organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(4-methyl­phen­yl)-4H-1,3-benzo­thia­zine

aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

Edited by H. Ishida, Okayama University, Japan (Received 29 November 2014; accepted 12 December 2014; online 3 January 2015)

In the title compound, C15H13NS, the thia­zine ring adopts a boat conformation. The dihedral angle between the planes of the benzene ring of the benzo­thia­zine unit and the tolyl ring is 19.52 (9)°. In the crystal, mol­ecules are linked by weak C—H⋯π inter­actions into a tape structure along the b-axis direction.

1. Related literature

For the biological importance of benzo­thia­zine derivatives, see: Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]); Gupta et al. (2002[Gupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105-111.]); Lazzeri et al. (2001[Lazzeri, N., Belvisi, M. G., Patel, H. J., Yacoub, M. H., Chung, K. F. & Mitchell, J. A. (2001). Am. J. Respir. Cell Mol. Biol. 24, 44-48.]); Parveen et al. (2014[Parveen, S., Hussain, S., Zhu, S., Qin, X., Hao, X., Zhang, S., Lu, J. & Zhu, C. (2014). RSC Adv. 4, 21134-21140.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H13NS

  • Mr = 239.33

  • Monoclinic, P 21 /c

  • a = 15.1241 (9) Å

  • b = 6.0111 (4) Å

  • c = 14.3212 (9) Å

  • β = 110.268 (2)°

  • V = 1221.36 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.13 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker X8 Proteum diffractometer

  • 10379 measured reflections

  • 1988 independent reflections

  • 1890 reflections with I > 2σ(I)

  • Rint = 0.041

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.05

  • 1988 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C3/C2/C7–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cgi 0.93 2.75 3.485 (2) 136
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzothiazines have been found to posses versatile biological activities, such as analgesic (Gupta et al., 2002), anti bacterial (Zia-ur-Rehman et al., 2006) and antioxidant activities (Ahmad et al., 2010). Also, benzothiazine derivatives have shown activities for the treatment of asthmatic therapy (Lazzeri et al., 2001). Recently, 1,2-benzothiazine-1,1-dioxide and its derivatives were reported as aldose reductase inhibitors (Parveen et al., 2014). With this potential background of benzothiazine derivatives, we have synthesized the title compound to study its crystal structure.

In the title compound (Fig. 1), the mean plane of the benzothiazine moiety (S1/C2/C7–C10/C3/C4/N5/C6) makes a dihedral angle of 19.52 (9)° with the benzene ring (C11–C16). The central thiazine ring adopts a boat conformation with puckering parameter Q = 0.5848 (16) Å and ϕ = 183.41 (17)°, and the maximum deviation found on the puckered atom at C6 is -0.170 (2) Å. There are no classic hydrogen bonds. Instead, a weak C—H···π interaction is observed (C7—H7···Cgi; Cg: C3/C2/C7–C10; Table 1). The molecular packing exhibits layered stacking when viewed down the b axis as shown in Fig. 2.

Related literature top

For the biological importance of benzothiazine derivatives, see: Ahmad et al. (2010); Gupta et al. (2002); Lazzeri et al. (2001); Parveen et al. (2014); Zia-ur-Rehman et al. (2006).

Experimental top

4-Methyl-N-[(phenylthio)methyl]benzamide was heated with POCl3 (10 ml) on an oil bath for 1 h. The reaction mixture was cooled by treated with ice, neutralized with Na2CO3, and extracted with dichloromethane. The combined extracts were dried (Na2SO4) and solvent was evaporated off. The residue was recrystalized from hot ethanol to get crystals of the title compound.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atom, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed along the b axis.
2-(4-Methylphenyl)-4H-1,3-benzothiazine top
Crystal data top
C15H13NSF(000) = 504
Mr = 239.33Dx = 1.302 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1988 reflections
a = 15.1241 (9) Åθ = 3.1–64.6°
b = 6.0111 (4) ŵ = 2.13 mm1
c = 14.3212 (9) ÅT = 293 K
β = 110.268 (2)°Block, light yellow
V = 1221.36 (13) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
1890 reflections with I > 2σ(I)
Radiation source: Bruker MicroStar microfocus rotating anodeRint = 0.041
Helios multilayer optics monochromatorθmax = 64.6°, θmin = 3.1°
Detector resolution: 10.7 pixels mm-1h = 1716
ϕ and ω scansk = 36
10379 measured reflectionsl = 1616
1988 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.3174P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1988 reflectionsΔρmax = 0.18 e Å3
156 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (7)
Crystal data top
C15H13NSV = 1221.36 (13) Å3
Mr = 239.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.1241 (9) ŵ = 2.13 mm1
b = 6.0111 (4) ÅT = 293 K
c = 14.3212 (9) Å0.30 × 0.25 × 0.20 mm
β = 110.268 (2)°
Data collection top
Bruker X8 Proteum
diffractometer
1890 reflections with I > 2σ(I)
10379 measured reflectionsRint = 0.041
1988 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1988 reflectionsΔρmin = 0.20 e Å3
156 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.85647 (3)0.07017 (7)0.54278 (3)0.0440 (2)
N50.71804 (10)0.2361 (2)0.51727 (10)0.0482 (5)
C20.87171 (11)0.0058 (3)0.66754 (11)0.0383 (5)
C30.83561 (11)0.1929 (3)0.68916 (12)0.0422 (5)
C40.78453 (13)0.3459 (3)0.60484 (13)0.0519 (6)
C60.74506 (11)0.0644 (2)0.48288 (12)0.0394 (5)
C70.92024 (12)0.1532 (3)0.74273 (12)0.0461 (5)
C80.93470 (13)0.0983 (3)0.84074 (13)0.0554 (6)
C90.90031 (14)0.0989 (4)0.86320 (14)0.0595 (7)
C100.85010 (12)0.2426 (3)0.78801 (13)0.0534 (6)
C110.68996 (11)0.0295 (3)0.38404 (12)0.0399 (5)
C120.70649 (13)0.2415 (3)0.35473 (13)0.0494 (6)
C130.66238 (14)0.3119 (3)0.25780 (14)0.0548 (6)
C140.59980 (13)0.1777 (3)0.18745 (13)0.0520 (6)
C150.58033 (14)0.0299 (3)0.21806 (14)0.0577 (6)
C160.62461 (13)0.1037 (3)0.31386 (13)0.0501 (6)
C170.55616 (18)0.2545 (4)0.08089 (15)0.0766 (8)
H4A0.830800.425200.584600.0620*
H4B0.750400.455200.628900.0620*
H70.942700.287200.727300.0550*
H80.967700.194900.891600.0660*
H90.910900.135800.929300.0710*
H100.825800.373800.803900.0640*
H120.747600.336600.400800.0590*
H130.675200.453500.239600.0660*
H150.536300.121100.172800.0690*
H160.610700.244400.332000.0600*
H17A0.565700.411700.077300.1150*
H17B0.489800.223100.057300.1150*
H17C0.585200.177600.040300.1150*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0437 (3)0.0489 (3)0.0373 (3)0.0101 (2)0.0113 (2)0.0032 (2)
N50.0492 (8)0.0407 (8)0.0485 (8)0.0079 (6)0.0092 (6)0.0025 (6)
C20.0358 (8)0.0401 (8)0.0380 (8)0.0031 (7)0.0117 (6)0.0024 (7)
C30.0395 (8)0.0430 (9)0.0442 (9)0.0027 (7)0.0145 (7)0.0064 (7)
C40.0598 (11)0.0388 (10)0.0518 (10)0.0056 (8)0.0127 (8)0.0080 (8)
C60.0402 (9)0.0373 (9)0.0396 (8)0.0010 (6)0.0126 (7)0.0030 (6)
C70.0434 (9)0.0466 (10)0.0428 (9)0.0001 (7)0.0081 (7)0.0009 (7)
C80.0515 (11)0.0685 (12)0.0395 (9)0.0058 (9)0.0074 (8)0.0055 (8)
C90.0585 (11)0.0820 (14)0.0385 (9)0.0096 (10)0.0174 (9)0.0103 (9)
C100.0514 (10)0.0612 (12)0.0497 (10)0.0034 (9)0.0203 (8)0.0177 (9)
C110.0392 (8)0.0393 (9)0.0405 (9)0.0006 (7)0.0128 (7)0.0015 (7)
C120.0546 (10)0.0414 (10)0.0449 (9)0.0046 (8)0.0078 (8)0.0011 (7)
C130.0610 (11)0.0452 (10)0.0533 (10)0.0016 (8)0.0135 (9)0.0084 (8)
C140.0480 (10)0.0587 (11)0.0440 (9)0.0060 (8)0.0091 (8)0.0053 (8)
C150.0520 (11)0.0627 (12)0.0461 (10)0.0094 (9)0.0014 (8)0.0031 (9)
C160.0487 (10)0.0453 (10)0.0500 (10)0.0075 (8)0.0092 (8)0.0003 (8)
C170.0780 (15)0.0877 (16)0.0494 (11)0.0016 (12)0.0035 (10)0.0156 (11)
Geometric parameters (Å, º) top
S1—C21.7635 (16)C14—C151.388 (3)
S1—C61.7967 (17)C14—C171.510 (3)
N5—C41.465 (2)C15—C161.375 (3)
N5—C61.2705 (19)C4—H4A0.9700
C2—C31.392 (3)C4—H4B0.9700
C2—C71.391 (2)C7—H70.9300
C3—C41.502 (2)C8—H80.9300
C3—C101.388 (2)C9—H90.9300
C6—C111.483 (2)C10—H100.9300
C7—C81.384 (2)C12—H120.9300
C8—C91.377 (3)C13—H130.9300
C9—C101.384 (3)C15—H150.9300
C11—C121.391 (3)C16—H160.9300
C11—C161.393 (3)C17—H17A0.9600
C12—C131.382 (3)C17—H17B0.9600
C13—C141.379 (3)C17—H17C0.9600
C2—S1—C699.02 (8)N5—C4—H4B109.00
C4—N5—C6118.70 (15)C3—C4—H4A109.00
S1—C2—C3119.34 (12)C3—C4—H4B109.00
S1—C2—C7119.55 (13)H4A—C4—H4B108.00
C3—C2—C7121.11 (15)C2—C7—H7120.00
C2—C3—C4118.61 (14)C8—C7—H7120.00
C2—C3—C10118.43 (15)C7—C8—H8120.00
C4—C3—C10122.95 (16)C9—C8—H8120.00
N5—C4—C3114.95 (14)C8—C9—H9120.00
S1—C6—N5123.71 (13)C10—C9—H9120.00
S1—C6—C11114.10 (11)C3—C10—H10120.00
N5—C6—C11121.96 (15)C9—C10—H10120.00
C2—C7—C8119.27 (17)C11—C12—H12120.00
C7—C8—C9120.18 (17)C13—C12—H12120.00
C8—C9—C10120.36 (17)C12—C13—H13119.00
C3—C10—C9120.62 (17)C14—C13—H13119.00
C6—C11—C12122.43 (15)C14—C15—H15119.00
C6—C11—C16119.58 (15)C16—C15—H15119.00
C12—C11—C16117.75 (16)C11—C16—H16120.00
C11—C12—C13120.59 (17)C15—C16—H16120.00
C12—C13—C14121.68 (17)C14—C17—H17A110.00
C13—C14—C15117.54 (17)C14—C17—H17B109.00
C13—C14—C17120.58 (18)C14—C17—H17C109.00
C15—C14—C17121.87 (18)H17A—C17—H17B109.00
C14—C15—C16121.47 (18)H17A—C17—H17C109.00
C11—C16—C15120.87 (17)H17B—C17—H17C110.00
N5—C4—H4A109.00
C6—S1—C2—C331.75 (16)S1—C6—C11—C1220.0 (2)
C6—S1—C2—C7148.81 (15)S1—C6—C11—C16154.33 (14)
C2—S1—C6—N530.02 (16)N5—C6—C11—C12165.34 (17)
C2—S1—C6—C11155.37 (12)N5—C6—C11—C1620.4 (3)
C6—N5—C4—C347.9 (2)C2—C7—C8—C90.8 (3)
C4—N5—C6—S16.7 (2)C7—C8—C9—C100.8 (3)
C4—N5—C6—C11167.49 (15)C8—C9—C10—C31.6 (3)
S1—C2—C3—C40.1 (2)C6—C11—C12—C13171.49 (18)
S1—C2—C3—C10178.66 (14)C16—C11—C12—C132.9 (3)
C7—C2—C3—C4179.54 (17)C6—C11—C16—C15172.56 (18)
C3—C2—C7—C81.6 (3)C12—C11—C16—C152.0 (3)
C7—C2—C3—C100.8 (3)C11—C12—C13—C141.0 (3)
S1—C2—C7—C8177.85 (15)C12—C13—C14—C151.8 (3)
C2—C3—C4—N543.9 (2)C12—C13—C14—C17177.1 (2)
C10—C3—C4—N5137.37 (18)C13—C14—C15—C162.7 (3)
C2—C3—C10—C90.8 (3)C17—C14—C15—C16176.1 (2)
C4—C3—C10—C9177.91 (19)C14—C15—C16—C110.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3/C2/C7–C10 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cgi0.932.753.485 (2)136
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C3/C2/C7–C10 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···Cgi0.932.753.485 (2)136
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

MM would like to thank the UGC, New Delhi, Government of India, for the award of a project under the head F. No. 41–920/2012(SR) dated: 25-07-2012.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105–111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLazzeri, N., Belvisi, M. G., Patel, H. J., Yacoub, M. H., Chung, K. F. & Mitchell, J. A. (2001). Am. J. Respir. Cell Mol. Biol. 24, 44–48.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParveen, S., Hussain, S., Zhu, S., Qin, X., Hao, X., Zhang, S., Lu, J. & Zhu, C. (2014). RSC Adv. 4, 21134–21140.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds