organic compounds
H-imidazol-2-yl)methyl]pyridinium iodide
of 1-[(1-methyl-5-nitro-1aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine1, 25000 , Algeria, bEquipe de Synthèse de Molécules à Objectif Thérapeutique, Laboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, Université Constantine 1, Constantine 25000, Algeria, and cDépartement Sciences de la Matière, Faculté des sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title salt, C10H11N4O2+·I−, the consists of a pyridinium cation bearning a (1-methyl-5-nitro-1H-imidazol-2-yl)methyl group at the N position and an iodide anion. The imidazole ring is quasiplanar, with a maxiumum deviation of 0.0032 (16) Å, and forms a dihedral angle of 67.39 (6)° with the plane of the pyridinium ring. The crystal packing can be described as alternating zigzag layers of cations parallel to the (001) plane, which are sandwiched by the iodide ions. The structure features two types of hydrogen bonds (C—H⋯O and C—H⋯I), viz. cation–anion and cation–cation, which lead to the form ation of a three-dimensional network.
Keywords: crystal structure; imidazole; pyridinium; iodide; hydrogen bonding.
CCDC reference: 1045139
1. Related literature
For the synthesis and applications of imidazole derivatives, see: Upcroft & Upcroft (2001); Çelik & Ateş (2006); Boyer (1986); Olender et al. (2009); Gaonkar et al. (2009); Larina & Lopyrev (2009). For our previous work on this type of chemistry, see: Zama et al. (2013); Alliouche et al. (2014); Bahnous et al. (2012). For the synthesis of the title compound, see: Albright & Shepherd (1973).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1045139
10.1107/S2056989015001541/hg5425sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015001541/hg5425Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015001541/hg5425Isup3.cml
The 1-((1-methyl-5-nitro-1H-imidazol-2-yl)methyl)pyridinium iodide, I, was prepared from 1,2-dimethyl-5-nitro-1H-imidazole in presence of iodine and pyridine as solvent according to described procedure (Albright & Shepherd, 1973). The colorless crystals of the title compound used for the X-ray diffraction study were obtained from aqueous solution of I.
The H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atom (C) with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl) with Uiso(H) = 1.2 or 1.5Ueq(C).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).C10H11N4O2+·I− | F(000) = 672 |
Mr = 346.13 | Dx = 1.787 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.035 (7) Å | Cell parameters from 6343 reflections |
b = 9.073 (6) Å | θ = 2.8–29.3° |
c = 12.859 (8) Å | µ = 2.49 mm−1 |
β = 91.69 (2)° | T = 295 K |
V = 1286.8 (14) Å3 | Prism, colorless |
Z = 4 | 0.14 × 0.12 × 0.11 mm |
Bruker APEXII diffractometer | 6134 independent reflections |
Radiation source: Enraf–Nonius FR590 | 3669 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
CCD rotation images, thick slices scans | θmax = 36.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −18→17 |
Tmin = 0.615, Tmax = 0.745 | k = −14→14 |
22502 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0275P)2] where P = (Fo2 + 2Fc2)/3 |
6134 reflections | (Δ/σ)max = 0.006 |
155 parameters | Δρmax = 1.14 e Å−3 |
0 restraints | Δρmin = −0.89 e Å−3 |
C10H11N4O2+·I− | V = 1286.8 (14) Å3 |
Mr = 346.13 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.035 (7) Å | µ = 2.49 mm−1 |
b = 9.073 (6) Å | T = 295 K |
c = 12.859 (8) Å | 0.14 × 0.12 × 0.11 mm |
β = 91.69 (2)° |
Bruker APEXII diffractometer | 6134 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3669 reflections with I > 2σ(I) |
Tmin = 0.615, Tmax = 0.745 | Rint = 0.030 |
22502 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.067 | H-atom parameters constrained |
S = 0.99 | Δρmax = 1.14 e Å−3 |
6134 reflections | Δρmin = −0.89 e Å−3 |
155 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.53170 (14) | −0.02548 (17) | 0.12964 (12) | 0.0288 (3) | |
C2 | 0.75852 (17) | −0.0764 (2) | 0.10429 (18) | 0.0469 (5) | |
H2A | 0.8317 | −0.0235 | 0.1217 | 0.07* | |
H2B | 0.755 | −0.0965 | 0.031 | 0.07* | |
H2C | 0.7577 | −0.1676 | 0.1421 | 0.07* | |
C3 | 0.65440 (15) | 0.15859 (18) | 0.15888 (12) | 0.0299 (3) | |
C4 | 0.46650 (16) | 0.09581 (18) | 0.15569 (14) | 0.0361 (4) | |
H4 | 0.3826 | 0.0995 | 0.1603 | 0.043* | |
C5 | 0.76681 (16) | 0.25171 (19) | 0.16974 (12) | 0.0353 (4) | |
H5A | 0.7584 | 0.3202 | 0.227 | 0.042* | |
H5B | 0.8361 | 0.189 | 0.1855 | 0.042* | |
C6 | 0.87603 (16) | 0.2915 (2) | 0.01029 (14) | 0.0458 (4) | |
H6 | 0.9214 | 0.2079 | 0.0268 | 0.055* | |
C7 | 0.8991 (2) | 0.3696 (3) | −0.07726 (17) | 0.0563 (5) | |
H7 | 0.9604 | 0.3395 | −0.1206 | 0.068* | |
C8 | 0.8319 (3) | 0.4928 (3) | −0.10157 (16) | 0.0633 (6) | |
H8 | 0.8489 | 0.5479 | −0.1603 | 0.076* | |
C9 | 0.7398 (3) | 0.5340 (2) | −0.03922 (18) | 0.0698 (7) | |
H9 | 0.6922 | 0.6156 | −0.0562 | 0.084* | |
C10 | 0.7181 (2) | 0.4539 (2) | 0.04885 (16) | 0.0520 (5) | |
H10 | 0.6556 | 0.481 | 0.092 | 0.062* | |
N1 | 0.48460 (14) | −0.16821 (16) | 0.10430 (11) | 0.0361 (3) | |
N2 | 0.65316 (11) | 0.01303 (14) | 0.13202 (9) | 0.0278 (3) | |
N3 | 0.54387 (13) | 0.21140 (15) | 0.17398 (11) | 0.0377 (3) | |
N4 | 0.78797 (12) | 0.33517 (15) | 0.07265 (10) | 0.0323 (3) | |
O1 | 0.37309 (12) | −0.17941 (15) | 0.09568 (11) | 0.0516 (3) | |
O2 | 0.55464 (14) | −0.27106 (14) | 0.09207 (13) | 0.0594 (4) | |
I1 | 1.107377 (10) | 0.089936 (13) | 0.189052 (9) | 0.04248 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0291 (8) | 0.0313 (8) | 0.0262 (7) | −0.0053 (6) | 0.0025 (6) | 0.0001 (6) |
C2 | 0.0322 (10) | 0.0468 (11) | 0.0620 (12) | 0.0067 (8) | 0.0072 (9) | −0.0108 (9) |
C3 | 0.0317 (8) | 0.0315 (8) | 0.0268 (7) | −0.0030 (6) | 0.0042 (6) | 0.0000 (6) |
C4 | 0.0269 (8) | 0.0405 (9) | 0.0412 (9) | −0.0011 (7) | 0.0070 (7) | −0.0027 (7) |
C5 | 0.0376 (9) | 0.0392 (9) | 0.0291 (7) | −0.0098 (7) | 0.0012 (7) | 0.0012 (7) |
C6 | 0.0322 (9) | 0.0637 (12) | 0.0416 (10) | −0.0018 (9) | 0.0049 (8) | 0.0067 (9) |
C7 | 0.0492 (12) | 0.0784 (15) | 0.0417 (10) | −0.0130 (11) | 0.0102 (9) | 0.0030 (11) |
C8 | 0.1028 (19) | 0.0505 (12) | 0.0368 (10) | −0.0304 (13) | 0.0066 (11) | 0.0034 (10) |
C9 | 0.123 (2) | 0.0316 (10) | 0.0558 (13) | 0.0119 (12) | 0.0106 (14) | 0.0052 (11) |
C10 | 0.0778 (16) | 0.0293 (8) | 0.0498 (11) | 0.0068 (10) | 0.0161 (10) | −0.0007 (9) |
N1 | 0.0418 (9) | 0.0356 (7) | 0.0311 (7) | −0.0086 (6) | 0.0038 (6) | −0.0016 (6) |
N2 | 0.0259 (7) | 0.0309 (7) | 0.0267 (6) | 0.0000 (5) | 0.0039 (5) | 0.0005 (5) |
N3 | 0.0354 (8) | 0.0333 (7) | 0.0449 (8) | −0.0005 (6) | 0.0095 (6) | −0.0049 (6) |
N4 | 0.0349 (8) | 0.0312 (7) | 0.0310 (6) | −0.0096 (6) | 0.0028 (6) | −0.0037 (6) |
O1 | 0.0413 (8) | 0.0544 (8) | 0.0589 (8) | −0.0164 (6) | −0.0041 (6) | −0.0063 (7) |
O2 | 0.0606 (9) | 0.0336 (7) | 0.0847 (11) | −0.0003 (7) | 0.0177 (8) | −0.0112 (7) |
I1 | 0.03084 (7) | 0.04881 (8) | 0.04816 (8) | 0.00945 (5) | 0.00730 (5) | 0.00972 (5) |
C1—C4 | 1.362 (2) | C5—H5B | 0.97 |
C1—N2 | 1.385 (2) | C6—N4 | 1.338 (2) |
C1—N1 | 1.429 (2) | C6—C7 | 1.360 (3) |
C2—N2 | 1.470 (2) | C6—H6 | 0.93 |
C2—H2A | 0.96 | C7—C8 | 1.373 (3) |
C2—H2B | 0.96 | C7—H7 | 0.93 |
C2—H2C | 0.96 | C8—C9 | 1.365 (4) |
C3—N3 | 1.330 (2) | C8—H8 | 0.93 |
C3—N2 | 1.365 (2) | C9—C10 | 1.373 (3) |
C3—C5 | 1.504 (2) | C9—H9 | 0.93 |
C4—N3 | 1.368 (2) | C10—N4 | 1.355 (2) |
C4—H4 | 0.93 | C10—H10 | 0.93 |
C5—N4 | 1.484 (2) | N1—O2 | 1.225 (2) |
C5—H5A | 0.97 | N1—O1 | 1.236 (2) |
C4—C1—N2 | 107.98 (14) | C7—C6—H6 | 120 |
C4—C1—N1 | 126.65 (15) | C6—C7—C8 | 119.9 (2) |
N2—C1—N1 | 125.37 (14) | C6—C7—H7 | 120 |
N2—C2—H2A | 109.5 | C8—C7—H7 | 120 |
N2—C2—H2B | 109.5 | C9—C8—C7 | 119.7 (2) |
H2A—C2—H2B | 109.5 | C9—C8—H8 | 120.1 |
N2—C2—H2C | 109.5 | C7—C8—H8 | 120.1 |
H2A—C2—H2C | 109.5 | C8—C9—C10 | 119.4 (2) |
H2B—C2—H2C | 109.5 | C8—C9—H9 | 120.3 |
N3—C3—N2 | 112.53 (14) | C10—C9—H9 | 120.3 |
N3—C3—C5 | 122.78 (15) | N4—C10—C9 | 119.7 (2) |
N2—C3—C5 | 124.69 (15) | N4—C10—H10 | 120.2 |
C1—C4—N3 | 109.28 (16) | C9—C10—H10 | 120.2 |
C1—C4—H4 | 125.4 | O2—N1—O1 | 123.78 (15) |
N3—C4—H4 | 125.4 | O2—N1—C1 | 119.53 (15) |
N4—C5—C3 | 110.99 (13) | O1—N1—C1 | 116.69 (15) |
N4—C5—H5A | 109.4 | C3—N2—C1 | 104.61 (13) |
C3—C5—H5A | 109.4 | C3—N2—C2 | 126.38 (14) |
N4—C5—H5B | 109.4 | C1—N2—C2 | 128.85 (14) |
C3—C5—H5B | 109.4 | C3—N3—C4 | 105.60 (14) |
H5A—C5—H5B | 108 | C6—N4—C10 | 121.25 (16) |
N4—C6—C7 | 119.9 (2) | C6—N4—C5 | 119.21 (15) |
N4—C6—H6 | 120 | C10—N4—C5 | 119.53 (15) |
N2—C1—C4—N3 | 0.4 (2) | C5—C3—N2—C2 | −3.1 (2) |
N1—C1—C4—N3 | −179.70 (15) | C4—C1—N2—C3 | −0.60 (17) |
N3—C3—C5—N4 | −83.61 (19) | N1—C1—N2—C3 | 179.51 (14) |
N2—C3—C5—N4 | 95.79 (18) | C4—C1—N2—C2 | −176.19 (17) |
N4—C6—C7—C8 | −0.1 (3) | N1—C1—N2—C2 | 3.9 (3) |
C6—C7—C8—C9 | −1.8 (3) | N2—C3—N3—C4 | −0.35 (19) |
C7—C8—C9—C10 | 1.9 (4) | C5—C3—N3—C4 | 179.12 (15) |
C8—C9—C10—N4 | −0.1 (4) | C1—C4—N3—C3 | −0.1 (2) |
C4—C1—N1—O2 | −173.00 (17) | C7—C6—N4—C10 | 2.1 (3) |
N2—C1—N1—O2 | 6.9 (2) | C7—C6—N4—C5 | −177.91 (17) |
C4—C1—N1—O1 | 7.2 (2) | C9—C10—N4—C6 | −2.0 (3) |
N2—C1—N1—O1 | −172.89 (15) | C9—C10—N4—C5 | 178.00 (19) |
N3—C3—N2—C1 | 0.59 (17) | C3—C5—N4—C6 | −105.28 (18) |
C5—C3—N2—C1 | −178.86 (14) | C3—C5—N4—C10 | 74.8 (2) |
N3—C3—N2—C2 | 176.33 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2C···O2 | 0.96 | 2.50 | 2.861 (3) | 102 |
C10—H10···O2i | 0.93 | 2.51 | 3.138 (3) | 125 |
C5—H5A···I1ii | 0.97 | 3.04 | 3.807 (3) | 137 |
C7—H7···I1iii | 0.93 | 3.04 | 3.854 (3) | 147 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, y+1/2, −z+1/2; (iii) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2C···O2 | 0.9600 | 2.5000 | 2.861 (3) | 102.00 |
C10—H10···O2i | 0.9300 | 2.5100 | 3.138 (3) | 125.00 |
C5—H5A···I1ii | 0.9700 | 3.0400 | 3.807 (3) | 137.00 |
C7—H7···I1iii | 0.9300 | 3.0400 | 3.854 (3) | 147.00 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, y+1/2, −z+1/2; (iii) x, −y+1/2, z−1/2. |
Acknowledgements
Thanks are due to MESRS and the DG–RSDT (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique et la Direction Générale de la Recherche - Algérie) for financial support.
References
Albright, J. D. & Shepherd, R. G. (1973). J. Heterocycl. Chem. 10, 899–907. Google Scholar
Alliouche, H., Bouraiou, A., Bouacida, S., Bahnous, M., Roisnel, T. & Belfaitah, A. (2014). Lett. Org. Chem. 11, 174–179. CSD CrossRef CAS Google Scholar
Bahnous, M., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2012). Acta Cryst. E68, o1391. CSD CrossRef IUCr Journals Google Scholar
Boyer, J. H. (1986). Nitroazoles, pp. 165–166. Deerfield Beach, Florida: VCH Publishers, Inc. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Çelik, A. & Ateş, N. A. (2006). Drug Chem. Toxicol. 29, 85–94. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gaonkar, S. L., Lokanatha Rai, K. M. & Suchetha Shetty, N. (2009). Med. Chem. Res. 18, 221–230. Google Scholar
Larina, L. & Lopyrev, V. (2009). In Nitroazoles: Synthesis, Structure and Applications, in Topics in Applied Chemistry, edited by A. Katritzky & G. J. Sabongi. Berlin: Springer. Google Scholar
Olender, D., Żwawiak, J., Lukianchuk, V., Lesyk, R., Kropacz, A., Fojutowski, A. & Zaprutko, L. (2009). Eur. J. Med. Chem. 44, 645–652. Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Upcroft, P. & Upcroft, J. A. (2001). Clin. Microbiol. Rev. 14, 150–164. Google Scholar
Zama, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2013). Acta Cryst. E69, o837–o838. CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1. Chemical Context
Nitroheterocyclic drugs have drawn a continuing interest over the years due to efficient use in the treatment of various anaerobic pathogenic bacterial and protozoal infections (Upcroft & Upcroft, 2001; Çelik & Ates, 2006). Nitroimidazole derivatives have been the subject of much research because of their properties. Depending on the nature and the position of substituents or the nitro group, the nitroimidazole derivatives can posses various pharmacological action (Boyer, 1986). Nitroimidazoles, such as metronidazole, misonidazole, ornidazole, secnidazole and etamidazole, are commonly used as therapeutic agents against a variety of protozoan and bacterial infections of humans and animals (Olender et al., 2009; Gaonkar et al. 2009; Larina & Lopyrev 2009). In previous work, we have reported the synthesis and structure determination of some new heterocyclic compounds bearing a nitroimidazole entity (Zama et al., 2013; Alliouche et al., 2014; Bahnous et al., 2012). Herein, we report the synthesis and single-crystal X-ray structure of 1-((1-methyl-5-nitro-1H-imidazol-2-yl)methyl)pyridinium iodide, (I).
2. Structural commentary
The molecule structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The asymmetric unit of (I) consists of pyridinium cation bearing a 1-methyl-5-nitro-1H-imidazol-2-yl)methyl group at N position, and the iodide anion. The imidazol ring is quasiplanar with maxiumum deviation of 0.0032 (16) Å at C1 atom; and form dihedral angle of 67.39 (6)° with pyridinium ring. The crystal packing can be described by alternating layers in zigzag parallel to (001) plane of cations group, which are sandwiched by iodide ions (Fig. 2).
3. Supramolecular features
The crystal packing is mostly governed by classical hydrogen bonds (Fig. 3). Atoms C2, C5, C7, C10 and O2 of the cation participate in the formation of intramolecular [C—H···O and C—H···I] hydrogen bonds (Table 1). In this structure, we observe two types of hydrogen bonds, viz. cation-anion, cation-cation which form a three-dimensional network. The intramolecular hydrogen bond interactions C—H···O are also observed in cations moities. however the centroid to centroid distance between the phenyl rings are too long (4.430 (3) Å) for considering π-π interactions. These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the ionic structure.