 0.5620 | 0.153* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0187 (15) | 0.0137 (14) | 0.0161 (15) | 0.0036 (12) | 0.0080 (12) | 0.0046 (12) |
C2 | 0.0209 (15) | 0.0157 (15) | 0.0175 (15) | 0.0036 (12) | 0.0057 (12) | 0.0049 (12) |
C3 | 0.0195 (16) | 0.0279 (18) | 0.0266 (18) | 0.0046 (14) | 0.0055 (14) | 0.0045 (15) |
C4 | 0.0296 (19) | 0.039 (2) | 0.0279 (19) | 0.0094 (16) | 0.0179 (16) | 0.0061 (16) |
C5 | 0.035 (2) | 0.044 (2) | 0.0156 (17) | 0.0088 (17) | 0.0092 (15) | 0.0015 (16) |
C6 | 0.0209 (16) | 0.0294 (18) | 0.0202 (17) | 0.0024 (14) | 0.0037 (13) | 0.0025 (14) |
C7 | 0.0201 (15) | 0.0143 (14) | 0.0123 (14) | 0.0005 (12) | 0.0022 (12) | 0.0007 (12) |
C8 | 0.0257 (17) | 0.0190 (16) | 0.0227 (17) | 0.0024 (13) | 0.0084 (14) | −0.0032 (13) |
C9 | 0.034 (2) | 0.0201 (17) | 0.046 (2) | 0.0012 (15) | 0.0241 (18) | 0.0046 (16) |
C10 | 0.044 (2) | 0.0149 (17) | 0.044 (2) | 0.0004 (15) | 0.0202 (19) | 0.0047 (16) |
C11 | 0.040 (2) | 0.0166 (16) | 0.035 (2) | 0.0086 (15) | 0.0153 (17) | 0.0046 (15) |
C12 | 0.0245 (17) | 0.0171 (16) | 0.0241 (17) | 0.0023 (13) | 0.0067 (14) | 0.0045 (13) |
C13 | 0.0148 (14) | 0.0232 (16) | 0.0160 (15) | 0.0029 (12) | 0.0047 (12) | 0.0067 (13) |
C14 | 0.0203 (16) | 0.0260 (17) | 0.0215 (17) | 0.0045 (14) | 0.0030 (13) | 0.0018 (14) |
C15 | 0.0187 (16) | 0.044 (2) | 0.0217 (18) | 0.0036 (15) | −0.0013 (14) | 0.0068 (16) |
C16 | 0.0186 (17) | 0.047 (2) | 0.036 (2) | 0.0093 (16) | 0.0037 (15) | 0.0240 (18) |
C17 | 0.0214 (17) | 0.0305 (19) | 0.040 (2) | 0.0076 (15) | 0.0076 (16) | 0.0183 (17) |
C18 | 0.0178 (15) | 0.0222 (17) | 0.0247 (17) | 0.0025 (13) | 0.0033 (13) | 0.0100 (14) |
C19 | 0.0118 (13) | 0.0122 (14) | 0.0170 (15) | 0.0016 (11) | 0.0000 (11) | 0.0041 (12) |
C20 | 0.0119 (14) | 0.0189 (15) | 0.0208 (16) | 0.0031 (12) | 0.0029 (12) | 0.0067 (13) |
C21 | 0.0171 (15) | 0.0209 (16) | 0.0243 (17) | 0.0028 (13) | 0.0017 (13) | 0.0121 (13) |
C22 | 0.0260 (17) | 0.0161 (16) | 0.0292 (18) | 0.0086 (13) | 0.0006 (14) | 0.0091 (14) |
C23 | 0.0270 (17) | 0.0193 (16) | 0.0264 (18) | 0.0119 (14) | 0.0070 (14) | 0.0048 (14) |
C24 | 0.0187 (15) | 0.0181 (15) | 0.0164 (15) | 0.0058 (12) | 0.0028 (12) | 0.0049 (12) |
C25 | 0.0111 (13) | 0.0148 (14) | 0.0107 (14) | 0.0033 (11) | 0.0016 (11) | 0.0015 (11) |
C26 | 0.0169 (15) | 0.0189 (16) | 0.0193 (16) | 0.0031 (12) | 0.0016 (12) | 0.0078 (13) |
C27 | 0.0147 (15) | 0.0238 (17) | 0.0210 (17) | −0.0021 (13) | 0.0027 (13) | 0.0052 (13) |
C28 | 0.0130 (15) | 0.0269 (18) | 0.0262 (18) | 0.0031 (13) | −0.0003 (13) | 0.0002 (14) |
C29 | 0.0201 (16) | 0.0218 (17) | 0.0303 (19) | 0.0095 (13) | −0.0034 (14) | 0.0025 (14) |
C30 | 0.0185 (15) | 0.0142 (15) | 0.0207 (16) | 0.0040 (12) | 0.0005 (13) | 0.0035 (12) |
C31 | 0.0179 (14) | 0.0099 (13) | 0.0114 (14) | 0.0031 (11) | 0.0022 (11) | 0.0039 (11) |
C32 | 0.0169 (15) | 0.0258 (17) | 0.0163 (16) | 0.0087 (13) | −0.0001 (12) | 0.0027 (13) |
C33 | 0.0271 (17) | 0.0270 (18) | 0.0195 (17) | 0.0138 (14) | 0.0069 (14) | 0.0000 (14) |
C34 | 0.0317 (18) | 0.0159 (15) | 0.0139 (15) | 0.0060 (13) | 0.0033 (13) | 0.0008 (12) |
C35 | 0.0187 (16) | 0.0228 (17) | 0.0177 (16) | −0.0009 (13) | −0.0032 (13) | 0.0020 (13) |
C36 | 0.0148 (14) | 0.0218 (16) | 0.0172 (15) | 0.0019 (12) | 0.0036 (12) | 0.0031 (13) |
C37 | 0.0176 (15) | 0.0109 (14) | 0.0185 (15) | 0.0025 (11) | 0.0057 (12) | 0.0039 (12) |
C38 | 0.0184 (15) | 0.0202 (16) | 0.0188 (16) | 0.0027 (13) | 0.0035 (13) | 0.0034 (13) |
C39 | 0.0187 (16) | 0.0225 (17) | 0.0311 (19) | 0.0078 (13) | 0.0088 (14) | 0.0098 (14) |
C40 | 0.0297 (18) | 0.0199 (16) | 0.0305 (19) | 0.0104 (14) | 0.0174 (15) | 0.0056 (14) |
C41 | 0.0313 (18) | 0.0171 (16) | 0.0219 (17) | 0.0023 (14) | 0.0103 (14) | −0.0026 (13) |
C42 | 0.0174 (15) | 0.0198 (16) | 0.0205 (16) | 0.0026 (12) | 0.0037 (13) | 0.0028 (13) |
C43 | 0.0143 (14) | 0.0155 (14) | 0.0147 (15) | 0.0014 (11) | 0.0043 (12) | 0.0056 (12) |
C44 | 0.0174 (15) | 0.0152 (15) | 0.0237 (17) | 0.0027 (12) | 0.0067 (13) | 0.0062 (13) |
C45 | 0.0214 (16) | 0.0238 (17) | 0.0331 (19) | 0.0122 (14) | 0.0085 (14) | 0.0128 (15) |
C46 | 0.0154 (15) | 0.0343 (19) | 0.0262 (18) | 0.0087 (14) | 0.0021 (13) | 0.0139 (15) |
C47 | 0.0161 (15) | 0.0241 (17) | 0.0211 (17) | −0.0010 (13) | 0.0019 (13) | 0.0048 (13) |
C48 | 0.0176 (15) | 0.0190 (15) | 0.0175 (15) | 0.0045 (12) | 0.0045 (12) | 0.0057 (12) |
C49 | 0.0191 (15) | 0.0109 (14) | 0.0226 (16) | 0.0000 (12) | 0.0050 (13) | 0.0064 (12) |
C50 | 0.0255 (17) | 0.0138 (15) | 0.0237 (17) | 0.0043 (13) | 0.0061 (14) | 0.0062 (13) |
C51 | 0.037 (2) | 0.0150 (16) | 0.0245 (18) | 0.0070 (14) | 0.0067 (15) | 0.0048 (13) |
C52 | 0.039 (2) | 0.0135 (15) | 0.0216 (17) | −0.0004 (14) | −0.0046 (15) | 0.0027 (13) |
C53 | 0.0227 (17) | 0.0192 (17) | 0.0321 (19) | −0.0035 (13) | −0.0016 (14) | 0.0112 (15) |
C54 | 0.0211 (16) | 0.0185 (16) | 0.0282 (18) | 0.0019 (13) | 0.0051 (14) | 0.0080 (14) |
C55 | 0.0261 (18) | 0.0254 (18) | 0.0284 (19) | 0.0028 (14) | 0.0136 (15) | 0.0025 (15) |
C56 | 0.0253 (17) | 0.0191 (16) | 0.0231 (17) | 0.0052 (13) | 0.0102 (14) | 0.0091 (13) |
C57 | 0.046 (2) | 0.0251 (19) | 0.0237 (19) | 0.0060 (16) | 0.0019 (16) | 0.0095 (15) |
C58 | 0.050 (3) | 0.045 (2) | 0.027 (2) | 0.012 (2) | −0.0002 (18) | 0.0129 (18) |
C59 | 0.050 (2) | 0.040 (2) | 0.039 (2) | 0.024 (2) | 0.0167 (19) | 0.0267 (19) |
C60 | 0.046 (2) | 0.0249 (19) | 0.047 (2) | 0.0133 (17) | 0.018 (2) | 0.0179 (18) |
C61 | 0.0331 (19) | 0.0206 (17) | 0.0300 (19) | 0.0062 (15) | 0.0092 (15) | 0.0079 (15) |
C62 | 0.0239 (17) | 0.0151 (15) | 0.0198 (16) | 0.0057 (13) | 0.0073 (13) | 0.0062 (12) |
C63 | 0.0251 (16) | 0.0131 (15) | 0.0190 (17) | 0.0025 (12) | 0.0057 (13) | 0.0059 (13) |
C64 | 0.0197 (16) | 0.0199 (16) | 0.0208 (16) | 0.0022 (13) | 0.0072 (13) | 0.0097 (13) |
O1 | 0.0258 (13) | 0.0354 (14) | 0.0414 (15) | 0.0174 (11) | 0.0157 (11) | 0.0191 (12) |
O2 | 0.0410 (14) | 0.0226 (12) | 0.0169 (12) | 0.0016 (11) | 0.0022 (11) | 0.0039 (10) |
O3 | 0.0351 (14) | 0.0374 (15) | 0.0449 (16) | 0.0244 (12) | 0.0188 (12) | 0.0256 (13) |
Si1 | 0.0184 (4) | 0.0127 (4) | 0.0164 (4) | 0.0012 (3) | 0.0053 (3) | 0.0035 (3) |
P1 | 0.0136 (4) | 0.0120 (4) | 0.0127 (4) | 0.0010 (3) | 0.0027 (3) | 0.0016 (3) |
P2 | 0.0104 (3) | 0.0100 (3) | 0.0117 (3) | 0.0017 (3) | 0.0018 (3) | 0.0023 (3) |
P3 | 0.0118 (3) | 0.0101 (3) | 0.0139 (4) | 0.0019 (3) | 0.0020 (3) | 0.0025 (3) |
Fe1 | 0.0145 (2) | 0.0110 (2) | 0.0140 (2) | 0.00205 (16) | 0.00347 (16) | 0.00358 (16) |
Pt1 | 0.01105 (5) | 0.00869 (5) | 0.01160 (6) | 0.00084 (4) | 0.00250 (4) | 0.00217 (4) |
Cl1 | 0.107 (2) | 0.101 (3) | 0.124 (3) | 0.0166 (17) | −0.0281 (18) | −0.050 (2) |
Cl2 | 0.107 (2) | 0.101 (3) | 0.124 (3) | 0.0166 (17) | −0.0281 (18) | −0.050 (2) |
C65 | 0.107 (2) | 0.101 (3) | 0.124 (3) | 0.0166 (17) | −0.0281 (18) | −0.050 (2) |
C1—C2 | 1.391 (4) | C35—C36 | 1.384 (4) |
C1—C6 | 1.390 (4) | C36—H36 | 0.9500 |
C1—P1 | 1.835 (3) | C37—C38 | 1.404 (4) |
C2—H2 | 0.9500 | C37—C42 | 1.394 (4) |
C2—C3 | 1.393 (4) | C37—P3 | 1.828 (3) |
C3—H3 | 0.9500 | C38—H38 | 0.9500 |
C3—C4 | 1.382 (5) | C38—C39 | 1.381 (4) |
C4—H4 | 0.9500 | C39—H39 | 0.9500 |
C4—C5 | 1.379 (5) | C39—C40 | 1.386 (5) |
C5—H5 | 0.9500 | C40—H40 | 0.9500 |
C5—C6 | 1.384 (5) | C40—C41 | 1.376 (5) |
C6—H6 | 0.9500 | C41—H41 | 0.9500 |
C7—C8 | 1.387 (4) | C41—C42 | 1.397 (4) |
C7—C12 | 1.396 (4) | C42—H42 | 0.9500 |
C7—P1 | 1.842 (3) | C43—C44 | 1.400 (4) |
C8—H8 | 0.9500 | C43—C48 | 1.393 (4) |
C8—C9 | 1.390 (5) | C43—P3 | 1.827 (3) |
C9—H9 | 0.9500 | C44—H44 | 0.9500 |
C9—C10 | 1.378 (5) | C44—C45 | 1.382 (4) |
C10—H10 | 0.9500 | C45—H45 | 0.9500 |
C10—C11 | 1.376 (5) | C45—C46 | 1.387 (5) |
C11—H11 | 0.9500 | C46—H46 | 0.9500 |
C11—C12 | 1.384 (5) | C46—C47 | 1.383 (5) |
C12—H12 | 0.9500 | C47—H47 | 0.9500 |
C13—C14 | 1.388 (4) | C47—C48 | 1.391 (4) |
C13—C18 | 1.394 (4) | C48—H48 | 0.9500 |
C13—P1 | 1.831 (3) | C49—C50 | 1.408 (4) |
C14—H14 | 0.9500 | C49—C54 | 1.396 (4) |
C14—C15 | 1.393 (5) | C49—Si1 | 1.890 (3) |
C15—H15 | 0.9500 | C50—H50 | 0.9500 |
C15—C16 | 1.377 (5) | C50—C51 | 1.381 (5) |
C16—H16 | 0.9500 | C51—H51 | 0.9500 |
C16—C17 | 1.389 (5) | C51—C52 | 1.389 (5) |
C17—H17 | 0.9500 | C52—H52 | 0.9500 |
C17—C18 | 1.396 (5) | C52—C53 | 1.381 (5) |
C18—H18 | 0.9500 | C53—H53 | 0.9500 |
C19—C20 | 1.391 (4) | C53—C54 | 1.396 (5) |
C19—C24 | 1.394 (4) | C54—H54 | 0.9500 |
C19—P2 | 1.834 (3) | C55—H55A | 0.9800 |
C20—H20 | 0.9500 | C55—H55B | 0.9800 |
C20—C21 | 1.383 (4) | C55—H55C | 0.9800 |
C21—H21 | 0.9500 | C55—Si1 | 1.890 (3) |
C21—C22 | 1.393 (5) | C56—C57 | 1.396 (5) |
C22—H22 | 0.9500 | C56—C61 | 1.395 (5) |
C22—C23 | 1.383 (5) | C56—Si1 | 1.897 (3) |
C23—H23 | 0.9500 | C57—H57 | 0.9500 |
C23—C24 | 1.388 (4) | C57—C58 | 1.386 (5) |
C24—H24 | 0.9500 | C58—H58 | 0.9500 |
C25—C26 | 1.379 (4) | C58—C59 | 1.377 (6) |
C25—C30 | 1.405 (4) | C59—H59 | 0.9500 |
C25—P2 | 1.832 (3) | C59—C60 | 1.381 (6) |
C26—H26 | 0.9500 | C60—H60 | 0.9500 |
C26—C27 | 1.394 (4) | C60—C61 | 1.384 (5) |
C27—H27 | 0.9500 | C61—H61 | 0.9500 |
C27—C28 | 1.376 (5) | C62—O1 | 1.145 (4) |
C28—H28 | 0.9500 | C62—Fe1 | 1.782 (3) |
C28—C29 | 1.380 (5) | C63—O2 | 1.153 (4) |
C29—H29 | 0.9500 | C63—Fe1 | 1.778 (3) |
C29—C30 | 1.390 (4) | C64—O3 | 1.152 (4) |
C30—H30 | 0.9500 | C64—Fe1 | 1.776 (3) |
C31—C32 | 1.397 (4) | Si1—Fe1 | 2.3497 (9) |
C31—C36 | 1.395 (4) | P1—Pt1 | 2.3346 (8) |
C31—P2 | 1.832 (3) | P2—Pt1 | 2.2787 (7) |
C32—H32 | 0.9500 | P3—Fe1 | 2.2045 (9) |
C32—C33 | 1.398 (4) | P3—Pt1 | 2.2475 (7) |
C33—H33 | 0.9500 | Fe1—Pt1 | 2.7738 (4) |
C33—C34 | 1.375 (5) | Cl1—C65 | 1.7602 |
C34—H34 | 0.9500 | Cl2—C65 | 1.7600 |
C34—C35 | 1.385 (4) | C65—H65A | 0.9900 |
C35—H35 | 0.9500 | C65—H65B | 0.9900 |
C2—C1—P1 | 118.8 (2) | C40—C41—H41 | 119.8 |
C6—C1—C2 | 119.4 (3) | C40—C41—C42 | 120.4 (3) |
C6—C1—P1 | 121.8 (2) | C42—C41—H41 | 119.8 |
C1—C2—H2 | 119.9 | C37—C42—C41 | 120.1 (3) |
C1—C2—C3 | 120.3 (3) | C37—C42—H42 | 120.0 |
C3—C2—H2 | 119.9 | C41—C42—H42 | 120.0 |
C2—C3—H3 | 120.1 | C44—C43—P3 | 120.0 (2) |
C4—C3—C2 | 119.9 (3) | C48—C43—C44 | 118.3 (3) |
C4—C3—H3 | 120.1 | C48—C43—P3 | 121.0 (2) |
C3—C4—H4 | 120.1 | C43—C44—H44 | 119.6 |
C5—C4—C3 | 119.8 (3) | C45—C44—C43 | 120.9 (3) |
C5—C4—H4 | 120.1 | C45—C44—H44 | 119.6 |
C4—C5—H5 | 119.6 | C44—C45—H45 | 120.0 |
C4—C5—C6 | 120.8 (3) | C44—C45—C46 | 120.0 (3) |
C6—C5—H5 | 119.6 | C46—C45—H45 | 120.0 |
C1—C6—H6 | 120.1 | C45—C46—H46 | 120.0 |
C5—C6—C1 | 119.9 (3) | C47—C46—C45 | 120.1 (3) |
C5—C6—H6 | 120.1 | C47—C46—H46 | 120.0 |
C8—C7—C12 | 118.9 (3) | C46—C47—H47 | 120.1 |
C8—C7—P1 | 121.1 (2) | C46—C47—C48 | 119.8 (3) |
C12—C7—P1 | 120.0 (2) | C48—C47—H47 | 120.1 |
C7—C8—H8 | 120.1 | C43—C48—H48 | 119.5 |
C7—C8—C9 | 119.8 (3) | C47—C48—C43 | 120.9 (3) |
C9—C8—H8 | 120.1 | C47—C48—H48 | 119.5 |
C8—C9—H9 | 119.7 | C50—C49—Si1 | 120.3 (2) |
C10—C9—C8 | 120.6 (3) | C54—C49—C50 | 116.9 (3) |
C10—C9—H9 | 119.7 | C54—C49—Si1 | 122.7 (2) |
C9—C10—H10 | 119.9 | C49—C50—H50 | 119.1 |
C11—C10—C9 | 120.2 (3) | C51—C50—C49 | 121.8 (3) |
C11—C10—H10 | 119.9 | C51—C50—H50 | 119.1 |
C10—C11—H11 | 120.2 | C50—C51—H51 | 119.9 |
C10—C11—C12 | 119.6 (3) | C50—C51—C52 | 120.1 (3) |
C12—C11—H11 | 120.2 | C52—C51—H51 | 119.9 |
C7—C12—H12 | 119.6 | C51—C52—H52 | 120.3 |
C11—C12—C7 | 120.9 (3) | C53—C52—C51 | 119.5 (3) |
C11—C12—H12 | 119.6 | C53—C52—H52 | 120.3 |
C14—C13—C18 | 119.1 (3) | C52—C53—H53 | 119.9 |
C14—C13—P1 | 122.2 (2) | C52—C53—C54 | 120.2 (3) |
C18—C13—P1 | 118.7 (2) | C54—C53—H53 | 119.9 |
C13—C14—H14 | 119.8 | C49—C54—C53 | 121.5 (3) |
C13—C14—C15 | 120.3 (3) | C49—C54—H54 | 119.2 |
C15—C14—H14 | 119.8 | C53—C54—H54 | 119.2 |
C14—C15—H15 | 119.9 | H55A—C55—H55B | 109.5 |
C16—C15—C14 | 120.3 (3) | H55A—C55—H55C | 109.5 |
C16—C15—H15 | 119.9 | H55B—C55—H55C | 109.5 |
C15—C16—H16 | 119.9 | Si1—C55—H55A | 109.5 |
C15—C16—C17 | 120.2 (3) | Si1—C55—H55B | 109.5 |
C17—C16—H16 | 119.9 | Si1—C55—H55C | 109.5 |
C16—C17—H17 | 120.2 | C57—C56—Si1 | 122.1 (3) |
C16—C17—C18 | 119.5 (3) | C61—C56—C57 | 116.4 (3) |
C18—C17—H17 | 120.2 | C61—C56—Si1 | 120.8 (3) |
C13—C18—C17 | 120.5 (3) | C56—C57—H57 | 118.9 |
C13—C18—H18 | 119.7 | C58—C57—C56 | 122.2 (4) |
C17—C18—H18 | 119.7 | C58—C57—H57 | 118.9 |
C20—C19—C24 | 119.2 (3) | C57—C58—H58 | 120.1 |
C20—C19—P2 | 122.2 (2) | C59—C58—C57 | 119.8 (4) |
C24—C19—P2 | 118.6 (2) | C59—C58—H58 | 120.1 |
C19—C20—H20 | 119.8 | C58—C59—H59 | 120.2 |
C21—C20—C19 | 120.5 (3) | C58—C59—C60 | 119.6 (3) |
C21—C20—H20 | 119.8 | C60—C59—H59 | 120.2 |
C20—C21—H21 | 119.9 | C59—C60—H60 | 120.0 |
C20—C21—C22 | 120.2 (3) | C59—C60—C61 | 120.1 (4) |
C22—C21—H21 | 119.9 | C61—C60—H60 | 120.0 |
C21—C22—H22 | 120.2 | C56—C61—H61 | 119.0 |
C23—C22—C21 | 119.6 (3) | C60—C61—C56 | 121.9 (4) |
C23—C22—H22 | 120.2 | C60—C61—H61 | 119.0 |
C22—C23—H23 | 119.8 | O1—C62—Fe1 | 177.9 (3) |
C22—C23—C24 | 120.3 (3) | O2—C63—Fe1 | 175.2 (3) |
C24—C23—H23 | 119.8 | O3—C64—Fe1 | 178.0 (3) |
C19—C24—H24 | 119.9 | C49—Si1—C55 | 107.20 (15) |
C23—C24—C19 | 120.2 (3) | C49—Si1—C56 | 106.61 (14) |
C23—C24—H24 | 119.9 | C49—Si1—Fe1 | 110.49 (10) |
C26—C25—C30 | 119.0 (3) | C55—Si1—C56 | 100.70 (15) |
C26—C25—P2 | 124.7 (2) | C55—Si1—Fe1 | 114.30 (11) |
C30—C25—P2 | 116.3 (2) | C56—Si1—Fe1 | 116.66 (11) |
C25—C26—H26 | 119.7 | C1—P1—C7 | 99.53 (13) |
C25—C26—C27 | 120.6 (3) | C1—P1—Pt1 | 112.73 (10) |
C27—C26—H26 | 119.7 | C7—P1—Pt1 | 120.74 (10) |
C26—C27—H27 | 119.9 | C13—P1—C1 | 106.03 (14) |
C28—C27—C26 | 120.2 (3) | C13—P1—C7 | 103.00 (14) |
C28—C27—H27 | 119.9 | C13—P1—Pt1 | 113.04 (10) |
C27—C28—H28 | 120.0 | C19—P2—Pt1 | 117.03 (10) |
C27—C28—C29 | 120.0 (3) | C25—P2—C19 | 105.47 (13) |
C29—C28—H28 | 120.0 | C25—P2—C31 | 102.26 (13) |
C28—C29—H29 | 119.8 | C25—P2—Pt1 | 110.48 (9) |
C28—C29—C30 | 120.4 (3) | C31—P2—C19 | 100.35 (13) |
C30—C29—H29 | 119.8 | C31—P2—Pt1 | 119.39 (9) |
C25—C30—H30 | 120.1 | C37—P3—Fe1 | 121.78 (10) |
C29—C30—C25 | 119.9 (3) | C37—P3—Pt1 | 115.69 (10) |
C29—C30—H30 | 120.1 | C43—P3—C37 | 106.97 (14) |
C32—C31—P2 | 122.8 (2) | C43—P3—Fe1 | 115.79 (9) |
C36—C31—C32 | 118.2 (3) | C43—P3—Pt1 | 117.66 (10) |
C36—C31—P2 | 118.9 (2) | Fe1—P3—Pt1 | 77.07 (3) |
C31—C32—H32 | 119.9 | C62—Fe1—Si1 | 78.43 (10) |
C31—C32—C33 | 120.2 (3) | C62—Fe1—P3 | 88.17 (10) |
C33—C32—H32 | 119.9 | C62—Fe1—Pt1 | 93.70 (10) |
C32—C33—H33 | 119.8 | C63—Fe1—C62 | 98.17 (14) |
C34—C33—C32 | 120.5 (3) | C63—Fe1—Si1 | 94.95 (10) |
C34—C33—H33 | 119.8 | C63—Fe1—P3 | 145.70 (10) |
C33—C34—H34 | 120.0 | C63—Fe1—Pt1 | 93.67 (10) |
C33—C34—C35 | 120.1 (3) | C64—Fe1—C62 | 157.04 (15) |
C35—C34—H34 | 120.0 | C64—Fe1—C63 | 94.48 (15) |
C34—C35—H35 | 120.2 | C64—Fe1—Si1 | 81.46 (10) |
C36—C35—C34 | 119.7 (3) | C64—Fe1—P3 | 92.12 (10) |
C36—C35—H35 | 120.2 | C64—Fe1—Pt1 | 104.57 (10) |
C31—C36—H36 | 119.3 | Si1—Fe1—Pt1 | 169.06 (3) |
C35—C36—C31 | 121.4 (3) | P3—Fe1—Si1 | 119.32 (3) |
C35—C36—H36 | 119.3 | P3—Fe1—Pt1 | 52.16 (2) |
C38—C37—P3 | 117.0 (2) | P1—Pt1—Fe1 | 102.64 (2) |
C42—C37—C38 | 118.3 (3) | P2—Pt1—P1 | 101.80 (3) |
C42—C37—P3 | 124.7 (2) | P2—Pt1—Fe1 | 154.80 (2) |
C37—C38—H38 | 119.4 | P3—Pt1—P1 | 153.40 (3) |
C39—C38—C37 | 121.3 (3) | P3—Pt1—P2 | 104.70 (3) |
C39—C38—H38 | 119.4 | P3—Pt1—Fe1 | 50.77 (2) |
C38—C39—H39 | 120.2 | Cl1—C65—H65A | 109.0 |
C38—C39—C40 | 119.5 (3) | Cl1—C65—H65B | 109.0 |
C40—C39—H39 | 120.2 | Cl2—C65—Cl1 | 112.9 |
C39—C40—H40 | 119.9 | Cl2—C65—H65A | 109.0 |
C41—C40—C39 | 120.3 (3) | Cl2—C65—H65B | 109.0 |
C41—C40—H40 | 119.9 | H65A—C65—H65B | 107.8 |
C1—C2—C3—C4 | −0.7 (5) | C36—C31—P2—C25 | −166.4 (2) |
C2—C1—C6—C5 | 2.1 (5) | C36—C31—P2—Pt1 | 71.4 (2) |
C2—C1—P1—C7 | 104.5 (2) | C37—C38—C39—C40 | 0.0 (5) |
C2—C1—P1—C13 | −148.9 (2) | C38—C37—C42—C41 | 2.1 (4) |
C2—C1—P1—Pt1 | −24.7 (3) | C38—C37—P3—C43 | 171.3 (2) |
C2—C3—C4—C5 | 1.0 (5) | C38—C37—P3—Fe1 | −52.3 (3) |
C3—C4—C5—C6 | 0.3 (6) | C38—C37—P3—Pt1 | 38.0 (3) |
C4—C5—C6—C1 | −1.9 (6) | C38—C39—C40—C41 | 1.3 (5) |
C6—C1—C2—C3 | −0.9 (5) | C39—C40—C41—C42 | −0.9 (5) |
C6—C1—P1—C7 | −73.4 (3) | C40—C41—C42—C37 | −0.8 (5) |
C6—C1—P1—C13 | 33.2 (3) | C42—C37—C38—C39 | −1.6 (5) |
C6—C1—P1—Pt1 | 157.4 (2) | C42—C37—P3—C43 | −8.4 (3) |
C7—C8—C9—C10 | 0.4 (6) | C42—C37—P3—Fe1 | 128.0 (2) |
C8—C7—C12—C11 | 0.9 (5) | C42—C37—P3—Pt1 | −141.7 (2) |
C8—C7—P1—C1 | 153.4 (3) | C43—C44—C45—C46 | 0.3 (5) |
C8—C7—P1—C13 | 44.3 (3) | C44—C43—C48—C47 | 0.8 (4) |
C8—C7—P1—Pt1 | −82.9 (3) | C44—C43—P3—C37 | −130.0 (2) |
C8—C9—C10—C11 | 0.6 (6) | C44—C43—P3—Fe1 | 90.7 (2) |
C9—C10—C11—C12 | −0.8 (6) | C44—C43—P3—Pt1 | 2.2 (3) |
C10—C11—C12—C7 | 0.1 (5) | C44—C45—C46—C47 | 0.2 (5) |
C12—C7—C8—C9 | −1.1 (5) | C45—C46—C47—C48 | −0.2 (5) |
C12—C7—P1—C1 | −29.7 (3) | C46—C47—C48—C43 | −0.4 (5) |
C12—C7—P1—C13 | −138.7 (3) | C48—C43—C44—C45 | −0.8 (4) |
C12—C7—P1—Pt1 | 94.1 (3) | C48—C43—P3—C37 | 60.0 (3) |
C13—C14—C15—C16 | 1.1 (5) | C48—C43—P3—Fe1 | −79.4 (3) |
C14—C13—C18—C17 | 1.4 (5) | C48—C43—P3—Pt1 | −167.8 (2) |
C14—C13—P1—C1 | −71.0 (3) | C49—C50—C51—C52 | 0.5 (5) |
C14—C13—P1—C7 | 33.1 (3) | C50—C49—C54—C53 | −0.5 (4) |
C14—C13—P1—Pt1 | 165.0 (2) | C50—C49—Si1—C55 | −170.7 (2) |
C14—C15—C16—C17 | 0.5 (5) | C50—C49—Si1—C56 | −63.6 (3) |
C15—C16—C17—C18 | −1.2 (5) | C50—C49—Si1—Fe1 | 64.1 (3) |
C16—C17—C18—C13 | 0.2 (5) | C50—C51—C52—C53 | −0.3 (5) |
C18—C13—C14—C15 | −2.1 (5) | C51—C52—C53—C54 | −0.3 (5) |
C18—C13—P1—C1 | 107.6 (3) | C52—C53—C54—C49 | 0.7 (5) |
C18—C13—P1—C7 | −148.3 (2) | C54—C49—C50—C51 | −0.1 (4) |
C18—C13—P1—Pt1 | −16.3 (3) | C54—C49—Si1—C55 | 12.8 (3) |
C19—C20—C21—C22 | −0.6 (5) | C54—C49—Si1—C56 | 120.0 (3) |
C20—C19—C24—C23 | −3.0 (5) | C54—C49—Si1—Fe1 | −112.3 (2) |
C20—C19—P2—C25 | 64.3 (3) | C56—C57—C58—C59 | −0.4 (6) |
C20—C19—P2—C31 | −41.7 (3) | C57—C56—C61—C60 | 1.3 (5) |
C20—C19—P2—Pt1 | −172.5 (2) | C57—C56—Si1—C49 | 168.1 (3) |
C20—C21—C22—C23 | −1.9 (5) | C57—C56—Si1—C55 | −80.1 (3) |
C21—C22—C23—C24 | 2.0 (5) | C57—C56—Si1—Fe1 | 44.2 (3) |
C22—C23—C24—C19 | 0.5 (5) | C57—C58—C59—C60 | 0.9 (6) |
C24—C19—C20—C21 | 3.1 (4) | C58—C59—C60—C61 | −0.3 (6) |
C24—C19—P2—C25 | −114.5 (2) | C59—C60—C61—C56 | −0.8 (6) |
C24—C19—P2—C31 | 139.5 (2) | C61—C56—C57—C58 | −0.7 (5) |
C24—C19—P2—Pt1 | 8.8 (3) | C61—C56—Si1—C49 | −22.2 (3) |
C25—C26—C27—C28 | 1.4 (5) | C61—C56—Si1—C55 | 89.5 (3) |
C26—C25—C30—C29 | −0.1 (4) | C61—C56—Si1—Fe1 | −146.2 (2) |
C26—C25—P2—C19 | −14.1 (3) | Si1—C49—C50—C51 | −176.8 (2) |
C26—C25—P2—C31 | 90.5 (3) | Si1—C49—C54—C53 | 176.1 (2) |
C26—C25—P2—Pt1 | −141.4 (2) | Si1—C56—C57—C58 | 169.4 (3) |
C26—C27—C28—C29 | −0.5 (5) | Si1—C56—C61—C60 | −169.0 (3) |
C27—C28—C29—C30 | −0.8 (5) | P1—C1—C2—C3 | −178.8 (2) |
C28—C29—C30—C25 | 1.0 (5) | P1—C1—C6—C5 | −180.0 (3) |
C30—C25—C26—C27 | −1.1 (4) | P1—C7—C8—C9 | 175.9 (3) |
C30—C25—P2—C19 | 165.6 (2) | P1—C7—C12—C11 | −176.1 (3) |
C30—C25—P2—C31 | −89.9 (2) | P1—C13—C14—C15 | 176.5 (2) |
C30—C25—P2—Pt1 | 38.3 (2) | P1—C13—C18—C17 | −177.2 (2) |
C31—C32—C33—C34 | −1.1 (5) | P2—C19—C20—C21 | −175.7 (2) |
C32—C31—C36—C35 | −0.5 (4) | P2—C19—C24—C23 | 175.8 (2) |
C32—C31—P2—C19 | 119.6 (3) | P2—C25—C26—C27 | 178.5 (2) |
C32—C31—P2—C25 | 11.1 (3) | P2—C25—C30—C29 | −179.8 (2) |
C32—C31—P2—Pt1 | −111.1 (2) | P2—C31—C32—C33 | −176.5 (2) |
C32—C33—C34—C35 | 0.5 (5) | P2—C31—C36—C35 | 177.2 (2) |
C33—C34—C35—C36 | 0.0 (5) | P3—C37—C38—C39 | 178.6 (2) |
C34—C35—C36—C31 | −0.1 (5) | P3—C37—C42—C41 | −178.3 (2) |
C36—C31—C32—C33 | 1.0 (5) | P3—C43—C44—C45 | −171.2 (2) |
C36—C31—P2—C19 | −57.9 (3) | P3—C43—C48—C47 | 171.1 (2) |
Experimental details
Crystal data | |
Chemical formula | [FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2 |
Mr | 1284.47 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 115 |
a, b, c (Å) | 10.3522 (6), 13.0010 (8), 21.9803 (14) |
α, β, γ (°) | 99.823 (2), 99.061 (2), 102.677 (2) |
V (Å3) | 2784.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.97 |
Crystal size (mm) | 0.15 × 0.05 × 0.02 |
Data collection | |
Diffractometer | Nonius Kappa APEXII |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.64, 0.74 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 89421, 12883, 11264 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.063, 1.06 |
No. of reflections | 12883 |
No. of parameters | 671 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.13, −1.29 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
We are grateful to the Universities of Franche-Comté and Bourgogne (BQR PRES 2012–22) and the CNRS for financial support.
References
Braunstein, P., Faure, T., Knorr, M., Stährfeldt, T., DeCian, A. & Fischer, J. (1995). Gazz. Chim. Ital. 125, 35–50. Google Scholar
Braunstein, P., Knorr, M., Hirle, B., Reinhard, G. & Schubert, U. (1992). Angew. Chem. Int. Ed. Engl. 31, 1583–1585. Google Scholar
Braunstein, P., Knorr, M., Reinhard, G., Schubert, U. & Stährfeldt, T. (2000). Chem. Eur. J. 6, 4265–4278. Google Scholar
Braunstein, P., Stährfeldt, T. & Fischer, J. (1999). C. R. Acad. Sci. Ser. IIc, pp. 273–292. Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Comte, V., Blacque, O., Kubicki, M. M. & Moïse, C. (1997). Organometallics, 16, 5763–5769. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
He, Z., Lugan, P., Neibecker, D., Mathieu, R. & Bonnet, J.-J. (1992). J. Organomet. Chem. 426, 247–259. Google Scholar
Jenkins, H. A. & Loeb, S. J. (1989). Can. J. Chem. 67, 1230–1235. Google Scholar
Jenkins, H. A., Loeb, S. J., Dick, D. G. & Stephan, D. W. (1990). Can. J. Chem. 68, 869–874. Google Scholar
Knorr, M., Stährfeldt, T., Braunstein, P., Reinhard, G., Hauenstein, P., Mayer, B., Schubert, U., Khan, S. & Kaesz, H. D. (1994). Chem. Ber. 127, 295–304. Google Scholar
Lavastre, O., Bonnet, G., Boni, G., Kubicki, M. M. & Moïse, C. (1997). J. Organomet. Chem. 547, 141–147. Google Scholar
Messaoudi, A., Deglmann, P., Braunstein, P. & Hofmann, P. (2007). Inorg. Chem. 46, 7899–7909. Google Scholar
Powell, J., Gregg, M. R. & Sawyer, J. F. (1987). J. Chem. Soc. Chem. Commun. pp. 1029–1031. Google Scholar
Reinhard, G., Knorr, M., Braunstein, P., Schubert, U., Khan, S., Strouse, C. E., Kaesz, H. D. & Zinn, A. (1993). Chem. Ber. 126, 17–21. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stephan, D. W. (1989). Coord. Chem. Rev. 95, 41–107. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.