research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 241-243

Crystal structure of tricarbon­yl(μ-di­phenyl­phosphido-κ2P:P)(methyl­di­phenyl­silyl-κSi)bis­(tri­phenyl­phosphane-κP)iron(II)platinum(0)(FePt)

aInstitut UTINAM UMR CNRS 6213, University of Franche-Comté, 16 route de Gray, Besançon 25030, France, and bICMUB UMR CNRS 6302, University of Burgundy, 9 avenue Alain Savary, Dijon 21078, France
*Correspondence e-mail: marek.kubicki@u-bourgogne.fr

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 18 December 2014; accepted 23 January 2015; online 31 January 2015)

The title compound, [FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2, represents an example of a phosphido-bridged heterobimetallic silyl complex; these are inter­esting precursors for the coordination and activation of small unsaturated organic mol­ecules. The μ2-PPh2 ligand spans the iron and platinum atoms, which are connected via a metal–metal bond of 2.7738 (4) Å. In contrast to most other complexes of the [(OC)3Fe(SiR3)(μ-PR2)PtL2] family, where the iron-bound SiR3 group is trans-arranged with respect to the μ2-PPh2 ligand, the SiPh2Me ligand is roughly collinear with the Fe–Pt vector [Si—Fe—Pt = 169.07 (3)°].

1. Chemical context

The bridging of metal–metal-bonded heterodinuclear complexes with μ2-PR2 phosphido bridges allows both the stabilization of the metal–metal bond and permits a fine-tuning of the reactivity of heterodinuclear systems by steric and electronic variation of the R substituents. In addition to the numerous examples of homodinuclear complexes, many μ-phosphido heterobimetallic complexes (with and without a metal–metal bond) are nowadays well documented and both their structural and reactivity features have been investigated (Stephan, 1989[Stephan, D. W. (1989). Coord. Chem. Rev. 95, 41-107.]; He et al., 1992[He, Z., Lugan, P., Neibecker, D., Mathieu, R. & Bonnet, J.-J. (1992). J. Organomet. Chem. 426, 247-259.]; Comte et al., 1997[Comte, V., Blacque, O., Kubicki, M. M. & Moïse, C. (1997). Organometallics, 16, 5763-5769.]; Lavastre et al., 1997[Lavastre, O., Bonnet, G., Boni, G., Kubicki, M. M. & Moïse, C. (1997). J. Organomet. Chem. 547, 141-147.]). These compounds are usually prepared by the reaction of anionic [LnMPR2] salts with a transition metal–halide complex (Jenkins & Loeb, 1989[Jenkins, H. A. & Loeb, S. J. (1989). Can. J. Chem. 67, 1230-1235.]) or by oxidative addition of the P—H bond of an [LnMPR2H] complex across a second low-valent metal atom (Powell et al., 1987[Powell, J., Gregg, M. R. & Sawyer, J. F. (1987). J. Chem. Soc. Chem. Commun. pp. 1029-1031.]). This latter route has been used to prepare the title complex [FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2 (I)[link] and related complexes by oxidative addition of [(OC)3Fe(H)(SiR3)(PPh2H)] across [Pt(CH2=CH2)(PPh3)2] (Fig. 1[link]). These heterodinuclear systems display an inter­esting reactivity such as ligand-induced SiR3 migration from iron to platinum, which has been studied both experimentally (Braunstein et al., 1992[Braunstein, P., Knorr, M., Hirle, B., Reinhard, G. & Schubert, U. (1992). Angew. Chem. Int. Ed. Engl. 31, 1583-1585.]) and theoretically (Messaoudi et al., 2007[Messaoudi, A., Deglmann, P., Braunstein, P. & Hofmann, P. (2007). Inorg. Chem. 46, 7899-7909.]). Another reactivity pattern of these electron-rich [(OC)3Fe(SiR3)(μ2-PR2)Pt(PPh3)2] compounds is their conversion to hydride-bridged μ2-phospido-complexes by means of protonation with HBF4, with concomitant cleavage of the Fe—SiR3 bond (Knorr et al., 1994[Knorr, M., Stährfeldt, T., Braunstein, P., Reinhard, G., Hauenstein, P., Mayer, B., Schubert, U., Khan, S. & Kaesz, H. D. (1994). Chem. Ber. 127, 295-304.]).

[Scheme 1]
[Figure 1]
Figure 1
The reaction scheme for the synthesis of (I)[link].

2. Structural commentary

Compound (I)[link] crystallized from CH2Cl2/heptane as a di­chloro­methane solvate in the triclinic space group P[\overline{1}]. The mol­ecular structure of the organometallic mol­ecule is depicted in Fig. 2[link]. The iron and platinum atoms are linked by a phosphide bridge and a formal metal–metal bond, whose Fe—Pt separation of 2.7738 (4) Å is somewhat longer, probably because of steric hindrance between the Ph groups of the PPh3 and PPh2 ligands, than those reported for [(OC)3Fe(SiPh3)(μ-PPh2)Pt(PMe3)2] [Fe—Pt = 2.701 (2) Å; Knorr et al., 1994[Knorr, M., Stährfeldt, T., Braunstein, P., Reinhard, G., Hauenstein, P., Mayer, B., Schubert, U., Khan, S. & Kaesz, H. D. (1994). Chem. Ber. 127, 295-304.]], [(OC)3Fe(SiPh3)(μ-PPh2)Pt{Ph2C(=CH2)PPh2}] [Fe—Pt = 2.659 (2) Å; Knorr et al., 1994[Knorr, M., Stährfeldt, T., Braunstein, P., Reinhard, G., Hauenstein, P., Mayer, B., Schubert, U., Khan, S. & Kaesz, H. D. (1994). Chem. Ber. 127, 295-304.]], [(OC)3Fe(SiPh3)(μ-PPh2)Pt(C≡N-Xyl­yl)(PPh3)] [Fe—Pt = 2.631 (1) Å; Braunstein et al., 2000[Braunstein, P., Knorr, M., Reinhard, G., Schubert, U. & Stährfeldt, T. (2000). Chem. Eur. J. 6, 4265-4278.]] and [(OC)3Fe(SiPh3)(μ-PPh2)Pt(CO)(PPh3)] [Fe—Pt = 2.620 (2) Å; Reinhard et al., 1993[Reinhard, G., Knorr, M., Braunstein, P., Schubert, U., Khan, S., Strouse, C. E., Kaesz, H. D. & Zinn, A. (1993). Chem. Ber. 126, 17-21.]]. The Fe—Si bond length of 2.3497 (9) Å is quite comparable with the Fe—Si bond lengths in the latter four compounds, which range from 2.330 (1) to 2.356 (3) Å. However, a striking difference concerns the relative position of the SiR3 substituent with respect to the bridging PPh2 group. Whereas in all four SiPh3-bearing complexes the silyl group is in a trans-position with respect to the PPh2 bridge, the SiPh2Me ligand of (I)[link] is roughly colinear with the Fe–Pt vector, the Si—Fe—Pt angle being 169.07 (3)°. The P—Fe—Si angle in (I)[link] amounts to 119.32 (3)°, whilst that of [(OC)3Fe(SiPh3)(μ-PPh2)Pt(C≡N-Xyl­yl)(PPh3)] [175.1 (1)°; Braunstein et al., 2000[Braunstein, P., Knorr, M., Reinhard, G., Schubert, U. & Stährfeldt, T. (2000). Chem. Eur. J. 6, 4265-4278.]] is close to a theoretical linear trans-arrangement.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound (I)[link], with displacement ellipsoids shown at the 50% probabily level. H atoms have been omitted for clarity.

3. Supra­molecular features

The crystal structure of (I)[link] is built of discrete dimetallic mol­ecules without significant specific inter­molecular inter­actions.

4. Database survey

Other examples of crystallographically characterized μ-PPh2 Fe–Pt complexes featuring a metal–metal bond are [(OC)3(H)Fe(μ-PPh2)Pt(PPh3)2] (Powell et al., 1987[Powell, J., Gregg, M. R. & Sawyer, J. F. (1987). J. Chem. Soc. Chem. Commun. pp. 1029-1031.]), [(OC)3Fe(SiPh3)(μ-PPh2)Pt(1,5-COD)] (COD = cyclo­octa­diene) (Braunstein et al., 1995[Braunstein, P., Faure, T., Knorr, M., Stährfeldt, T., DeCian, A. & Fischer, J. (1995). Gazz. Chim. Ital. 125, 35-50.]) and [NMe4][(OC)3{(MeO)3Si}Fe(μ-PPh2)Pt{Ph2PCH=C(O)Ph}] (Braunstein et al., 1999[Braunstein, P., Stährfeldt, T. & Fischer, J. (1999). C. R. Acad. Sci. Ser. IIc, pp. 273-292.]). There is also one example of a heterodinuclear μ-PCy2 complex, namely [(OC)3(Cl)Fe(μ-PCy2)Pt(PEt3)2] (Jenkins et al., 1990[Jenkins, H. A., Loeb, S. J., Dick, D. G. & Stephan, D. W. (1990). Can. J. Chem. 68, 869-874.]).

5. Synthesis and crystallization

The synthesis of (I)[link] has been already published (Reinhard et al., 1993[Reinhard, G., Knorr, M., Braunstein, P., Schubert, U., Khan, S., Strouse, C. E., Kaesz, H. D. & Zinn, A. (1993). Chem. Ber. 126, 17-21.]). We synthesized (I)[link] in a somewhat improved manner by reaction of [(OC)3Fe(H)(SiMePh2)(PPh2H)] (462 mg, 1 mmol) with [Pt(CH2=CH2)(PPh3)2] (749 mg, 1 mmol) in toluene (Fig. 1[link]). The solution was stirred at 298 K for 1h and then concentrated until precipitation started. The precipitation of product (I)[link] was completed by addition of hexane. The resulting yellow powder was filtered off, rinsed with hexane and dried under vacuum (969 mg, 78% yield). Suitable crystals were obtained by layering a CH2Cl2 solution with heptane and storing at 278 K in a refrigerator.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were placed in calculated positions and allowed to ride on their parent atoms. C—H distances were set to 0.95 Å (aromatic) and 0.98 Å (meth­yl) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for aromatic H atoms. The CH2Cl2 solvent mol­ecule has half occupancy and is disordered over two sites related by an inversion centre. Similar Uij constraints were applied within the disordered parts of di­chloro­methane solvent by using an EADP constraint to maintain a reasonable model.

Table 1
Experimental details

Crystal data
Chemical formula [FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2
Mr 1284.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 115
a, b, c (Å) 10.3522 (6), 13.0010 (8), 21.9803 (14)
α, β, γ (°) 99.823 (2), 99.061 (2), 102.677 (2)
V3) 2784.8 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.97
Crystal size (mm) 0.15 × 0.05 × 0.02
 
Data collection
Diffractometer Nonius Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.64, 0.74
No. of measured, independent and observed [I > 2σ(I)] reflections 89421, 12883, 11264
Rint 0.053
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.06
No. of reflections 12883
No. of parameters 671
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.13, −1.29
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

The bridging of metal–metal-bonded heterodinuclear complexes with µ2-PR2 phosphido bridges allows both the stabilization of the metal–metal bond and permits a fine-tuning of the reactivity of heterodinuclear systems by steric and electronic variation of the R substituents. In addition to the numerous examples of homodinuclear complexes, many µ-phosphido heterobimetallic complexes (with and without a meta–l-metal bond) are nowadays well documented and both their structural and reactivity features have been investigated (Stephan, 1989; He et al., 1992; Comte et al., 1997; Lavastre et al., 1997). These compounds are usually prepared by the reaction of anionic [LnMPR2]- salts with a transition metal–halide complex (Jenkins & Loeb, 1989) or by oxidative addition of the P—H bond of an [LnMPR2H] complex across a second low-valent metal centre (Powell et al., 1987). This latter route has been used to prepare the title complex [(OC)3Fe(SiMePh2)(µ2-PPh2)Pt(PPh3)2] (I) and related complexes by oxidative addition of [(OC)3Fe(H)(SiR3)(PPh2H)] across [Pt(CH2=CH2)(PPh3)2] (Fig. 1). These heterodinuclear systems display an inter­esting reactivity such as ligand-induced SiR3 migration from iron to platinum, which has been studied both experimentally (Braunstein et al., 1992) and theoretically (Messaoudi et al., 2007). Another reactivity pattern of these electron-rich [(OC)3Fe(SiR3)(µ2-PR2)Pt(PPh3)2] compounds is their conversion to hydride-bridged µ2-phospido-complexes by means of protonation with HBF4, with concomitant cleavage of the Fe—SiR3 bond (Knorr et al., 1994).

Structural commentary top

Compound (I) crystallizes from CH2Cl2/heptane as a di­chloro­methane solvate in the triclinic space group P1. The molecular structure of the organometallic molecule is depicted in Fig. 1. The iron and platinum centres are linked by a phosphide bridge and a formal metal–metal bond, whose Fe—Pt separation of 2.7738 (4) Å is somewhat longer, probably because of steric hindrance between the Ph groups of the PPh3 and PPh2 ligands, than those reported for [(OC)3Fe(SiPh3)(µ-PPh2)Pt(PMe3)2] [Fe—Pt = 2.701 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(µ-PPh2)Pt{Ph2C(=CH2)PPh2}] [Fe—Pt = 2.659 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(µ-PPh2)Pt(C N-Xylyl)(PPh3)] [Fe—Pt = 2.631 (1) Å; Braunstein et al., 2000] and [(OC)3Fe(SiPh3)(µ-PPh2)Pt(CO)(PPh3)] [Fe—Pt = 2.620 (2) Å; Reinhard et al., 1993]. The Fe—Si bond length of 2.3497 (9) Å is quite comparable with the Fe—Si bond lengths in the latter four compounds, which range from 2.330 (1) to 2.356 (3) Å. However, a striking difference concerns the relative position of the SiR3 substituent with respect to the bridging PPh2 group. Whereas in all four SiPh3-bearing complexes the silyl group is in a trans-position with respect to the PPh2 bridge, the SiPh2Me ligand of (I) is roughly colinear with the Fe–Pt vector, the Si—Fe—Pt angle being 169.07 (3)°. The P—Fe—Si angle in (I) amounts to 119.32 (3)°, whilst that of [(OC)3Fe(SiPh3)(µ-PPh2)Pt(CN-Xylyl)(PPh3)] [175.1 (1)°; Braunstein et al., 2000] is close to a theoretical linear trans-arrangement.

Supra­molecular features top

The crystal structure of (I) is built of discrete dimetallic molecules without significant specific inter­molecular inter­actions.

Database survey top

Other examples of crystallographically characterized µ-PPh2 Fe–Pt complexes featuring a metal–metal bond are [(OC)3(H)Fe(µ-PPh2)Pt(PPh3)2] (Powell et al., 1987), [(OC)3Fe(SiPh3)(µ-PPh2)Pt(1,5-COD)] (COD = cyclo­octa­diene) (Braunstein et al., 1995) and [NMe4][(OC)3{(MeO)3Si}Fe(µ-PPh2)Pt{Ph2PCH=C(O)Ph}] (Braunstein et al., 1999). There is also one example of a heterodinuclear µ-PCy2 complex, namely [(OC)3(Cl)Fe(µ-PCy2)Pt(PEt3)2] (Jenkins et al., 1990).

Synthesis and crystallization top

The synthesis of (I) has been already published (Reinhard et al., 1993). We synthesized (I) in a somewhat improved manner by reaction of [(OC)3Fe(H)(SiMePh2)(PPh2H)] (462 mg, 1 mmol) with [Pt(CH2=CH2)(PPh3)2] (749 mg, 1 mmol) in toluene (Fig. 1). The solution was stirred at 298 K for 1h and then concentrated until precipitation started. The precipitation of product (I) was completed by addition of hexane. The resulting yellow powder was filtered off, rinsed with hexane and dried under vacuum (969 mg, 78% yield). Suitable crystals were obtained by layering a CH2Cl2 solution with heptane and storing at 278 K in a refrigerator.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in calculated positions and allowed to ride on their parent atoms. C—H distances were set to 0.95 Å (aromatic) and 0.98 Å (methyl) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for aromatic H atoms. The CH2Cl2 solvent molecule has half occupancy and is disordered over two sites related by an inversion centre. Similar Uij constraints were applied within the disordered parts of di­chloro­methane solvent by using an EADP constraint to maintain a reasonable model.

Related literature top

For related literature, see: Braunstein et al. (1992, 1995, 1999, 2000); Comte et al. (1997); He et al. (1992); Jenkins & Loeb (1989); Jenkins et al. (1990); Knorr et al. (1994); Lavastre et al. (1997); Messaoudi et al. (2007); Powell et al. (1987); Reinhard et al. (1993).

Structure description top

The bridging of metal–metal-bonded heterodinuclear complexes with µ2-PR2 phosphido bridges allows both the stabilization of the metal–metal bond and permits a fine-tuning of the reactivity of heterodinuclear systems by steric and electronic variation of the R substituents. In addition to the numerous examples of homodinuclear complexes, many µ-phosphido heterobimetallic complexes (with and without a meta–l-metal bond) are nowadays well documented and both their structural and reactivity features have been investigated (Stephan, 1989; He et al., 1992; Comte et al., 1997; Lavastre et al., 1997). These compounds are usually prepared by the reaction of anionic [LnMPR2]- salts with a transition metal–halide complex (Jenkins & Loeb, 1989) or by oxidative addition of the P—H bond of an [LnMPR2H] complex across a second low-valent metal centre (Powell et al., 1987). This latter route has been used to prepare the title complex [(OC)3Fe(SiMePh2)(µ2-PPh2)Pt(PPh3)2] (I) and related complexes by oxidative addition of [(OC)3Fe(H)(SiR3)(PPh2H)] across [Pt(CH2=CH2)(PPh3)2] (Fig. 1). These heterodinuclear systems display an inter­esting reactivity such as ligand-induced SiR3 migration from iron to platinum, which has been studied both experimentally (Braunstein et al., 1992) and theoretically (Messaoudi et al., 2007). Another reactivity pattern of these electron-rich [(OC)3Fe(SiR3)(µ2-PR2)Pt(PPh3)2] compounds is their conversion to hydride-bridged µ2-phospido-complexes by means of protonation with HBF4, with concomitant cleavage of the Fe—SiR3 bond (Knorr et al., 1994).

Compound (I) crystallizes from CH2Cl2/heptane as a di­chloro­methane solvate in the triclinic space group P1. The molecular structure of the organometallic molecule is depicted in Fig. 1. The iron and platinum centres are linked by a phosphide bridge and a formal metal–metal bond, whose Fe—Pt separation of 2.7738 (4) Å is somewhat longer, probably because of steric hindrance between the Ph groups of the PPh3 and PPh2 ligands, than those reported for [(OC)3Fe(SiPh3)(µ-PPh2)Pt(PMe3)2] [Fe—Pt = 2.701 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(µ-PPh2)Pt{Ph2C(=CH2)PPh2}] [Fe—Pt = 2.659 (2) Å; Knorr et al., 1994], [(OC)3Fe(SiPh3)(µ-PPh2)Pt(C N-Xylyl)(PPh3)] [Fe—Pt = 2.631 (1) Å; Braunstein et al., 2000] and [(OC)3Fe(SiPh3)(µ-PPh2)Pt(CO)(PPh3)] [Fe—Pt = 2.620 (2) Å; Reinhard et al., 1993]. The Fe—Si bond length of 2.3497 (9) Å is quite comparable with the Fe—Si bond lengths in the latter four compounds, which range from 2.330 (1) to 2.356 (3) Å. However, a striking difference concerns the relative position of the SiR3 substituent with respect to the bridging PPh2 group. Whereas in all four SiPh3-bearing complexes the silyl group is in a trans-position with respect to the PPh2 bridge, the SiPh2Me ligand of (I) is roughly colinear with the Fe–Pt vector, the Si—Fe—Pt angle being 169.07 (3)°. The P—Fe—Si angle in (I) amounts to 119.32 (3)°, whilst that of [(OC)3Fe(SiPh3)(µ-PPh2)Pt(CN-Xylyl)(PPh3)] [175.1 (1)°; Braunstein et al., 2000] is close to a theoretical linear trans-arrangement.

The crystal structure of (I) is built of discrete dimetallic molecules without significant specific inter­molecular inter­actions.

Other examples of crystallographically characterized µ-PPh2 Fe–Pt complexes featuring a metal–metal bond are [(OC)3(H)Fe(µ-PPh2)Pt(PPh3)2] (Powell et al., 1987), [(OC)3Fe(SiPh3)(µ-PPh2)Pt(1,5-COD)] (COD = cyclo­octa­diene) (Braunstein et al., 1995) and [NMe4][(OC)3{(MeO)3Si}Fe(µ-PPh2)Pt{Ph2PCH=C(O)Ph}] (Braunstein et al., 1999). There is also one example of a heterodinuclear µ-PCy2 complex, namely [(OC)3(Cl)Fe(µ-PCy2)Pt(PEt3)2] (Jenkins et al., 1990).

For related literature, see: Braunstein et al. (1992, 1995, 1999, 2000); Comte et al. (1997); He et al. (1992); Jenkins & Loeb (1989); Jenkins et al. (1990); Knorr et al. (1994); Lavastre et al. (1997); Messaoudi et al. (2007); Powell et al. (1987); Reinhard et al. (1993).

Synthesis and crystallization top

The synthesis of (I) has been already published (Reinhard et al., 1993). We synthesized (I) in a somewhat improved manner by reaction of [(OC)3Fe(H)(SiMePh2)(PPh2H)] (462 mg, 1 mmol) with [Pt(CH2=CH2)(PPh3)2] (749 mg, 1 mmol) in toluene (Fig. 1). The solution was stirred at 298 K for 1h and then concentrated until precipitation started. The precipitation of product (I) was completed by addition of hexane. The resulting yellow powder was filtered off, rinsed with hexane and dried under vacuum (969 mg, 78% yield). Suitable crystals were obtained by layering a CH2Cl2 solution with heptane and storing at 278 K in a refrigerator.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were placed in calculated positions and allowed to ride on their parent atoms. C—H distances were set to 0.95 Å (aromatic) and 0.98 Å (methyl) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for aromatic H atoms. The CH2Cl2 solvent molecule has half occupancy and is disordered over two sites related by an inversion centre. Similar Uij constraints were applied within the disordered parts of di­chloro­methane solvent by using an EADP constraint to maintain a reasonable model.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The reaction scheme for the synthesis of (I).
[Figure 2] Fig. 2. The molecular structure of the title compound (I), with displacement ellipsoids shown at the 50% probabily level. H atoms have been omitted for clarity.
Tricarbonyl(µ-diphenylphosphido-κ2P:P)(methyldiphenylsilyl-κSi)bis(triphenylphosphane-κP)iron(II)platinum(0)(FePt) dichloromethane hemisolvate top
Crystal data top
[FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2Z = 2
Mr = 1284.47F(000) = 1290
Triclinic, P1Dx = 1.532 Mg m3
a = 10.3522 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.0010 (8) ÅCell parameters from 9768 reflections
c = 21.9803 (14) Åθ = 2.4–27.2°
α = 99.823 (2)°µ = 2.97 mm1
β = 99.061 (2)°T = 115 K
γ = 102.677 (2)°Prism, clear dark red
V = 2784.8 (3) Å30.15 × 0.05 × 0.02 mm
Data collection top
Nonius Kappa APEXII
diffractometer
12883 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-18011264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9 pixels mm-1θmax = 27.6°, θmin = 2.8°
φ and ω scans'h = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1616
Tmin = 0.64, Tmax = 0.74l = 2828
89421 measured reflections
Refinement top
Refinement on F23 constraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0278P)2 + 3.2483P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
12883 reflectionsΔρmax = 1.13 e Å3
671 parametersΔρmin = 1.29 e Å3
0 restraints
Crystal data top
[FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2γ = 102.677 (2)°
Mr = 1284.47V = 2784.8 (3) Å3
Triclinic, P1Z = 2
a = 10.3522 (6) ÅMo Kα radiation
b = 13.0010 (8) ŵ = 2.97 mm1
c = 21.9803 (14) ÅT = 115 K
α = 99.823 (2)°0.15 × 0.05 × 0.02 mm
β = 99.061 (2)°
Data collection top
Nonius Kappa APEXII
diffractometer
12883 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
11264 reflections with I > 2σ(I)
Tmin = 0.64, Tmax = 0.74Rint = 0.053
89421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.06Δρmax = 1.13 e Å3
12883 reflectionsΔρmin = 1.29 e Å3
671 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1586 (3)0.6037 (2)0.37770 (14)0.0155 (6)
C20.0216 (3)0.5753 (2)0.35048 (15)0.0178 (6)
H20.00730.54770.30630.021*
C30.0736 (3)0.5873 (3)0.38767 (16)0.0250 (7)
H30.16700.56860.36890.030*
C40.0317 (4)0.6265 (3)0.45199 (17)0.0307 (8)
H40.09640.63370.47760.037*
C50.1042 (4)0.6550 (3)0.47889 (16)0.0318 (8)
H50.13260.68160.52310.038*
C60.1997 (3)0.6455 (3)0.44221 (15)0.0245 (7)
H60.29320.66740.46110.029*
C70.3470 (3)0.7318 (2)0.32479 (14)0.0166 (6)
C80.4762 (3)0.7690 (3)0.31449 (15)0.0235 (7)
H80.53430.72190.31100.028*
C90.5205 (4)0.8755 (3)0.30925 (19)0.0328 (9)
H90.60890.90070.30190.039*
C100.4375 (4)0.9447 (3)0.31459 (19)0.0344 (9)
H100.46841.01710.31050.041*
C110.3098 (4)0.9093 (3)0.32577 (17)0.0293 (8)
H110.25300.95720.33000.035*
C120.2646 (3)0.8032 (3)0.33081 (15)0.0221 (7)
H120.17640.77880.33850.027*
C130.4226 (3)0.5582 (3)0.37477 (14)0.0178 (6)
C140.5117 (3)0.6346 (3)0.42404 (15)0.0234 (7)
H140.50290.70660.43220.028*
C150.6140 (3)0.6062 (3)0.46162 (16)0.0294 (8)
H150.67360.65860.49570.035*
C160.6291 (3)0.5025 (3)0.44955 (18)0.0323 (9)
H160.69850.48340.47560.039*
C170.5430 (3)0.4256 (3)0.39946 (18)0.0290 (8)
H170.55450.35440.39060.035*
C180.4396 (3)0.4537 (3)0.36219 (16)0.0215 (7)
H180.38040.40130.32800.026*
C190.2220 (3)0.6610 (2)0.14442 (14)0.0141 (6)
C200.2587 (3)0.7106 (2)0.09621 (15)0.0171 (6)
H200.30940.68010.06890.020*
C210.2218 (3)0.8040 (3)0.08772 (15)0.0204 (7)
H210.24810.83770.05490.025*
C220.1463 (3)0.8487 (3)0.12713 (16)0.0233 (7)
H220.12330.91400.12220.028*
C230.1050 (3)0.7973 (3)0.17353 (16)0.0231 (7)
H230.05100.82630.19960.028*
C240.1420 (3)0.7037 (2)0.18217 (14)0.0175 (6)
H240.11270.66850.21390.021*
C250.4622 (3)0.5889 (2)0.18633 (13)0.0124 (6)
C260.5396 (3)0.6848 (2)0.17855 (15)0.0184 (6)
H260.49730.73100.15800.022*
C270.6792 (3)0.7145 (3)0.20055 (15)0.0210 (7)
H270.73120.78150.19580.025*
C280.7418 (3)0.6471 (3)0.22915 (16)0.0235 (7)
H280.83710.66730.24380.028*
C290.6662 (3)0.5501 (3)0.23649 (16)0.0248 (7)
H290.70980.50320.25580.030*
C300.5266 (3)0.5205 (2)0.21581 (15)0.0183 (6)
H300.47480.45420.22160.022*
C310.2576 (3)0.4652 (2)0.08079 (13)0.0130 (6)
C320.3652 (3)0.4374 (3)0.05658 (15)0.0198 (6)
H320.45250.45520.08290.024*
C330.3446 (3)0.3835 (3)0.00619 (15)0.0238 (7)
H330.41850.36590.02260.029*
C340.2182 (3)0.3557 (2)0.04440 (15)0.0209 (7)
H340.20490.31840.08690.025*
C350.1103 (3)0.3819 (3)0.02095 (15)0.0218 (7)
H350.02290.36270.04730.026*
C360.1304 (3)0.4362 (3)0.04104 (14)0.0184 (6)
H360.05600.45400.05680.022*
C370.1517 (3)0.2170 (2)0.13155 (14)0.0155 (6)
C380.2858 (3)0.2223 (3)0.15870 (15)0.0196 (6)
H380.32570.26760.19900.024*
C390.3610 (3)0.1630 (3)0.12791 (16)0.0228 (7)
H390.45160.16760.14690.027*
C400.3032 (3)0.0968 (3)0.06910 (16)0.0247 (7)
H400.35380.05470.04810.030*
C410.1728 (3)0.0918 (3)0.04094 (16)0.0243 (7)
H410.13430.04700.00030.029*
C420.0966 (3)0.1521 (3)0.07165 (15)0.0198 (6)
H420.00710.14900.05170.024*
C430.0975 (3)0.2911 (2)0.12651 (14)0.0148 (6)
C440.1362 (3)0.3862 (2)0.12109 (15)0.0184 (6)
H440.07380.45400.13940.022*
C450.2639 (3)0.3830 (3)0.08942 (16)0.0239 (7)
H450.28870.44820.08590.029*
C460.3560 (3)0.2844 (3)0.06278 (16)0.0242 (7)
H460.44370.28220.04090.029*
C470.3202 (3)0.1894 (3)0.06799 (15)0.0216 (7)
H470.38330.12190.04980.026*
C480.1916 (3)0.1929 (3)0.09989 (14)0.0177 (6)
H480.16760.12740.10360.021*
C490.1895 (3)0.0392 (2)0.21876 (15)0.0177 (6)
C500.1184 (3)0.0128 (2)0.17901 (15)0.0207 (7)
H500.02360.00190.19230.025*
C510.1827 (4)0.0793 (3)0.12126 (16)0.0253 (7)
H510.13210.11380.09560.030*
C520.3210 (4)0.0958 (3)0.10066 (16)0.0272 (8)
H520.36530.14120.06090.033*
C530.3936 (3)0.0457 (3)0.13849 (17)0.0262 (7)
H530.48820.05650.12460.031*
C540.3284 (3)0.0206 (3)0.19708 (16)0.0227 (7)
H540.37990.05400.22280.027*
C550.2275 (3)0.1690 (3)0.34062 (17)0.0267 (7)
H55A0.29520.19180.31320.040*
H55B0.18380.22770.37730.040*
H55C0.27170.10520.35480.040*
C560.0169 (3)0.0523 (3)0.34648 (15)0.0214 (7)
C570.0796 (4)0.1001 (3)0.40177 (17)0.0322 (8)
H570.11780.17580.41060.039*
C580.1216 (4)0.0408 (3)0.44428 (19)0.0412 (10)
H580.18790.07570.48130.049*
C590.0668 (4)0.0689 (3)0.43261 (19)0.0374 (9)
H590.09420.10990.46190.045*
C600.0282 (4)0.1191 (3)0.3781 (2)0.0363 (9)
H600.06590.19490.36970.044*
C610.0684 (4)0.0592 (3)0.33573 (17)0.0274 (7)
H610.13300.09510.29820.033*
C620.1061 (3)0.3215 (2)0.26394 (15)0.0188 (6)
C630.1099 (3)0.3508 (2)0.35684 (15)0.0190 (6)
C640.1618 (3)0.1991 (3)0.27758 (15)0.0196 (6)
O10.2091 (2)0.3414 (2)0.25651 (12)0.0302 (6)
O20.1469 (3)0.38590 (19)0.41022 (11)0.0283 (5)
O30.2311 (3)0.1409 (2)0.27948 (13)0.0334 (6)
Si10.09598 (8)0.13518 (7)0.29544 (4)0.01607 (17)
P10.28062 (7)0.58904 (6)0.32670 (4)0.01326 (15)
P20.27801 (7)0.54250 (6)0.16115 (3)0.01088 (14)
P30.06216 (7)0.29705 (6)0.17794 (4)0.01213 (14)
Fe10.05124 (4)0.28585 (3)0.27603 (2)0.01319 (9)
Pt10.18625 (2)0.45986 (2)0.23346 (2)0.01069 (4)
Cl10.4990 (4)0.8723 (3)0.5382 (2)0.1272 (12)0.5
Cl20.5633 (5)1.0759 (3)0.4954 (2)0.1272 (12)0.5
C650.4441 (7)0.9859 (6)0.5229 (7)0.1272 (12)0.5
H65A0.35860.96160.49100.153*0.5
H65B0.42511.02450.56200.153*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0187 (15)0.0137 (14)0.0161 (15)0.0036 (12)0.0080 (12)0.0046 (12)
C20.0209 (15)0.0157 (15)0.0175 (15)0.0036 (12)0.0057 (12)0.0049 (12)
C30.0195 (16)0.0279 (18)0.0266 (18)0.0046 (14)0.0055 (14)0.0045 (15)
C40.0296 (19)0.039 (2)0.0279 (19)0.0094 (16)0.0179 (16)0.0061 (16)
C50.035 (2)0.044 (2)0.0156 (17)0.0088 (17)0.0092 (15)0.0015 (16)
C60.0209 (16)0.0294 (18)0.0202 (17)0.0024 (14)0.0037 (13)0.0025 (14)
C70.0201 (15)0.0143 (14)0.0123 (14)0.0005 (12)0.0022 (12)0.0007 (12)
C80.0257 (17)0.0190 (16)0.0227 (17)0.0024 (13)0.0084 (14)0.0032 (13)
C90.034 (2)0.0201 (17)0.046 (2)0.0012 (15)0.0241 (18)0.0046 (16)
C100.044 (2)0.0149 (17)0.044 (2)0.0004 (15)0.0202 (19)0.0047 (16)
C110.040 (2)0.0166 (16)0.035 (2)0.0086 (15)0.0153 (17)0.0046 (15)
C120.0245 (17)0.0171 (16)0.0241 (17)0.0023 (13)0.0067 (14)0.0045 (13)
C130.0148 (14)0.0232 (16)0.0160 (15)0.0029 (12)0.0047 (12)0.0067 (13)
C140.0203 (16)0.0260 (17)0.0215 (17)0.0045 (14)0.0030 (13)0.0018 (14)
C150.0187 (16)0.044 (2)0.0217 (18)0.0036 (15)0.0013 (14)0.0068 (16)
C160.0186 (17)0.047 (2)0.036 (2)0.0093 (16)0.0037 (15)0.0240 (18)
C170.0214 (17)0.0305 (19)0.040 (2)0.0076 (15)0.0076 (16)0.0183 (17)
C180.0178 (15)0.0222 (17)0.0247 (17)0.0025 (13)0.0033 (13)0.0100 (14)
C190.0118 (13)0.0122 (14)0.0170 (15)0.0016 (11)0.0000 (11)0.0041 (12)
C200.0119 (14)0.0189 (15)0.0208 (16)0.0031 (12)0.0029 (12)0.0067 (13)
C210.0171 (15)0.0209 (16)0.0243 (17)0.0028 (13)0.0017 (13)0.0121 (13)
C220.0260 (17)0.0161 (16)0.0292 (18)0.0086 (13)0.0006 (14)0.0091 (14)
C230.0270 (17)0.0193 (16)0.0264 (18)0.0119 (14)0.0070 (14)0.0048 (14)
C240.0187 (15)0.0181 (15)0.0164 (15)0.0058 (12)0.0028 (12)0.0049 (12)
C250.0111 (13)0.0148 (14)0.0107 (14)0.0033 (11)0.0016 (11)0.0015 (11)
C260.0169 (15)0.0189 (16)0.0193 (16)0.0031 (12)0.0016 (12)0.0078 (13)
C270.0147 (15)0.0238 (17)0.0210 (17)0.0021 (13)0.0027 (13)0.0052 (13)
C280.0130 (15)0.0269 (18)0.0262 (18)0.0031 (13)0.0003 (13)0.0002 (14)
C290.0201 (16)0.0218 (17)0.0303 (19)0.0095 (13)0.0034 (14)0.0025 (14)
C300.0185 (15)0.0142 (15)0.0207 (16)0.0040 (12)0.0005 (13)0.0035 (12)
C310.0179 (14)0.0099 (13)0.0114 (14)0.0031 (11)0.0022 (11)0.0039 (11)
C320.0169 (15)0.0258 (17)0.0163 (16)0.0087 (13)0.0001 (12)0.0027 (13)
C330.0271 (17)0.0270 (18)0.0195 (17)0.0138 (14)0.0069 (14)0.0000 (14)
C340.0317 (18)0.0159 (15)0.0139 (15)0.0060 (13)0.0033 (13)0.0008 (12)
C350.0187 (16)0.0228 (17)0.0177 (16)0.0009 (13)0.0032 (13)0.0020 (13)
C360.0148 (14)0.0218 (16)0.0172 (15)0.0019 (12)0.0036 (12)0.0031 (13)
C370.0176 (15)0.0109 (14)0.0185 (15)0.0025 (11)0.0057 (12)0.0039 (12)
C380.0184 (15)0.0202 (16)0.0188 (16)0.0027 (13)0.0035 (13)0.0034 (13)
C390.0187 (16)0.0225 (17)0.0311 (19)0.0078 (13)0.0088 (14)0.0098 (14)
C400.0297 (18)0.0199 (16)0.0305 (19)0.0104 (14)0.0174 (15)0.0056 (14)
C410.0313 (18)0.0171 (16)0.0219 (17)0.0023 (14)0.0103 (14)0.0026 (13)
C420.0174 (15)0.0198 (16)0.0205 (16)0.0026 (12)0.0037 (13)0.0028 (13)
C430.0143 (14)0.0155 (14)0.0147 (15)0.0014 (11)0.0043 (12)0.0056 (12)
C440.0174 (15)0.0152 (15)0.0237 (17)0.0027 (12)0.0067 (13)0.0062 (13)
C450.0214 (16)0.0238 (17)0.0331 (19)0.0122 (14)0.0085 (14)0.0128 (15)
C460.0154 (15)0.0343 (19)0.0262 (18)0.0087 (14)0.0021 (13)0.0139 (15)
C470.0161 (15)0.0241 (17)0.0211 (17)0.0010 (13)0.0019 (13)0.0048 (13)
C480.0176 (15)0.0190 (15)0.0175 (15)0.0045 (12)0.0045 (12)0.0057 (12)
C490.0191 (15)0.0109 (14)0.0226 (16)0.0000 (12)0.0050 (13)0.0064 (12)
C500.0255 (17)0.0138 (15)0.0237 (17)0.0043 (13)0.0061 (14)0.0062 (13)
C510.037 (2)0.0150 (16)0.0245 (18)0.0070 (14)0.0067 (15)0.0048 (13)
C520.039 (2)0.0135 (15)0.0216 (17)0.0004 (14)0.0046 (15)0.0027 (13)
C530.0227 (17)0.0192 (17)0.0321 (19)0.0035 (13)0.0016 (14)0.0112 (15)
C540.0211 (16)0.0185 (16)0.0282 (18)0.0019 (13)0.0051 (14)0.0080 (14)
C550.0261 (18)0.0254 (18)0.0284 (19)0.0028 (14)0.0136 (15)0.0025 (15)
C560.0253 (17)0.0191 (16)0.0231 (17)0.0052 (13)0.0102 (14)0.0091 (13)
C570.046 (2)0.0251 (19)0.0237 (19)0.0060 (16)0.0019 (16)0.0095 (15)
C580.050 (3)0.045 (2)0.027 (2)0.012 (2)0.0002 (18)0.0129 (18)
C590.050 (2)0.040 (2)0.039 (2)0.024 (2)0.0167 (19)0.0267 (19)
C600.046 (2)0.0249 (19)0.047 (2)0.0133 (17)0.018 (2)0.0179 (18)
C610.0331 (19)0.0206 (17)0.0300 (19)0.0062 (15)0.0092 (15)0.0079 (15)
C620.0239 (17)0.0151 (15)0.0198 (16)0.0057 (13)0.0073 (13)0.0062 (12)
C630.0251 (16)0.0131 (15)0.0190 (17)0.0025 (12)0.0057 (13)0.0059 (13)
C640.0197 (16)0.0199 (16)0.0208 (16)0.0022 (13)0.0072 (13)0.0097 (13)
O10.0258 (13)0.0354 (14)0.0414 (15)0.0174 (11)0.0157 (11)0.0191 (12)
O20.0410 (14)0.0226 (12)0.0169 (12)0.0016 (11)0.0022 (11)0.0039 (10)
O30.0351 (14)0.0374 (15)0.0449 (16)0.0244 (12)0.0188 (12)0.0256 (13)
Si10.0184 (4)0.0127 (4)0.0164 (4)0.0012 (3)0.0053 (3)0.0035 (3)
P10.0136 (4)0.0120 (4)0.0127 (4)0.0010 (3)0.0027 (3)0.0016 (3)
P20.0104 (3)0.0100 (3)0.0117 (3)0.0017 (3)0.0018 (3)0.0023 (3)
P30.0118 (3)0.0101 (3)0.0139 (4)0.0019 (3)0.0020 (3)0.0025 (3)
Fe10.0145 (2)0.0110 (2)0.0140 (2)0.00205 (16)0.00347 (16)0.00358 (16)
Pt10.01105 (5)0.00869 (5)0.01160 (6)0.00084 (4)0.00250 (4)0.00217 (4)
Cl10.107 (2)0.101 (3)0.124 (3)0.0166 (17)0.0281 (18)0.050 (2)
Cl20.107 (2)0.101 (3)0.124 (3)0.0166 (17)0.0281 (18)0.050 (2)
C650.107 (2)0.101 (3)0.124 (3)0.0166 (17)0.0281 (18)0.050 (2)
Geometric parameters (Å, º) top
C1—C21.391 (4)C35—C361.384 (4)
C1—C61.390 (4)C36—H360.9500
C1—P11.835 (3)C37—C381.404 (4)
C2—H20.9500C37—C421.394 (4)
C2—C31.393 (4)C37—P31.828 (3)
C3—H30.9500C38—H380.9500
C3—C41.382 (5)C38—C391.381 (4)
C4—H40.9500C39—H390.9500
C4—C51.379 (5)C39—C401.386 (5)
C5—H50.9500C40—H400.9500
C5—C61.384 (5)C40—C411.376 (5)
C6—H60.9500C41—H410.9500
C7—C81.387 (4)C41—C421.397 (4)
C7—C121.396 (4)C42—H420.9500
C7—P11.842 (3)C43—C441.400 (4)
C8—H80.9500C43—C481.393 (4)
C8—C91.390 (5)C43—P31.827 (3)
C9—H90.9500C44—H440.9500
C9—C101.378 (5)C44—C451.382 (4)
C10—H100.9500C45—H450.9500
C10—C111.376 (5)C45—C461.387 (5)
C11—H110.9500C46—H460.9500
C11—C121.384 (5)C46—C471.383 (5)
C12—H120.9500C47—H470.9500
C13—C141.388 (4)C47—C481.391 (4)
C13—C181.394 (4)C48—H480.9500
C13—P11.831 (3)C49—C501.408 (4)
C14—H140.9500C49—C541.396 (4)
C14—C151.393 (5)C49—Si11.890 (3)
C15—H150.9500C50—H500.9500
C15—C161.377 (5)C50—C511.381 (5)
C16—H160.9500C51—H510.9500
C16—C171.389 (5)C51—C521.389 (5)
C17—H170.9500C52—H520.9500
C17—C181.396 (5)C52—C531.381 (5)
C18—H180.9500C53—H530.9500
C19—C201.391 (4)C53—C541.396 (5)
C19—C241.394 (4)C54—H540.9500
C19—P21.834 (3)C55—H55A0.9800
C20—H200.9500C55—H55B0.9800
C20—C211.383 (4)C55—H55C0.9800
C21—H210.9500C55—Si11.890 (3)
C21—C221.393 (5)C56—C571.396 (5)
C22—H220.9500C56—C611.395 (5)
C22—C231.383 (5)C56—Si11.897 (3)
C23—H230.9500C57—H570.9500
C23—C241.388 (4)C57—C581.386 (5)
C24—H240.9500C58—H580.9500
C25—C261.379 (4)C58—C591.377 (6)
C25—C301.405 (4)C59—H590.9500
C25—P21.832 (3)C59—C601.381 (6)
C26—H260.9500C60—H600.9500
C26—C271.394 (4)C60—C611.384 (5)
C27—H270.9500C61—H610.9500
C27—C281.376 (5)C62—O11.145 (4)
C28—H280.9500C62—Fe11.782 (3)
C28—C291.380 (5)C63—O21.153 (4)
C29—H290.9500C63—Fe11.778 (3)
C29—C301.390 (4)C64—O31.152 (4)
C30—H300.9500C64—Fe11.776 (3)
C31—C321.397 (4)Si1—Fe12.3497 (9)
C31—C361.395 (4)P1—Pt12.3346 (8)
C31—P21.832 (3)P2—Pt12.2787 (7)
C32—H320.9500P3—Fe12.2045 (9)
C32—C331.398 (4)P3—Pt12.2475 (7)
C33—H330.9500Fe1—Pt12.7738 (4)
C33—C341.375 (5)Cl1—C651.7602
C34—H340.9500Cl2—C651.7600
C34—C351.385 (4)C65—H65A0.9900
C35—H350.9500C65—H65B0.9900
C2—C1—P1118.8 (2)C40—C41—H41119.8
C6—C1—C2119.4 (3)C40—C41—C42120.4 (3)
C6—C1—P1121.8 (2)C42—C41—H41119.8
C1—C2—H2119.9C37—C42—C41120.1 (3)
C1—C2—C3120.3 (3)C37—C42—H42120.0
C3—C2—H2119.9C41—C42—H42120.0
C2—C3—H3120.1C44—C43—P3120.0 (2)
C4—C3—C2119.9 (3)C48—C43—C44118.3 (3)
C4—C3—H3120.1C48—C43—P3121.0 (2)
C3—C4—H4120.1C43—C44—H44119.6
C5—C4—C3119.8 (3)C45—C44—C43120.9 (3)
C5—C4—H4120.1C45—C44—H44119.6
C4—C5—H5119.6C44—C45—H45120.0
C4—C5—C6120.8 (3)C44—C45—C46120.0 (3)
C6—C5—H5119.6C46—C45—H45120.0
C1—C6—H6120.1C45—C46—H46120.0
C5—C6—C1119.9 (3)C47—C46—C45120.1 (3)
C5—C6—H6120.1C47—C46—H46120.0
C8—C7—C12118.9 (3)C46—C47—H47120.1
C8—C7—P1121.1 (2)C46—C47—C48119.8 (3)
C12—C7—P1120.0 (2)C48—C47—H47120.1
C7—C8—H8120.1C43—C48—H48119.5
C7—C8—C9119.8 (3)C47—C48—C43120.9 (3)
C9—C8—H8120.1C47—C48—H48119.5
C8—C9—H9119.7C50—C49—Si1120.3 (2)
C10—C9—C8120.6 (3)C54—C49—C50116.9 (3)
C10—C9—H9119.7C54—C49—Si1122.7 (2)
C9—C10—H10119.9C49—C50—H50119.1
C11—C10—C9120.2 (3)C51—C50—C49121.8 (3)
C11—C10—H10119.9C51—C50—H50119.1
C10—C11—H11120.2C50—C51—H51119.9
C10—C11—C12119.6 (3)C50—C51—C52120.1 (3)
C12—C11—H11120.2C52—C51—H51119.9
C7—C12—H12119.6C51—C52—H52120.3
C11—C12—C7120.9 (3)C53—C52—C51119.5 (3)
C11—C12—H12119.6C53—C52—H52120.3
C14—C13—C18119.1 (3)C52—C53—H53119.9
C14—C13—P1122.2 (2)C52—C53—C54120.2 (3)
C18—C13—P1118.7 (2)C54—C53—H53119.9
C13—C14—H14119.8C49—C54—C53121.5 (3)
C13—C14—C15120.3 (3)C49—C54—H54119.2
C15—C14—H14119.8C53—C54—H54119.2
C14—C15—H15119.9H55A—C55—H55B109.5
C16—C15—C14120.3 (3)H55A—C55—H55C109.5
C16—C15—H15119.9H55B—C55—H55C109.5
C15—C16—H16119.9Si1—C55—H55A109.5
C15—C16—C17120.2 (3)Si1—C55—H55B109.5
C17—C16—H16119.9Si1—C55—H55C109.5
C16—C17—H17120.2C57—C56—Si1122.1 (3)
C16—C17—C18119.5 (3)C61—C56—C57116.4 (3)
C18—C17—H17120.2C61—C56—Si1120.8 (3)
C13—C18—C17120.5 (3)C56—C57—H57118.9
C13—C18—H18119.7C58—C57—C56122.2 (4)
C17—C18—H18119.7C58—C57—H57118.9
C20—C19—C24119.2 (3)C57—C58—H58120.1
C20—C19—P2122.2 (2)C59—C58—C57119.8 (4)
C24—C19—P2118.6 (2)C59—C58—H58120.1
C19—C20—H20119.8C58—C59—H59120.2
C21—C20—C19120.5 (3)C58—C59—C60119.6 (3)
C21—C20—H20119.8C60—C59—H59120.2
C20—C21—H21119.9C59—C60—H60120.0
C20—C21—C22120.2 (3)C59—C60—C61120.1 (4)
C22—C21—H21119.9C61—C60—H60120.0
C21—C22—H22120.2C56—C61—H61119.0
C23—C22—C21119.6 (3)C60—C61—C56121.9 (4)
C23—C22—H22120.2C60—C61—H61119.0
C22—C23—H23119.8O1—C62—Fe1177.9 (3)
C22—C23—C24120.3 (3)O2—C63—Fe1175.2 (3)
C24—C23—H23119.8O3—C64—Fe1178.0 (3)
C19—C24—H24119.9C49—Si1—C55107.20 (15)
C23—C24—C19120.2 (3)C49—Si1—C56106.61 (14)
C23—C24—H24119.9C49—Si1—Fe1110.49 (10)
C26—C25—C30119.0 (3)C55—Si1—C56100.70 (15)
C26—C25—P2124.7 (2)C55—Si1—Fe1114.30 (11)
C30—C25—P2116.3 (2)C56—Si1—Fe1116.66 (11)
C25—C26—H26119.7C1—P1—C799.53 (13)
C25—C26—C27120.6 (3)C1—P1—Pt1112.73 (10)
C27—C26—H26119.7C7—P1—Pt1120.74 (10)
C26—C27—H27119.9C13—P1—C1106.03 (14)
C28—C27—C26120.2 (3)C13—P1—C7103.00 (14)
C28—C27—H27119.9C13—P1—Pt1113.04 (10)
C27—C28—H28120.0C19—P2—Pt1117.03 (10)
C27—C28—C29120.0 (3)C25—P2—C19105.47 (13)
C29—C28—H28120.0C25—P2—C31102.26 (13)
C28—C29—H29119.8C25—P2—Pt1110.48 (9)
C28—C29—C30120.4 (3)C31—P2—C19100.35 (13)
C30—C29—H29119.8C31—P2—Pt1119.39 (9)
C25—C30—H30120.1C37—P3—Fe1121.78 (10)
C29—C30—C25119.9 (3)C37—P3—Pt1115.69 (10)
C29—C30—H30120.1C43—P3—C37106.97 (14)
C32—C31—P2122.8 (2)C43—P3—Fe1115.79 (9)
C36—C31—C32118.2 (3)C43—P3—Pt1117.66 (10)
C36—C31—P2118.9 (2)Fe1—P3—Pt177.07 (3)
C31—C32—H32119.9C62—Fe1—Si178.43 (10)
C31—C32—C33120.2 (3)C62—Fe1—P388.17 (10)
C33—C32—H32119.9C62—Fe1—Pt193.70 (10)
C32—C33—H33119.8C63—Fe1—C6298.17 (14)
C34—C33—C32120.5 (3)C63—Fe1—Si194.95 (10)
C34—C33—H33119.8C63—Fe1—P3145.70 (10)
C33—C34—H34120.0C63—Fe1—Pt193.67 (10)
C33—C34—C35120.1 (3)C64—Fe1—C62157.04 (15)
C35—C34—H34120.0C64—Fe1—C6394.48 (15)
C34—C35—H35120.2C64—Fe1—Si181.46 (10)
C36—C35—C34119.7 (3)C64—Fe1—P392.12 (10)
C36—C35—H35120.2C64—Fe1—Pt1104.57 (10)
C31—C36—H36119.3Si1—Fe1—Pt1169.06 (3)
C35—C36—C31121.4 (3)P3—Fe1—Si1119.32 (3)
C35—C36—H36119.3P3—Fe1—Pt152.16 (2)
C38—C37—P3117.0 (2)P1—Pt1—Fe1102.64 (2)
C42—C37—C38118.3 (3)P2—Pt1—P1101.80 (3)
C42—C37—P3124.7 (2)P2—Pt1—Fe1154.80 (2)
C37—C38—H38119.4P3—Pt1—P1153.40 (3)
C39—C38—C37121.3 (3)P3—Pt1—P2104.70 (3)
C39—C38—H38119.4P3—Pt1—Fe150.77 (2)
C38—C39—H39120.2Cl1—C65—H65A109.0
C38—C39—C40119.5 (3)Cl1—C65—H65B109.0
C40—C39—H39120.2Cl2—C65—Cl1112.9
C39—C40—H40119.9Cl2—C65—H65A109.0
C41—C40—C39120.3 (3)Cl2—C65—H65B109.0
C41—C40—H40119.9H65A—C65—H65B107.8
C1—C2—C3—C40.7 (5)C36—C31—P2—C25166.4 (2)
C2—C1—C6—C52.1 (5)C36—C31—P2—Pt171.4 (2)
C2—C1—P1—C7104.5 (2)C37—C38—C39—C400.0 (5)
C2—C1—P1—C13148.9 (2)C38—C37—C42—C412.1 (4)
C2—C1—P1—Pt124.7 (3)C38—C37—P3—C43171.3 (2)
C2—C3—C4—C51.0 (5)C38—C37—P3—Fe152.3 (3)
C3—C4—C5—C60.3 (6)C38—C37—P3—Pt138.0 (3)
C4—C5—C6—C11.9 (6)C38—C39—C40—C411.3 (5)
C6—C1—C2—C30.9 (5)C39—C40—C41—C420.9 (5)
C6—C1—P1—C773.4 (3)C40—C41—C42—C370.8 (5)
C6—C1—P1—C1333.2 (3)C42—C37—C38—C391.6 (5)
C6—C1—P1—Pt1157.4 (2)C42—C37—P3—C438.4 (3)
C7—C8—C9—C100.4 (6)C42—C37—P3—Fe1128.0 (2)
C8—C7—C12—C110.9 (5)C42—C37—P3—Pt1141.7 (2)
C8—C7—P1—C1153.4 (3)C43—C44—C45—C460.3 (5)
C8—C7—P1—C1344.3 (3)C44—C43—C48—C470.8 (4)
C8—C7—P1—Pt182.9 (3)C44—C43—P3—C37130.0 (2)
C8—C9—C10—C110.6 (6)C44—C43—P3—Fe190.7 (2)
C9—C10—C11—C120.8 (6)C44—C43—P3—Pt12.2 (3)
C10—C11—C12—C70.1 (5)C44—C45—C46—C470.2 (5)
C12—C7—C8—C91.1 (5)C45—C46—C47—C480.2 (5)
C12—C7—P1—C129.7 (3)C46—C47—C48—C430.4 (5)
C12—C7—P1—C13138.7 (3)C48—C43—C44—C450.8 (4)
C12—C7—P1—Pt194.1 (3)C48—C43—P3—C3760.0 (3)
C13—C14—C15—C161.1 (5)C48—C43—P3—Fe179.4 (3)
C14—C13—C18—C171.4 (5)C48—C43—P3—Pt1167.8 (2)
C14—C13—P1—C171.0 (3)C49—C50—C51—C520.5 (5)
C14—C13—P1—C733.1 (3)C50—C49—C54—C530.5 (4)
C14—C13—P1—Pt1165.0 (2)C50—C49—Si1—C55170.7 (2)
C14—C15—C16—C170.5 (5)C50—C49—Si1—C5663.6 (3)
C15—C16—C17—C181.2 (5)C50—C49—Si1—Fe164.1 (3)
C16—C17—C18—C130.2 (5)C50—C51—C52—C530.3 (5)
C18—C13—C14—C152.1 (5)C51—C52—C53—C540.3 (5)
C18—C13—P1—C1107.6 (3)C52—C53—C54—C490.7 (5)
C18—C13—P1—C7148.3 (2)C54—C49—C50—C510.1 (4)
C18—C13—P1—Pt116.3 (3)C54—C49—Si1—C5512.8 (3)
C19—C20—C21—C220.6 (5)C54—C49—Si1—C56120.0 (3)
C20—C19—C24—C233.0 (5)C54—C49—Si1—Fe1112.3 (2)
C20—C19—P2—C2564.3 (3)C56—C57—C58—C590.4 (6)
C20—C19—P2—C3141.7 (3)C57—C56—C61—C601.3 (5)
C20—C19—P2—Pt1172.5 (2)C57—C56—Si1—C49168.1 (3)
C20—C21—C22—C231.9 (5)C57—C56—Si1—C5580.1 (3)
C21—C22—C23—C242.0 (5)C57—C56—Si1—Fe144.2 (3)
C22—C23—C24—C190.5 (5)C57—C58—C59—C600.9 (6)
C24—C19—C20—C213.1 (4)C58—C59—C60—C610.3 (6)
C24—C19—P2—C25114.5 (2)C59—C60—C61—C560.8 (6)
C24—C19—P2—C31139.5 (2)C61—C56—C57—C580.7 (5)
C24—C19—P2—Pt18.8 (3)C61—C56—Si1—C4922.2 (3)
C25—C26—C27—C281.4 (5)C61—C56—Si1—C5589.5 (3)
C26—C25—C30—C290.1 (4)C61—C56—Si1—Fe1146.2 (2)
C26—C25—P2—C1914.1 (3)Si1—C49—C50—C51176.8 (2)
C26—C25—P2—C3190.5 (3)Si1—C49—C54—C53176.1 (2)
C26—C25—P2—Pt1141.4 (2)Si1—C56—C57—C58169.4 (3)
C26—C27—C28—C290.5 (5)Si1—C56—C61—C60169.0 (3)
C27—C28—C29—C300.8 (5)P1—C1—C2—C3178.8 (2)
C28—C29—C30—C251.0 (5)P1—C1—C6—C5180.0 (3)
C30—C25—C26—C271.1 (4)P1—C7—C8—C9175.9 (3)
C30—C25—P2—C19165.6 (2)P1—C7—C12—C11176.1 (3)
C30—C25—P2—C3189.9 (2)P1—C13—C14—C15176.5 (2)
C30—C25—P2—Pt138.3 (2)P1—C13—C18—C17177.2 (2)
C31—C32—C33—C341.1 (5)P2—C19—C20—C21175.7 (2)
C32—C31—C36—C350.5 (4)P2—C19—C24—C23175.8 (2)
C32—C31—P2—C19119.6 (3)P2—C25—C26—C27178.5 (2)
C32—C31—P2—C2511.1 (3)P2—C25—C30—C29179.8 (2)
C32—C31—P2—Pt1111.1 (2)P2—C31—C32—C33176.5 (2)
C32—C33—C34—C350.5 (5)P2—C31—C36—C35177.2 (2)
C33—C34—C35—C360.0 (5)P3—C37—C38—C39178.6 (2)
C34—C35—C36—C310.1 (5)P3—C37—C42—C41178.3 (2)
C36—C31—C32—C331.0 (5)P3—C43—C44—C45171.2 (2)
C36—C31—P2—C1957.9 (3)P3—C43—C48—C47171.1 (2)

Experimental details

Crystal data
Chemical formula[FePt(C12H10P)(C13H13Si)(C18H15P)2(CO)3]·0.5CH2Cl2
Mr1284.47
Crystal system, space groupTriclinic, P1
Temperature (K)115
a, b, c (Å)10.3522 (6), 13.0010 (8), 21.9803 (14)
α, β, γ (°)99.823 (2), 99.061 (2), 102.677 (2)
V3)2784.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.97
Crystal size (mm)0.15 × 0.05 × 0.02
Data collection
DiffractometerNonius Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.64, 0.74
No. of measured, independent and
observed [I > 2σ(I)] reflections
89421, 12883, 11264
Rint0.053
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.06
No. of reflections12883
No. of parameters671
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 1.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We are grateful to the Universities of Franche-Comté and Bourgogne (BQR PRES 2012–22) and the CNRS for financial support.

References

First citationBraunstein, P., Faure, T., Knorr, M., Stährfeldt, T., DeCian, A. & Fischer, J. (1995). Gazz. Chim. Ital. 125, 35–50.  Google Scholar
First citationBraunstein, P., Knorr, M., Hirle, B., Reinhard, G. & Schubert, U. (1992). Angew. Chem. Int. Ed. Engl. 31, 1583–1585.  Google Scholar
First citationBraunstein, P., Knorr, M., Reinhard, G., Schubert, U. & Stährfeldt, T. (2000). Chem. Eur. J. 6, 4265–4278.  Google Scholar
First citationBraunstein, P., Stährfeldt, T. & Fischer, J. (1999). C. R. Acad. Sci. Ser. IIc, pp. 273–292.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComte, V., Blacque, O., Kubicki, M. M. & Moïse, C. (1997). Organometallics, 16, 5763–5769.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHe, Z., Lugan, P., Neibecker, D., Mathieu, R. & Bonnet, J.-J. (1992). J. Organomet. Chem. 426, 247–259.  Google Scholar
First citationJenkins, H. A. & Loeb, S. J. (1989). Can. J. Chem. 67, 1230–1235.  Google Scholar
First citationJenkins, H. A., Loeb, S. J., Dick, D. G. & Stephan, D. W. (1990). Can. J. Chem. 68, 869–874.  Google Scholar
First citationKnorr, M., Stährfeldt, T., Braunstein, P., Reinhard, G., Hauenstein, P., Mayer, B., Schubert, U., Khan, S. & Kaesz, H. D. (1994). Chem. Ber. 127, 295–304.  Google Scholar
First citationLavastre, O., Bonnet, G., Boni, G., Kubicki, M. M. & Moïse, C. (1997). J. Organomet. Chem. 547, 141–147.  Google Scholar
First citationMessaoudi, A., Deglmann, P., Braunstein, P. & Hofmann, P. (2007). Inorg. Chem. 46, 7899–7909.  Google Scholar
First citationPowell, J., Gregg, M. R. & Sawyer, J. F. (1987). J. Chem. Soc. Chem. Commun. pp. 1029–1031.  Google Scholar
First citationReinhard, G., Knorr, M., Braunstein, P., Schubert, U., Khan, S., Strouse, C. E., Kaesz, H. D. & Zinn, A. (1993). Chem. Ber. 126, 17–21.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStephan, D. W. (1989). Coord. Chem. Rev. 95, 41–107.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages 241-243
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds