organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o129-o130

Crystal structure of 2-[4-(4-chloro­phen­yl)-1-(4-meth­­oxy­phen­yl)-2-oxoazetidin-3-yl]benzo[de]iso­quinoline-1,3-dione di­methyl sulfoxide monosolvate

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 06532 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, dDepartment of Physics, Faculty of Education, Dicle University, 21280, Diyarbakir, Turkey, and eScience and Technology Application and Research Center, Dicle University, 21280, Diyarbakir, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 January 2015; accepted 22 January 2015; online 28 January 2015)

In the title solvated compound, C28H19N2O4·C2H6OS, the central β-lactam ring is almost planar (r.m.s. deviation = 0.002 Å). It makes dihedral angles of 1.92 (11), 83.23 (12) and 74.90 (10)° with the meth­oxy- and chloro­phenyl rings and the ring plane of the 1H-benzo[de]iso­quinoline-1,3(2H)-dione group [maximum deviation = 0.089 (1)], respectively. An intra­molecular C—H⋯O hydrogen bond closes an S(6) ring and helps to establish the near coplanarity of the β-lactam and meth­oxy­benzene rings. In the crystal, the components are linked by C—H⋯O hydrogen bonds, C—H⋯π inter­actions and aromatic ππ stacking inter­actions [centroid-to-centroid distances = 3.6166 (10) and 3.7159 (10) Å], resulting in a three-dimensional network, The dimethyl sulfoxide solvent mol­ecule is disordered over two sets of sites in a 0.847 (2):0.153 (2) ratio.

1. Related literature

For general background to β-lactams, see: Alcaide & Almendros (2004[Alcaide, B. & Almendros, P. (2004). Curr. Med. Chem. 11, 1921-1949.]); Alcala et al. (2011[Alcala, M. A., Kwan, S. Y., Shade, C. M., Lang, M., Uh, H., Wang, M., Weber, S. G., Bartlett, D. L., Petoud, S. & Lee, Y. J. (2011). Nanomedicine: Nanotechnol. Biol. Med. 7, 249-258.]); Li et al. (2011[Li, X. L., Lin, Y. J., Wang, Q. Q., Yuan, Y. K., Zhang, H. & Qian, X. H. (2011). Eur. J. Med. Chem. 46, 1274-1279.]); Long & Turos (2002[Long, T. E. & Turos, E. (2002). Curr. Med. Chem. Anti-infective Agents, 1, 251-268.]); MacIntyre et al. (2010[MacIntyre, M. M., Martell, J. M. & Eriksson, L. A. (2010). J. Mol. Struct. Theochem, 941, 133-137.]); Rogers & Kelly (1999[Rogers, J. E. & Kelly, L. A. (1999). J. Am. Chem. Soc. 121, 3854-3861.]); Sawa et al. (2006[Sawa, M., Hsu, T. L., Itoh, T., Sugiyama, M., Hanson, S. R., Vogt, P. K. & Wong, C. H. (2006). Proc. Natl Acad. Sci. USA, 103, 12371-12376.]); Southgate (1994[Southgate, R. (1994). Contemp. Org. Synth. 1, 417-431.]); Zhang & Zhou (2011[Zhang, Y.-Y. & Zhou, Ch.-H. (2011). Bioorg. Med. Chem. Lett. 21, 4349-4352.]); Zhang et al. (2011[Zhang, Y., Feng, S., Wu, Q., Wang, K., Yi, X., Wang, H. & Pan, Y. (2011). Med. Chem. Res. 20, 752-759.]). For related structures, see: Atioğlu et al. (2014[Atioğlu, Z., Akkurt, M., Jarrahpour, A., Heiran, R. & Özdemir, N. (2014). Acta Cryst. E70, o835-o836.]); Butcher et al. (2011[Butcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101-o1102.]); Jarrahpour et al. (2012[Jarrahpour, A., Ebrahimi, E., Khalifeh, R., Sharghi, H., Sahraei, M., Sinou, V., Latour, C. & Brunel, J. M. (2012). Tetrahedron, 68, 4740-4744.]); Zarei (2013[Zarei, M. (2013). Tetrahedron, 69, 6620-6626.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C28H19ClN2O4·C2H6OS

  • Mr = 561.03

  • Triclinic, [P \overline 1]

  • a = 7.9925 (3) Å

  • b = 12.1761 (5) Å

  • c = 14.2313 (6) Å

  • α = 93.549 (2)°

  • β = 95.520 (2)°

  • γ = 101.602 (2)°

  • V = 1345.67 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.45 × 0.30 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • 29975 measured reflections

  • 7737 independent reflections

  • 5777 reflections with I > 2σ(I)

  • Rint = 0.022

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.191

  • S = 1.05

  • 7737 reflections

  • 359 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C11–C16 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1 0.93 2.57 3.169 (3) 122
C21—H21⋯O1i 0.93 2.52 3.344 (2) 148
C25—H25⋯O4ii 0.93 2.46 3.221 (2) 139
C30A—H30ACg4iii 0.96 2.88 3.818 (10) 167
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Even more than 70 years after the discovery of penicillin, β-lactam antibiotics remain as one of the most important contributions of science to humanity (Southgate, 1994) and the β-lactam antibiotics have served as a powerful line of defense against bacterial infections (Long, et al., 2002). They have also been used as synthons for the synthesis of various natural and unnatural products (Alcaide & Almendros, 2004). On the other hand, cyclic imides have received special attraction due to their widely potential pharmaceutical applications (Zhang & Zhou, 2011). Isoquinolindione (naphthalimide) derivatives are cyclic imides to be of interest due to their useful photophysical and biological properties that offer promise for medical applications as free radical scavengers (Zhang, et al., 2011), potential photoredox anticancer agents (MacIntyre, et al., 2010), fluorescent labels (Sawa, et al., 2006), photosensitizers (Rogers & Kelly, 1999) and imaging agents (Alcala et al., 2011). Many of these properties are related to 1,8- naphthalimides planar shape and optimal size that makes them efficient DNA intercalating agents with high antitumor activity (Li et al., 2011; Zarei, 2013).

In the title compound (Fig. 1), the β-lactam ring (N1/C1–C3) is nearly planar [r.m.s. deviation = 0.002 Å]. It makes dihedral angles of 1.92 (11), 83.23 (12) and 74.90 (10)° with the methoxy and choloro phenyl rings (C4–C9 and C11–C16) and the ring plane (N2/C17–C28) of the 1H-benzo[de]isoquinoline-1,3(2H)-dione group which is nearly planar [max. deviations = -0.089 (1) Å for N2 and 0.044 (2) Å for C24], respectively.

All bond lengths and bond angles are normal and comparable with those reported for related compounds (Butcher et al., 2011; Atioğlu et al., 2014; Jarrahpour et al., 2012).

Molecular conformation is stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal, molecules are linked by intermolecular C—H···O hydrogen bonds, forming three dimensional network (Table 1, Figs. 2 & 3).

Furthermore, one weak C—H···π interaction (Table 1) and π-π stacking interactions [Cg2···Cg6 (2 - x,1 - y,-z) = 3.6166 (10) Å and Cg5···Cg6(2 - x,1 - y,-z) = 3.7159 (10) Å; where Cg2, Cg5 and Cg6 are centroids of the N2/C17/C18/C23/C24/C28 central pyridine ring and the C18–C23 and C22—C27 benzene rings of the 1H-benzo[de]isoquinoline-1,3(2H)-dione group, respectively] also partially take part in the stabilization of the structure.

Related literature top

For general background to β-lactams, see: Alcaide & Almendros (2004); Alcala et al. (2011); Li et al. (2011); Long & Turos (2002); MacIntyre et al. (2010); Rogers & Kelly (1999); Sawa et al. (2006); Southgate (1994); Zhang & Zhou (2011); Zhang et al. (2011). For related structures, see: Atioğlu et al. (2014); Butcher et al. (2011); Jarrahpour et al. (2012); Zarei (2013).

Experimental top

4-Chlorophenyl-N-(4-methoxyphenyl)methanimine (1 mmol), triethylamine (5 mmol), 2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)acetic acid (1.50 mmol) and tosyl chloride (1.50 mmol) were added to anhydrous CH2Cl2 (5 ml) and the mixture was stirred at room temperature for 24 h. The mixture was washed with HCl 1 N (2×20 ml), saturated aqueous NaHCO3 solution (50 ml) and brine (20 ml). The organic layer was dried (Na2SO4) and the solvent was removed to give the product as a white solid·It was then purified by recrystallization from DMSO to afford colourless triclinic crystals (Yield 75%); Mp: 528–530 K; IR (KBr, cm-1): 1774 (CO β-lactam),1704 (CO Naph), 1666 (CO Naph); 1H-NMR (250 MHz, DMSO-d6) δ 1.27 (CH3 t, 3H, J = 6.75), 3.95 (CH2 q, 2H, J = 6.75), 5.69 (CH β-lactam d, 1H, J = 2.75), 5.94 (CH β-lactam d, 1H, J = 2.75), 6.91 (aromat d, 2H, J = 9.00), 7.19 (aromat d, 2H, J = 9.00), 7.79–7.89 (ArH, m, 4H), 8.24 (aromat d, 2H, J = 9.00), 8.43–8.50 (ArH, m, 4H); 13C-NMR (62 MHz, DMSO-d6) δ 163.22 (CO β-lactam), 162.13 (CO Naph), 155.04, 147.47, 144.82, 134.88, 131.22, 131.17, 130.50, 128.10, 127.43, 127.30, 123.95, 121.54, 118.29, 115.04, (aromatic carbons), 63.41 (C β-lactam), 63.19 (C β-lactam), 58.08 (CH2—O), 14.56 (CH3); GC—MS m/z = 507 [M+].

Refinement top

H atoms were located in calculated positions with C—H = 0.93 - 0.98 Å, and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The (0 1 0), (10 - 4 3), (9 - 4 5), (0 0 1), (0 3 5), (0 1 6), (2 2 4), (1 - 5 2), (3 1 5), (-3 3 3), (2 1 6), (-2 4 8), (0 - 3 1), (-2 2 7), (1 - 5 1), (-2 3 4), (3 - 6 9), (2 0 5), (6 3 3), (-2 - 5 2), (-3 5 3), (-3 - 10 7), (-1 0 11) and (-2 - 8 4) reflections were omitted owing to bad disagreement. The crystal quality and data was not good enough. All the atoms of the dimethyl sulfoxide (DMSO) solvent molecule are disordered over two sets of sites in a 0.847 (2):0.153 (2) ratio.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular structure of the title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level. Only the major component of the disordered solvent molecule is displayed.
[Figure 2] Fig. 2. The hydrogen bonding and molecular packing of the title compound along a axis. Only the major component of the disordered solvent molecule is displayed.
[Figure 3] Fig. 3. The hydrogen bonding and molecular packing of the title compound along c axis. Only the major component of the disordered solvent molecule is displayed.
2-[2-(4-Chlorophenyl)-1-(4-methoxyphenyl)-4-oxoazetidin-3-yl]benzo[de]isoquinoline-1,3-dione dimethyl sulfoxide monosolvate top
Crystal data top
C28H19ClN2O4·C2H6OSZ = 2
Mr = 561.03F(000) = 584
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9925 (3) ÅCell parameters from 9923 reflections
b = 12.1761 (5) Åθ = 2.9–29.9°
c = 14.2313 (6) ŵ = 0.26 mm1
α = 93.549 (2)°T = 296 K
β = 95.520 (2)°Prism, colourless
γ = 101.602 (2)°0.45 × 0.30 × 0.20 mm
V = 1345.67 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5777 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.022
Graphite monochromatorθmax = 30.0°, θmin = 2.2°
ϕ and ω scansh = 1111
29975 measured reflectionsk = 1717
7737 independent reflectionsl = 1919
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0977P)2 + 0.5061P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
7737 reflectionsΔρmax = 0.68 e Å3
359 parametersΔρmin = 0.52 e Å3
Crystal data top
C28H19ClN2O4·C2H6OSγ = 101.602 (2)°
Mr = 561.03V = 1345.67 (9) Å3
Triclinic, P1Z = 2
a = 7.9925 (3) ÅMo Kα radiation
b = 12.1761 (5) ŵ = 0.26 mm1
c = 14.2313 (6) ÅT = 296 K
α = 93.549 (2)°0.45 × 0.30 × 0.20 mm
β = 95.520 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5777 reflections with I > 2σ(I)
29975 measured reflectionsRint = 0.022
7737 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0616 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.05Δρmax = 0.68 e Å3
7737 reflectionsΔρmin = 0.52 e Å3
359 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.69679 (12)0.13588 (7)0.68363 (4)0.0886 (3)
S1A0.83996 (15)0.62942 (10)0.36822 (7)0.0884 (4)0.847 (2)
S1B0.7471 (8)0.6453 (5)0.4182 (4)0.0884 (4)0.153 (2)
O10.5935 (2)0.15324 (13)0.07604 (10)0.0572 (5)
O20.20212 (18)0.02113 (14)0.22243 (12)0.0620 (5)
O31.06205 (19)0.37028 (13)0.29270 (12)0.0603 (5)
O40.58077 (15)0.40773 (12)0.11511 (10)0.0467 (4)
N10.48129 (19)0.18953 (13)0.21909 (10)0.0411 (4)
N20.82660 (17)0.38087 (12)0.19376 (10)0.0355 (4)
C10.5863 (2)0.27720 (14)0.28906 (12)0.0368 (5)
C20.7342 (2)0.27719 (14)0.22466 (12)0.0381 (5)
C30.5985 (2)0.19748 (15)0.15453 (13)0.0423 (5)
C40.3093 (2)0.13255 (14)0.21725 (12)0.0372 (5)
C50.2294 (3)0.05633 (17)0.14244 (13)0.0469 (6)
O5A0.6596 (5)0.5604 (2)0.3457 (2)0.1081 (11)0.847 (2)
C60.0575 (3)0.00331 (17)0.14164 (14)0.0497 (6)
C70.0327 (2)0.02482 (16)0.21594 (14)0.0450 (5)
C80.0494 (2)0.09910 (18)0.29171 (15)0.0488 (6)
C90.2184 (2)0.15335 (16)0.29214 (14)0.0450 (6)
C100.2998 (3)0.0868 (2)0.1422 (2)0.0750 (9)
C110.6159 (2)0.24211 (14)0.38776 (12)0.0365 (4)
C120.6490 (2)0.13637 (15)0.40284 (13)0.0413 (5)
C130.6763 (3)0.10452 (17)0.49434 (14)0.0477 (6)
C140.6676 (3)0.17782 (19)0.56949 (14)0.0524 (6)
C150.6345 (4)0.2827 (2)0.55697 (15)0.0612 (8)
C160.6094 (3)0.31440 (17)0.46505 (14)0.0500 (6)
C171.0008 (2)0.41714 (14)0.22957 (12)0.0376 (5)
C181.1000 (2)0.51167 (13)0.18560 (11)0.0337 (4)
C191.2760 (2)0.54014 (16)0.20663 (13)0.0428 (5)
C201.3723 (2)0.62737 (18)0.16236 (15)0.0495 (6)
C211.2935 (2)0.68586 (17)0.09901 (13)0.0464 (5)
C221.1127 (2)0.66006 (14)0.07639 (12)0.0372 (5)
C231.01511 (19)0.56994 (13)0.11954 (10)0.0316 (4)
C240.83533 (19)0.53926 (13)0.09505 (11)0.0325 (4)
C250.7550 (2)0.59720 (15)0.03094 (12)0.0393 (5)
C260.8512 (3)0.68702 (16)0.01091 (13)0.0462 (6)
C271.0259 (3)0.71740 (15)0.01086 (13)0.0438 (5)
C280.7350 (2)0.44063 (14)0.13389 (11)0.0341 (4)
O5B0.688 (3)0.6029 (15)0.3255 (13)0.1081 (11)0.153 (2)
C29A0.8342 (10)0.7606 (7)0.3416 (6)0.183 (3)0.847 (2)
C30A0.8821 (12)0.6486 (7)0.4874 (7)0.183 (3)0.847 (2)
C29B0.821 (6)0.786 (2)0.413 (4)0.183 (3)0.153 (2)
C30B0.904 (5)0.593 (4)0.479 (5)0.183 (3)0.153 (2)
H10.544900.347700.288800.0440*
H20.816300.235300.252900.0460*
H50.290300.040400.092600.0560*
H60.003500.046900.090600.0600*
H80.010000.112500.342900.0580*
H90.271600.204100.342900.0540*
H10A0.415300.113600.156300.1130*
H10B0.301200.041400.089400.1130*
H10C0.248900.149600.126700.1130*
H120.652800.086500.351300.0500*
H130.700300.034200.504200.0570*
H150.628900.331700.608900.0730*
H160.588000.385500.455800.0600*
H191.330800.501500.250200.0510*
H201.491200.645600.176300.0590*
H211.359600.743400.070300.0560*
H250.636600.576800.015300.0470*
H260.795800.726200.053800.0550*
H271.088000.776600.017900.0530*
H29A0.947300.807100.355100.2740*0.847 (2)
H29B0.795400.760000.275600.2740*0.847 (2)
H29C0.756800.789900.379000.2740*0.847 (2)
H30A0.996400.692400.504200.2740*0.847 (2)
H30B0.801000.687500.512700.2740*0.847 (2)
H30C0.872900.576900.513200.2740*0.847 (2)
H29D0.864300.820400.475900.2740*0.153 (2)
H29E0.911900.798000.373100.2740*0.153 (2)
H29F0.729100.819600.388300.2740*0.153 (2)
H30D0.930100.631000.541700.2740*0.153 (2)
H30E0.863900.514100.483600.2740*0.153 (2)
H30F1.004700.605300.446800.2740*0.153 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1404 (7)0.0971 (5)0.0389 (3)0.0438 (5)0.0117 (3)0.0232 (3)
S1A0.0995 (7)0.1062 (7)0.0621 (5)0.0320 (6)0.0056 (4)0.0015 (5)
S1B0.0995 (7)0.1062 (7)0.0621 (5)0.0320 (6)0.0056 (4)0.0015 (5)
O10.0713 (10)0.0540 (8)0.0402 (7)0.0060 (7)0.0177 (7)0.0018 (6)
O20.0407 (7)0.0676 (10)0.0676 (10)0.0074 (7)0.0065 (7)0.0120 (8)
O30.0527 (8)0.0609 (9)0.0618 (9)0.0030 (7)0.0159 (7)0.0261 (7)
O40.0309 (6)0.0547 (8)0.0505 (7)0.0006 (5)0.0019 (5)0.0152 (6)
N10.0403 (7)0.0450 (8)0.0327 (7)0.0041 (6)0.0042 (5)0.0040 (6)
N20.0317 (6)0.0381 (7)0.0354 (7)0.0019 (5)0.0032 (5)0.0111 (5)
C10.0355 (8)0.0394 (8)0.0328 (8)0.0009 (6)0.0036 (6)0.0058 (6)
C20.0381 (8)0.0385 (8)0.0369 (8)0.0030 (6)0.0065 (6)0.0104 (6)
C30.0478 (9)0.0399 (8)0.0368 (9)0.0002 (7)0.0085 (7)0.0083 (7)
C40.0378 (8)0.0368 (8)0.0353 (8)0.0027 (6)0.0020 (6)0.0091 (6)
C50.0503 (10)0.0490 (10)0.0361 (9)0.0030 (8)0.0077 (7)0.0025 (7)
O5A0.128 (2)0.0609 (17)0.112 (2)0.0059 (18)0.0486 (19)0.0060 (15)
C60.0515 (10)0.0459 (10)0.0431 (10)0.0064 (8)0.0025 (8)0.0035 (8)
C70.0393 (9)0.0410 (9)0.0508 (10)0.0012 (7)0.0023 (7)0.0009 (7)
C80.0377 (9)0.0554 (11)0.0507 (11)0.0063 (8)0.0067 (7)0.0065 (8)
C90.0383 (9)0.0486 (10)0.0440 (10)0.0051 (7)0.0001 (7)0.0077 (8)
C100.0529 (13)0.0739 (16)0.0820 (18)0.0143 (11)0.0018 (12)0.0205 (13)
C110.0332 (7)0.0404 (8)0.0335 (8)0.0008 (6)0.0045 (6)0.0061 (6)
C120.0458 (9)0.0401 (8)0.0376 (9)0.0059 (7)0.0084 (7)0.0044 (7)
C130.0555 (11)0.0449 (9)0.0448 (10)0.0109 (8)0.0092 (8)0.0122 (8)
C140.0626 (12)0.0604 (12)0.0352 (9)0.0123 (9)0.0059 (8)0.0120 (8)
C150.0901 (17)0.0599 (13)0.0355 (10)0.0227 (12)0.0047 (10)0.0008 (9)
C160.0686 (13)0.0423 (9)0.0395 (10)0.0142 (9)0.0025 (8)0.0031 (7)
C170.0347 (8)0.0404 (8)0.0358 (8)0.0052 (6)0.0021 (6)0.0056 (6)
C180.0310 (7)0.0361 (7)0.0313 (7)0.0025 (6)0.0011 (5)0.0008 (6)
C190.0334 (8)0.0491 (9)0.0418 (9)0.0044 (7)0.0029 (6)0.0031 (7)
C200.0315 (8)0.0594 (11)0.0495 (10)0.0059 (7)0.0027 (7)0.0061 (8)
C210.0417 (9)0.0475 (9)0.0417 (9)0.0108 (7)0.0095 (7)0.0029 (7)
C220.0416 (8)0.0344 (8)0.0316 (8)0.0019 (6)0.0076 (6)0.0016 (6)
C230.0324 (7)0.0323 (7)0.0276 (7)0.0017 (5)0.0037 (5)0.0009 (5)
C240.0326 (7)0.0341 (7)0.0296 (7)0.0037 (6)0.0029 (5)0.0039 (6)
C250.0399 (8)0.0411 (8)0.0361 (8)0.0083 (7)0.0003 (6)0.0057 (7)
C260.0590 (11)0.0409 (9)0.0401 (9)0.0130 (8)0.0031 (8)0.0106 (7)
C270.0561 (10)0.0345 (8)0.0382 (9)0.0002 (7)0.0105 (7)0.0060 (7)
C280.0310 (7)0.0389 (8)0.0312 (7)0.0040 (6)0.0020 (5)0.0069 (6)
O5B0.128 (2)0.0609 (17)0.112 (2)0.0059 (18)0.0486 (19)0.0060 (15)
C29A0.140 (4)0.184 (6)0.187 (5)0.034 (4)0.060 (4)0.058 (5)
C30A0.140 (4)0.184 (6)0.187 (5)0.034 (4)0.060 (4)0.058 (5)
C29B0.140 (4)0.184 (6)0.187 (5)0.034 (4)0.060 (4)0.058 (5)
C30B0.140 (4)0.184 (6)0.187 (5)0.034 (4)0.060 (4)0.058 (5)
Geometric parameters (Å, º) top
Cl1—C141.741 (2)C22—C231.422 (2)
S1A—C30A1.689 (10)C22—C271.411 (3)
S1A—O5A1.509 (4)C23—C241.413 (2)
S1A—C29A1.673 (8)C24—C251.375 (2)
S1B—O5B1.388 (19)C24—C281.473 (2)
S1B—C30B1.71 (5)C25—C261.405 (3)
S1B—C29B1.71 (3)C26—C271.370 (3)
O1—C31.203 (2)C1—H10.9800
O2—C101.420 (3)C2—H20.9800
O2—C71.371 (2)C5—H50.9300
O3—C171.210 (2)C6—H60.9300
O4—C281.215 (2)C8—H80.9300
N1—C31.368 (2)C9—H90.9300
N1—C11.477 (2)C10—H10C0.9600
N1—C41.407 (2)C10—H10B0.9600
N2—C281.401 (2)C10—H10A0.9600
N2—C21.445 (2)C12—H120.9300
N2—C171.408 (2)C13—H130.9300
C1—C21.564 (2)C15—H150.9300
C1—C111.504 (2)C16—H160.9300
C2—C31.537 (2)C19—H190.9300
C4—C51.382 (3)C20—H200.9300
C4—C91.385 (2)C21—H210.9300
C5—C61.394 (3)C25—H250.9300
C6—C71.377 (3)C26—H260.9300
C7—C81.384 (3)C27—H270.9300
C8—C91.378 (2)C29A—H29C0.9600
C11—C121.391 (2)C29A—H29A0.9600
C11—C161.377 (3)C29A—H29B0.9600
C12—C131.391 (3)C30A—H30A0.9600
C13—C141.366 (3)C30A—H30B0.9600
C14—C151.374 (3)C30A—H30C0.9600
C15—C161.394 (3)C29B—H29D0.9700
C17—C181.471 (2)C29B—H29E0.9600
C18—C231.415 (2)C29B—H29F0.9600
C18—C191.378 (2)C30B—H30D0.9600
C19—C201.402 (3)C30B—H30E0.9600
C20—C211.367 (3)C30B—H30F0.9500
C21—C221.416 (2)
O5A—S1A—C30A107.4 (3)O4—C28—N2119.23 (15)
C29A—S1A—C30A100.9 (4)N1—C1—H1112.00
O5A—S1A—C29A107.1 (3)C11—C1—H1112.00
C29B—S1B—C30B108 (2)C2—C1—H1112.00
O5B—S1B—C29B106 (2)C3—C2—H2110.00
O5B—S1B—C30B119 (2)N2—C2—H2109.00
C7—O2—C10118.08 (18)C1—C2—H2109.00
C3—N1—C4133.80 (15)C6—C5—H5120.00
C1—N1—C4129.79 (14)C4—C5—H5120.00
C1—N1—C395.78 (14)C7—C6—H6120.00
C2—N2—C17117.44 (14)C5—C6—H6120.00
C17—N2—C28124.63 (14)C7—C8—H8120.00
C2—N2—C28117.87 (14)C9—C8—H8120.00
N1—C1—C11115.59 (14)C4—C9—H9120.00
N1—C1—C286.20 (12)C8—C9—H9120.00
C2—C1—C11117.03 (14)O2—C10—H10C109.00
C1—C2—C385.86 (12)O2—C10—H10B109.00
N2—C2—C1120.95 (14)H10A—C10—H10C110.00
N2—C2—C3119.42 (14)O2—C10—H10A109.00
O1—C3—N1132.51 (17)H10A—C10—H10B109.00
N1—C3—C291.20 (14)H10B—C10—H10C109.00
O1—C3—C2136.20 (17)C11—C12—H12120.00
N1—C4—C9119.16 (15)C13—C12—H12120.00
C5—C4—C9119.41 (17)C14—C13—H13120.00
N1—C4—C5121.44 (16)C12—C13—H13120.00
C4—C5—C6120.03 (19)C14—C15—H15121.00
C5—C6—C7120.34 (18)C16—C15—H15121.00
O2—C7—C8115.19 (17)C11—C16—H16120.00
C6—C7—C8119.29 (17)C15—C16—H16119.00
O2—C7—C6125.52 (18)C20—C19—H19120.00
C7—C8—C9120.65 (18)C18—C19—H19120.00
C4—C9—C8120.25 (18)C21—C20—H20120.00
C12—C11—C16118.78 (17)C19—C20—H20120.00
C1—C11—C16120.29 (16)C22—C21—H21120.00
C1—C11—C12120.93 (15)C20—C21—H21120.00
C11—C12—C13120.60 (17)C26—C25—H25120.00
C12—C13—C14119.18 (19)C24—C25—H25120.00
C13—C14—C15121.63 (19)C27—C26—H26120.00
Cl1—C14—C13118.83 (17)C25—C26—H26120.00
Cl1—C14—C15119.53 (16)C22—C27—H27120.00
C14—C15—C16118.8 (2)C26—C27—H27120.00
C11—C16—C15121.02 (19)S1A—C29A—H29B109.00
O3—C17—C18123.36 (16)H29A—C29A—H29C109.00
O3—C17—N2120.05 (16)S1A—C29A—H29C109.00
N2—C17—C18116.58 (14)H29A—C29A—H29B110.00
C17—C18—C19119.58 (15)S1A—C29A—H29A109.00
C17—C18—C23119.88 (14)H29B—C29A—H29C110.00
C19—C18—C23120.51 (15)S1A—C30A—H30C110.00
C18—C19—C20119.98 (16)H30A—C30A—H30C109.00
C19—C20—C21120.76 (16)H30B—C30A—H30C109.00
C20—C21—C22120.96 (17)H30A—C30A—H30B109.00
C21—C22—C27122.97 (17)S1A—C30A—H30A110.00
C23—C22—C27118.61 (16)S1A—C30A—H30B109.00
C21—C22—C23118.39 (15)S1B—C29B—H29D109.00
C22—C23—C24119.53 (14)S1B—C29B—H29E110.00
C18—C23—C24121.09 (14)S1B—C29B—H29F110.00
C18—C23—C22119.37 (14)H29D—C29B—H29E109.00
C23—C24—C25120.25 (15)H29D—C29B—H29F109.00
C25—C24—C28119.77 (14)H29E—C29B—H29F110.00
C23—C24—C28119.88 (14)S1B—C30B—H30D109.00
C24—C25—C26120.21 (16)S1B—C30B—H30E109.00
C25—C26—C27120.58 (18)S1B—C30B—H30F110.00
C22—C27—C26120.81 (17)H30D—C30B—H30E109.00
N2—C28—C24116.85 (14)H30D—C30B—H30F110.00
O4—C28—C24123.89 (15)H30E—C30B—H30F110.00
C10—O2—C7—C67.4 (3)C6—C7—C8—C91.6 (3)
C10—O2—C7—C8172.23 (19)O2—C7—C8—C9178.04 (18)
C3—N1—C1—C27.68 (13)C7—C8—C9—C41.2 (3)
C4—N1—C1—C1162.4 (2)C1—C11—C12—C13180.00 (18)
C4—N1—C1—C2179.39 (17)C16—C11—C12—C130.5 (3)
C3—N1—C1—C11125.92 (15)C12—C11—C16—C150.3 (3)
C4—N1—C3—O14.1 (4)C1—C11—C16—C15179.2 (2)
C1—N1—C3—C27.80 (14)C11—C12—C13—C141.0 (3)
C4—N1—C3—C2178.97 (19)C12—C13—C14—C150.8 (4)
C1—N1—C4—C5176.58 (17)C12—C13—C14—Cl1178.46 (17)
C3—N1—C4—C58.0 (3)Cl1—C14—C15—C16179.2 (2)
C1—N1—C4—C93.5 (3)C13—C14—C15—C160.0 (4)
C3—N1—C4—C9172.02 (19)C14—C15—C16—C110.6 (4)
C1—N1—C3—O1175.3 (2)O3—C17—C18—C199.3 (3)
C17—N2—C2—C3143.50 (15)N2—C17—C18—C237.7 (2)
C28—N2—C2—C339.3 (2)O3—C17—C18—C23173.05 (17)
C28—N2—C17—C1813.0 (2)N2—C17—C18—C19169.99 (15)
C28—N2—C2—C164.7 (2)C17—C18—C23—C22179.03 (15)
C2—N2—C28—O44.7 (2)C19—C18—C23—C24177.96 (15)
C2—N2—C17—O39.2 (2)C17—C18—C23—C240.3 (2)
C17—N2—C28—O4172.28 (16)C19—C18—C23—C221.4 (2)
C28—N2—C17—O3167.75 (17)C23—C18—C19—C200.1 (3)
C2—N2—C17—C18170.06 (14)C17—C18—C19—C20177.60 (17)
C2—N2—C28—C24173.56 (14)C18—C19—C20—C210.8 (3)
C17—N2—C2—C1112.52 (17)C19—C20—C21—C220.0 (3)
C17—N2—C28—C249.5 (2)C20—C21—C22—C231.5 (3)
N1—C1—C11—C16139.21 (18)C20—C21—C22—C27179.41 (18)
N1—C1—C11—C1240.3 (2)C21—C22—C23—C24177.24 (15)
C2—C1—C11—C16121.47 (19)C27—C22—C23—C18179.85 (15)
C11—C1—C2—C3123.69 (15)C21—C22—C23—C182.1 (2)
N1—C1—C2—C36.81 (12)C23—C22—C27—C260.0 (3)
C11—C1—C2—N2114.25 (17)C27—C22—C23—C240.8 (2)
C2—C1—C11—C1259.0 (2)C21—C22—C27—C26177.94 (18)
N1—C1—C2—N2128.87 (15)C18—C23—C24—C283.9 (2)
C1—C2—C3—O1175.9 (2)C22—C23—C24—C250.9 (2)
N2—C2—C3—N1130.79 (15)C22—C23—C24—C28175.38 (14)
N2—C2—C3—O152.5 (3)C18—C23—C24—C25179.75 (15)
C1—C2—C3—N17.35 (13)C23—C24—C25—C260.2 (2)
C5—C4—C9—C80.5 (3)C25—C24—C28—N2175.73 (15)
N1—C4—C9—C8179.60 (17)C23—C24—C28—O4178.75 (16)
C9—C4—C5—C61.6 (3)C23—C24—C28—N20.6 (2)
N1—C4—C5—C6178.42 (18)C28—C24—C25—C26176.07 (16)
C4—C5—C6—C71.2 (3)C25—C24—C28—O42.4 (3)
C5—C6—C7—O2179.20 (19)C24—C25—C26—C270.6 (3)
C5—C6—C7—C80.4 (3)C25—C26—C27—C220.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C11–C16 benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.573.169 (3)122
C21—H21···O1i0.932.523.344 (2)148
C25—H25···O4ii0.932.463.221 (2)139
C30A—H30A···Cg4iii0.962.883.818 (10)167
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C11–C16 benzene ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.932.573.169 (3)122
C21—H21···O1i0.932.523.344 (2)148
C25—H25···O4ii0.932.463.221 (2)139
C30A—H30A···Cg4iii0.962.883.818 (10)167
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Dicle University Scientific and Technological Applied and Research Center, Diyarbakir, Turkey, for use of the X-ray diffractometer. AJ and JAR thank the Shiraz University Research Council for financial support (grant No. 93-GR–SC-23).

References

First citationAlcaide, B. & Almendros, P. (2004). Curr. Med. Chem. 11, 1921–1949.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlcala, M. A., Kwan, S. Y., Shade, C. M., Lang, M., Uh, H., Wang, M., Weber, S. G., Bartlett, D. L., Petoud, S. & Lee, Y. J. (2011). Nanomedicine: Nanotechnol. Biol. Med. 7, 249–258.  Google Scholar
First citationAtioğlu, Z., Akkurt, M., Jarrahpour, A., Heiran, R. & Özdemir, N. (2014). Acta Cryst. E70, o835–o836.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Akkurt, M., Jarrahpour, A. & Badrabady, S. A. T. (2011). Acta Cryst. E67, o1101–o1102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A., Ebrahimi, E., Khalifeh, R., Sharghi, H., Sahraei, M., Sinou, V., Latour, C. & Brunel, J. M. (2012). Tetrahedron, 68, 4740–4744.  Web of Science CrossRef CAS Google Scholar
First citationLi, X. L., Lin, Y. J., Wang, Q. Q., Yuan, Y. K., Zhang, H. & Qian, X. H. (2011). Eur. J. Med. Chem. 46, 1274–1279.  Google Scholar
First citationLong, T. E. & Turos, E. (2002). Curr. Med. Chem. Anti-infective Agents, 1, 251–268.  Google Scholar
First citationMacIntyre, M. M., Martell, J. M. & Eriksson, L. A. (2010). J. Mol. Struct. Theochem, 941, 133–137.  Google Scholar
First citationRogers, J. E. & Kelly, L. A. (1999). J. Am. Chem. Soc. 121, 3854–3861.  Google Scholar
First citationSawa, M., Hsu, T. L., Itoh, T., Sugiyama, M., Hanson, S. R., Vogt, P. K. & Wong, C. H. (2006). Proc. Natl Acad. Sci. USA, 103, 12371–12376.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSouthgate, R. (1994). Contemp. Org. Synth. 1, 417–431.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarei, M. (2013). Tetrahedron, 69, 6620–6626.  Google Scholar
First citationZhang, Y., Feng, S., Wu, Q., Wang, K., Yi, X., Wang, H. & Pan, Y. (2011). Med. Chem. Res. 20, 752–759.  Google Scholar
First citationZhang, Y.-Y. & Zhou, Ch.-H. (2011). Bioorg. Med. Chem. Lett. 21, 4349–4352.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 2| February 2015| Pages o129-o130
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds