research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 288-290

Crystal structure of cis-aqua­chlorido­bis­­(1,10-phenanthroline-κ2N,N′)chromium(III) tetra­chlorido­zincate monohydrate from synchrotron data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 790-784, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 February 2015; accepted 16 February 2015; online 21 February 2015)

The structure of the title compound, [CrCl(C12H8N2)2(H2O)][ZnCl4]·H2O, has been determined from synchrotron data. The CrIII ion is bonded to four N atoms from two 1,10-phenanthroline (phen) ligands, one water mol­ecule and a Cl atom in a cis arrangement, displaying an overall distorted octa­hedral coordination environment. The Cr—N(phen) bond lengths are in the range of 2.0495 (18) to 2.0831 (18) Å, while the Cr—Cl and Cr—(OH2) bond lengths are 2.2734 (7) and 1.9986 (17) Å, respectively. The tetra­hedral [ZnCl4]2− anion is slightly distorted owing to its involvement in O—H⋯Cl hydrogen bonding with coordinating and non-coordinating water mol­ecules. The two types of water mol­ecules also inter­act through O—H⋯O hydrogen bonds. The observed hydrogen-bonding pattern leads to the formation of a three-dimensional network structure.

1. Chemical context

Chromium(III) complexes with polypyridine ligands are particularly inter­esting because of their long lifetimes, thermal stabilities and tunable excited states. These complexes are promising materials for the development of new mol­ecule-based magnets, solar energy storage media or tunable solid state lasers (Powell, 1998[Powell, R. C. (1998). In Physics of Solid-State Laser Materials. New York: AIP Press.]; Dreiser et al., 2012[Dreiser, J., Pedersen, K. S., Birk, T., Schau-Magnussen, M., Piamonteze, C., Rusponi, S., Weyhermüller, T., Brune, H., Nolting, F. & Bendix, J. (2012). J. Phys. Chem. A, 116, 7842-7847.]; Scarborough et al., 2012[Scarborough, C. S., Sproules, S., Doonan, C. J., Hagen, K. S., Weyhermüller, T. & Wieghardt, K. (2012). Inorg. Chem. 51, 6969-6982.]). As a prerequisite for these applications, a detailed study of the structural and spectroscopic properties is needed. Therefore, we have been inter­ested in the preparation, crystal structures and spectroscopic properties of chromium(III) complexes containing mixed various ligands (Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Linder, R. & Schönherr, T. (2004a). Chem. Phys. 297, 7-12.],b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.], 2007[Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796-801.]; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]; Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]; Choi & Moon 2014[Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325-331.]; Moon & Choi, 2015[Moon, D. & Choi, J. H. (2015). Spectrochim. Acta A Part A, 138, 774-779.]).

[Scheme 1]

We report here on the synthesis and crystal structure of the title compound, [CrCl(phen)2(H2O)][ZnCl4]·H2O (phen = 1,10-phenanthroline), (I)[link].

2. Structural commentary

In the mol­ecular structure of (I)[link], there is one chlorine atom and one water mol­ecule coordinating to the CrIII ion in a cis arrangement with an O1A—Cr1A—Cl1A bond angle of 89.79 (5)°. The other coordination sites are occupied by four nitro­gen atoms from two phen ligands, displaying an overall distorted octa­hedral coordination environment (Fig. 1[link]).

[Figure 1]
Figure 1
The structure of the mol­ecular components in (I)[link], showing the atom-numbering scheme. Non-H atoms are shown as displacement ellipsoids at the 50% probability level.

The Cr—N(phen) bond lengths are in the range of 2.0495 (18) to 2.0831 (18) Å and are in good agreement with those observed in [Cr(phen)3](ClO4)3·H2O (Luck et al., 2000[Luck, R. L., Gawryszewska, P. & Riehl, J. P. (2000). Acta Cryst. C56, e238-e239.]), cis-[CrF2(phen)2]ClO4·H2O (Birk et al., 2008[Birk, T., Bendix, J. & Weihe, H. (2008). Acta Cryst. E64, m369-m370.]) or cis-[CrCl2(phen)2]Cl (Gao, 2011[Gao, X. (2011). Acta Cryst. E67, m139.]). The Cr—Cl and Cr—(OH2) bond lengths in (I)[link] are 2.2734 (7) and 1.9986 (17) Å, respectively. The Cr—(OH2) bond length is comparable to those of 1.947 (4), 1.9579 (10) and 1.996 (4) Å found in cis-[Cr(dpp)(phen)2(H2O)](NO3)2·H2O·CH3CN [Hdpp = (C6H5O)2·PO2H] (Ferreira et al., 1998[Ferreira, A. D. Q., Bino, A. & Gibson, D. (1998). Inorg. Chem. 37, 6560-6561.]), cis-[CrF(bpy)2(H2O)](ClO4)2·2H2O (Birk & Bendix, 2010[Birk, T. & Bendix, J. (2010). Acta Cryst. E66, m121-m122.]) and trans-[CrF(3,2,3-tet)(H2O)](ClO4)2·H2O (3,2,3-tet = 1,5,8,12-tetra­aza­undeca­ne) (Choi & Lee, 2008[Choi, J.-H. & Lee, U. (2008). Acta Cryst. E64, m1186.]), respectively. The Cr—Cl bond length in (I)[link] is somewhat shorter than those of 2.2941 (15) and 2.3253 (7) Å found in cis-[CrCl2(phen)2]Cl (Gao, 2011[Gao, X. (2011). Acta Cryst. E67, m139.]) or trans-[Cr(Me2tn)2Cl2]Cl (Me2tn = 2,2-di­methyl­propane-1,3-di­amine) (Choi et al., 2007[Choi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796-801.]), respectively. The Cl1A—Cr1A—N2A and N1A—Cr1A—N3A angles in (I)[link] are 171.72 (5) and 169.79 (7)°, respectively. The bite angles N1A—Cr1A—N2A and N3A—Cr1A—N4A are 79.76 (5) and 80.23 (7)°.

The [ZnCl4]2− anion and the second water mol­ecule remain outside the coordination sphere. The ZnII atom in the complex anion exhibits a slightly distorted tetra­hedral coordination sphere caused by the influence of hydrogen bonding on the Zn—Cl bond lengths and the Cl—Zn—Cl angles. The Zn—Cl bond lengths range from 2.2443 (7) to 2.2854 (7) Å and the Cl—Zn—Cl angles from 107.54 (4) to 111.57 (3)°.

3. Supra­molecular features

The supra­molecular architecture involves hydrogen bonds including the O—H groups of coordinating and non-coord­inating water mol­ecules as donors, and the Cl atoms of the complex anion and the O atom of the solvent water mol­ecule as acceptors. Atom Cl3B of the [ZnCl4]2− anion and the Cl1A ligand atom are not involved in hydrogen bonding. An extensive array of O—H—O and O—H⋯Cl contacts (Table 1[link]) generates a three-dimensional network of mol­ecules stacked along the a-axis direction (Fig. 2[link]). These hydrogen-bonded networks help to stabilize the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1O1⋯O1W 0.83 (1) 1.72 (1) 2.536 (3) 170 (3)
O1A—H2O1⋯Cl1B 0.84 (1) 2.20 (1) 3.0208 (19) 168 (3)
O1W—H2OW⋯Cl2B 0.86 (1) 2.39 (2) 3.172 (3) 153 (3)
O1W—H1OW⋯Cl4Bi 0.85 (1) 2.31 (1) 3.155 (2) 170 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing in (I)[link], viewed along [100]. Dashed lines represent O—H⋯O (purple) and O—H⋯Cl (blue) hydrogen-bonding inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, May 2014 with one update; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) indicates a total of 36 hits for CrIII complexes containing two bidentate 1,10-phenanthroline ligands. The crystal structures of cis-[Cr(dpp)(phen)2(H2O)](NO3)2·H2O·CH3CN (Ferreira et al., 1998[Ferreira, A. D. Q., Bino, A. & Gibson, D. (1998). Inorg. Chem. 37, 6560-6561.]), [Cr(phen)3](ClO4)3·H2O (Luck et al., 2000[Luck, R. L., Gawryszewska, P. & Riehl, J. P. (2000). Acta Cryst. C56, e238-e239.]), cis-[CrF2(phen)2]ClO4 (Birk et al., 2008[Birk, T., Bendix, J. & Weihe, H. (2008). Acta Cryst. E64, m369-m370.]) and cis-[CrCl2(phen)2]Cl (Gao, 2011[Gao, X. (2011). Acta Cryst. E67, m139.]) have been reported previously. However, no structures of complexes of [CrCl(phen)2(H2O)]2+ with any anions have been deposited.

5. Synthesis and crystallization

All chemicals were reagent-grade materials and used without further purification. The starting material, cis-[CrF2(phen)2]ClO4·H2O was prepared according to a literature procedure (Glerup et al., 1970[Glerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E., Schäffer, C. E., Sunde, E. & Sørensen, N. A. (1970). Acta Chem. Scand. 24, 247-254.]). Crude cis-[CrF2(phen)2]ClO4·H2O (0.2 g) was dissolved in 10 mL of 0.01 M HCl at 313 K, and 5 mL of 1 M HCl containing 1.2 g of solid ZnCl2 were added to this solution. The mixture was refluxed at 328 K for 30 min and then cooled to room temperature. The resulting solution was filtered and allowed to stand at room temperature for 3–5 days, giving purple crystals of (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in a riding-model approximation with Uiso(H) set to 1.2Ueq(C). The H atoms of water mol­ecules (H1O1 and H2O1: H atoms of coordinating water; H1OW and H2OW: H atoms of solvent water) were located from difference Fourier maps and refined with restraints and an O—H distance of 0.84 (1) Å, with Uiso(H) values of 1.2 Ueq(O1A, O1W).

Table 2
Experimental details

Crystal data
Chemical formula [CrCl(C12H8N2)2(H2O)][ZnCl4]·H2O
Mr 691.06
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.2710 (17), 19.535 (4), 16.934 (3)
β (°) 100.55 (3)
V3) 2689.8 (10)
Z 4
Radiation type Synchrotron, λ = 0.62998 Å
μ (mm−1) 1.30
Crystal size (mm) 0.10 × 0.08 × 0.05
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press])
Tmin, Tmax 0.881, 0.938
No. of measured, independent and observed [I > 2σ(I)] reflections 25530, 7554, 7016
Rint 0.045
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.02
No. of reflections 7554
No. of parameters 348
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.96, −0.87
Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983[Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Chromium(III) complexes with polypyridine ligands are particularly inter­esting because of their long lifetimes, thermal stabilities and tunable excited states. These complexes are promising materials for the development of new molecule-based magnets, solar energy storage media or tunable solid state lasers (Powell, 1998; Dreiser et al., 2012; Scarborough et al., 2012). As a prerequisite for these applications, a detailed study of the structural and spectroscopic properties is needed. Therefore, we have been inter­ested in the preparation, crystal structure and spectroscopic properties of chromium(III) complexes containing mixed various ligands (Choi et al., 2004a,b, 2007; Choi, 2009; Choi & Lee, 2009; Moon & Choi, 2014, 2015).

We report here on the synthesis and crystal structure of the title compound, [CrCl(phen)2(H2O)][ZnCl4]·H2O (phen = 1,10-phenanthroline), (I).

Structural commentary top

In the molecular structure of (I), there is one chlorine atom and one water molecule coordinating to the CrIII ion in a cis arrangement with an O1A—Cr1A—Cl1A bond angle of 89.79 (5)°. The other coordination sites are occupied by four nitro­gen atoms from two phen ligands, displaying an overall distorted o­cta­hedral coordination environment (Fig. 1).

The Cr—N(phen) bond lengths are in the range of 2.0495 (18) to 2.0831 (18) Å and are in good agreement with those observed in [Cr(phen)3](ClO4)3·H2O (Luck et al., 2000), cis-[CrF2(phen)2]ClO4·H2O (Birk et al., 2008) or cis-[CrCl2(phen)2]Cl (Gao, 2011). The Cr—Cl and Cr—(OH2) bond lengths in (I) are 2.2734 (7) and 1.9986 (17) Å, respectively. The Cr—(OH2) bond length is comparable to those of 1.947 (4), 1.9579 (10) and 1.996 (4) Å found in cis-[Cr(dpp)(phen)2(H2O)](NO3)2·H2O·CH3CN [Hdpp = (C6H5O)2·PO2H] (Ferreira et al., 1998), cis-[CrF(bpy)2(H2O)](ClO4)2·2H2O (Birk & Bendix, 2010) and trans-[CrF(3,2,3-tet)(H2O)](ClO4)2·H2O (3,2,3-tet = 1,5,8,12-tetra­aza­undecane) (Choi & Lee, 2008), respectively. The Cr—Cl bond length in (I) is somewhat shorter than those of 2.2941 (15) and 2.3253 (7) Å found in cis-[CrCl2(phen)2]Cl (Gao, 2011) or trans-[Cr(Me2tn)2Cl2]Cl (Me2tn = 2,2-di­methyl­propane-1,3-di­amine) (Choi et al., 2007), respectively. The Cl1A—Cr1A—N2A and N1A—Cr1A—N3A angles in (I) are 171.72 (5) and 169.79 (7)°, respectively. The bite angles N1A—Cr1A—N2A and N3A—Cr1A—N4A are 79.76 (5) and 80.23 (7)°.

The [ZnCl4]2- anion and the second water molecule remain outside the coordination sphere. The ZnII atom in the complex anion exhibits a slightly distorted tetra­hedral coordination sphere caused by the influence of hydrogen bonding on the Zn—Cl bond lengths and the Cl—Zn—Cl angles. The Zn—Cl bond lengths range from 2.2443 (7) to 2.2854 (7) Å and the Cl—Zn—Cl angles from 107.54 (4) to 111.57 (3)°.

Supra­molecular features top

The supra­molecular architecture involves hydrogen bonds including the O—H groups of coordinating and non-coordinating water molecules as donors, and the Cl atoms of the complex anion and the O atom of the solvent water molecule as acceptors. Atom Cl3B of the [ZnCl4]2- anion and the Cl1A ligand atom are not involved in hydrogen bonding. An extensive array of O—H—O and O—H···Cl contacts (Table 1) generates a three-dimensional network of molecules stacked along the a axis direction (Fig. 2). These hydrogen-bonded networks help to stabilize the crystal structure.

Database survey top

A search of the Cambridge Structural Database (Version 5.35, May 2014 with one update; Groom & Allen, 2014) indicates a total of 36 hits for CrIII complexes containing two bidentate 1,10-phenanthroline ligands. The crystal structures of cis-[Cr(dpp)(phen)2(H2O)](NO3)2·H2O·CH3CN (Ferreira et al., 1998), [Cr(phen)3](ClO4)3·H2O (Luck et al., 2000), cis-[CrF2(phen)2]ClO4 (Birk et al., 2008) and cis-[CrCl2(phen)2]Cl (Gao, 2011) have been reported previously. However, no structures of complexes of [CrCl(phen)2(H2O)]2+ with any anions have been deposited.

Synthesis and crystallization top

All chemicals were reagent-grade materials and used without further purification. The starting material, cis-[CrF2(phen)2]ClO4·H2O was prepared according to a literature procedure (Glerup et al., 1970). Crude cis-[CrF2(phen)2]ClO4·H2O (0.2 g) was dissolved in 10 mL of 0.01 M HCl at 313 K, and 5 mL of 1 M HCl containing 1.2 g of solid ZnCl2 were added to this solution. The mixture was refluxed at 328 K for 30 min and then cooled to room temperature. The resulting solution was filtered and allowed to stand at room temperature for 3–5 days, giving purple crystals of (I) suitable for X-ray structural analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in a riding-model approximation with Uiso(H) set to 1.2Ueq(C). The H atoms of water molecules (H1O1 and H2O1: H atoms of coordinating water; H1OW and H2OW: H atoms of solvent water) were located from difference Fourier maps and refined with restraints and an O—H distance of 0.84 (1) Å, with Uiso(H) values of 1.2 Ueq(O1A, O1W).

Related literature top

For related literature, see: Birk & Bendix (2010); Birk et al. (2008); Choi (2009); Choi & Lee (2008, 2009); Choi & Moon (2014, 2015); Choi et al. (2004a, 2004b, 2007); Dreiser et al. (2012); Ferreira et al. (1998); Gao (2011); Glerup et al. (1970); Groom & Allen (2014); Luck et al. (2000); Powell (1998); Scarborough et al. (2012).

Computing details top

Data collection: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the molecular components in (I), showing the atom-numbering scheme. Non-H atoms are shown as displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing in (I), viewed along [100]. Dashed lines represent O—H···O (purple) and O—H···Cl (blue) hydrogen-bonding interactions.
cis-Aquachloridobis(1,10-phenanthroline-κ2N,N')chromium(III) tetrachloridozincate monohydrate top
Crystal data top
[CrCl(C12H8N2)2(H2O)][ZnCl4]·H2OF(000) = 1388
Mr = 691.06Dx = 1.706 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.62998 Å
a = 8.2710 (17) ÅCell parameters from 65318 reflections
b = 19.535 (4) Åθ = 0.4–33.6°
c = 16.934 (3) ŵ = 1.30 mm1
β = 100.55 (3)°T = 100 K
V = 2689.8 (10) Å3Block, purple
Z = 40.10 × 0.08 × 0.05 mm
Data collection top
ADSC Q210 CCD area-detector
diffractometer
7016 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.045
ω scanθmax = 26.0°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.881, Tmax = 0.938k = 2727
25530 measured reflectionsl = 2323
7554 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0492P)2 + 5.8256P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7554 reflectionsΔρmax = 1.96 e Å3
348 parametersΔρmin = 0.87 e Å3
Crystal data top
[CrCl(C12H8N2)2(H2O)][ZnCl4]·H2OV = 2689.8 (10) Å3
Mr = 691.06Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.62998 Å
a = 8.2710 (17) ŵ = 1.30 mm1
b = 19.535 (4) ÅT = 100 K
c = 16.934 (3) Å0.10 × 0.08 × 0.05 mm
β = 100.55 (3)°
Data collection top
ADSC Q210 CCD area-detector
diffractometer
7554 independent reflections
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
7016 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.938Rint = 0.045
25530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0406 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.96 e Å3
7554 reflectionsΔρmin = 0.87 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A0.77359 (4)0.46841 (2)0.23994 (2)0.01080 (10)
Cl1A0.60790 (7)0.54226 (3)0.29174 (3)0.02194 (13)
O1A0.58493 (19)0.40363 (9)0.21135 (9)0.0188 (3)
H1O10.586 (4)0.3627 (7)0.1986 (18)0.023*
H2O10.517 (3)0.4046 (14)0.2425 (16)0.023*
N1A0.7218 (2)0.51346 (9)0.12699 (10)0.0116 (3)
N2A0.9036 (2)0.40349 (9)0.17655 (10)0.0130 (3)
N3A0.8666 (2)0.42150 (9)0.34777 (10)0.0127 (3)
N4A0.9743 (2)0.52941 (9)0.27805 (10)0.0129 (3)
C1A0.6368 (3)0.57069 (11)0.10513 (12)0.0160 (4)
H1A0.59640.59660.14480.019*
C2A0.6054 (3)0.59364 (11)0.02519 (13)0.0183 (4)
H2A0.54630.63490.01150.022*
C3A0.6605 (3)0.55611 (12)0.03309 (13)0.0180 (4)
H3A0.63770.57080.08750.022*
C4A0.7514 (2)0.49553 (11)0.01165 (12)0.0145 (4)
C5A0.8122 (3)0.45241 (12)0.06790 (13)0.0201 (4)
H5A0.78960.46370.12340.024*
C6A0.9019 (3)0.39541 (12)0.04308 (13)0.0205 (4)
H6A0.94000.36730.08160.025*
C7A0.9397 (3)0.37714 (11)0.04016 (13)0.0163 (4)
C8A1.0386 (3)0.32049 (12)0.07004 (14)0.0215 (4)
H8A1.08580.29220.03470.026*
C9A1.0656 (3)0.30693 (12)0.15110 (15)0.0241 (5)
H9A1.13200.26910.17220.029*
C10A0.9944 (3)0.34918 (11)0.20257 (13)0.0190 (4)
H10A1.01200.33850.25820.023*
C11A0.8769 (2)0.41770 (10)0.09595 (11)0.0117 (3)
C12A0.7805 (2)0.47693 (10)0.06979 (11)0.0115 (3)
C13A0.8073 (3)0.36762 (11)0.38182 (13)0.0169 (4)
H13A0.70950.34640.35460.020*
C14A0.8845 (3)0.34138 (12)0.45623 (13)0.0199 (4)
H14A0.83920.30290.47870.024*
C15A1.0265 (3)0.37163 (12)0.49676 (12)0.0186 (4)
H15A1.08020.35400.54700.022*
C16A1.0910 (3)0.42887 (11)0.46279 (12)0.0155 (4)
C17A1.2356 (3)0.46545 (12)0.49998 (13)0.0209 (4)
H17A1.29520.45000.55020.025*
C18A1.2888 (3)0.52137 (12)0.46518 (14)0.0209 (4)
H18A1.38370.54500.49180.025*
C19A1.2040 (2)0.54558 (11)0.38867 (13)0.0164 (4)
C20A1.2508 (3)0.60401 (12)0.34946 (15)0.0208 (4)
H20A1.34610.62910.37250.025*
C21A1.1571 (3)0.62439 (12)0.27744 (15)0.0226 (4)
H21A1.18580.66430.25100.027*
C22A1.0188 (3)0.58561 (11)0.24359 (13)0.0182 (4)
H22A0.95460.60020.19410.022*
C23A1.0641 (2)0.50980 (10)0.35036 (12)0.0123 (3)
C24A1.0064 (2)0.45161 (10)0.38781 (11)0.0125 (3)
Zn1B0.36987 (3)0.28015 (2)0.39019 (2)0.01831 (10)
Cl1B0.35510 (7)0.38494 (3)0.32928 (4)0.02700 (15)
Cl2B0.57258 (8)0.21748 (3)0.35055 (5)0.03248 (17)
Cl3B0.12374 (6)0.22928 (3)0.35577 (3)0.01971 (13)
Cl4B0.42194 (10)0.29190 (4)0.52663 (4)0.03734 (18)
O1W0.6215 (3)0.27775 (11)0.18258 (15)0.0383 (5)
H1OW0.575 (5)0.2623 (19)0.1371 (10)0.046*
H2OW0.589 (5)0.2513 (17)0.2168 (16)0.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.01239 (16)0.01388 (16)0.00571 (15)0.00007 (10)0.00052 (10)0.00026 (10)
Cl1A0.0241 (3)0.0262 (3)0.0161 (2)0.0080 (2)0.00524 (19)0.00103 (19)
O1A0.0145 (7)0.0292 (8)0.0123 (7)0.0010 (6)0.0014 (5)0.0026 (6)
N1A0.0131 (7)0.0132 (7)0.0076 (7)0.0004 (6)0.0002 (6)0.0008 (6)
N2A0.0166 (8)0.0130 (7)0.0089 (7)0.0009 (6)0.0014 (6)0.0011 (6)
N3A0.0155 (7)0.0147 (7)0.0076 (7)0.0011 (6)0.0013 (6)0.0009 (6)
N4A0.0129 (7)0.0147 (8)0.0108 (7)0.0005 (6)0.0013 (6)0.0025 (6)
C1A0.0161 (9)0.0165 (9)0.0142 (9)0.0027 (7)0.0004 (7)0.0009 (7)
C2A0.0180 (9)0.0179 (9)0.0167 (9)0.0011 (7)0.0028 (7)0.0036 (7)
C3A0.0184 (9)0.0211 (10)0.0126 (9)0.0025 (8)0.0019 (7)0.0050 (7)
C4A0.0155 (8)0.0188 (9)0.0088 (8)0.0034 (7)0.0009 (7)0.0011 (7)
C5A0.0259 (10)0.0262 (11)0.0087 (8)0.0029 (8)0.0042 (7)0.0006 (8)
C6A0.0261 (11)0.0238 (10)0.0130 (9)0.0024 (8)0.0074 (8)0.0047 (8)
C7A0.0200 (9)0.0153 (9)0.0147 (9)0.0013 (7)0.0061 (7)0.0035 (7)
C8A0.0271 (11)0.0168 (9)0.0223 (10)0.0032 (8)0.0090 (9)0.0029 (8)
C9A0.0310 (12)0.0177 (10)0.0240 (11)0.0086 (9)0.0062 (9)0.0015 (8)
C10A0.0245 (10)0.0163 (9)0.0156 (9)0.0052 (8)0.0021 (8)0.0022 (7)
C11A0.0143 (8)0.0127 (8)0.0082 (8)0.0029 (6)0.0021 (6)0.0005 (6)
C12A0.0116 (8)0.0143 (8)0.0080 (8)0.0028 (6)0.0005 (6)0.0001 (6)
C13A0.0198 (9)0.0171 (9)0.0141 (9)0.0004 (7)0.0038 (7)0.0018 (7)
C14A0.0258 (10)0.0196 (10)0.0151 (9)0.0046 (8)0.0057 (8)0.0052 (8)
C15A0.0241 (10)0.0213 (10)0.0101 (8)0.0100 (8)0.0025 (7)0.0026 (7)
C16A0.0156 (9)0.0192 (9)0.0108 (8)0.0075 (7)0.0002 (7)0.0021 (7)
C17A0.0169 (9)0.0282 (11)0.0148 (9)0.0087 (8)0.0046 (7)0.0052 (8)
C18A0.0140 (9)0.0252 (11)0.0207 (10)0.0050 (8)0.0039 (8)0.0090 (8)
C19A0.0123 (8)0.0186 (9)0.0176 (9)0.0020 (7)0.0011 (7)0.0063 (7)
C20A0.0162 (9)0.0193 (10)0.0267 (11)0.0033 (8)0.0030 (8)0.0063 (8)
C21A0.0220 (10)0.0189 (10)0.0274 (11)0.0062 (8)0.0054 (9)0.0004 (8)
C22A0.0193 (9)0.0191 (9)0.0158 (9)0.0020 (8)0.0025 (7)0.0005 (7)
C23A0.0118 (8)0.0142 (8)0.0106 (8)0.0024 (6)0.0017 (6)0.0028 (7)
C24A0.0128 (8)0.0155 (8)0.0092 (8)0.0040 (7)0.0015 (6)0.0010 (6)
Zn1B0.01505 (14)0.01295 (14)0.02733 (16)0.00137 (8)0.00488 (10)0.00108 (9)
Cl1B0.0273 (3)0.0157 (2)0.0436 (4)0.00190 (19)0.0212 (3)0.0037 (2)
Cl2B0.0238 (3)0.0158 (3)0.0623 (5)0.00274 (19)0.0199 (3)0.0013 (3)
Cl3B0.0182 (2)0.0157 (2)0.0243 (3)0.00401 (17)0.00131 (19)0.00362 (18)
Cl4B0.0441 (4)0.0316 (3)0.0282 (3)0.0039 (3)0.0148 (3)0.0057 (2)
O1W0.0443 (12)0.0256 (10)0.0421 (12)0.0001 (8)0.0005 (10)0.0081 (8)
Geometric parameters (Å, º) top
Cr1A—O1A1.9986 (17)C8A—H8A0.9500
Cr1A—N4A2.0495 (18)C9A—C10A1.405 (3)
Cr1A—N3A2.0619 (17)C9A—H9A0.9500
Cr1A—N1A2.0775 (17)C10A—H10A0.9500
Cr1A—N2A2.0831 (18)C11A—C12A1.429 (3)
Cr1A—Cl1A2.2734 (7)C13A—C14A1.401 (3)
O1A—H1O10.829 (10)C13A—H13A0.9500
O1A—H2O10.839 (10)C14A—C15A1.380 (3)
N1A—C1A1.336 (3)C14A—H14A0.9500
N1A—C12A1.362 (3)C15A—C16A1.406 (3)
N2A—C10A1.328 (3)C15A—H15A0.9500
N2A—C11A1.371 (2)C16A—C24A1.405 (3)
N3A—C13A1.336 (3)C16A—C17A1.436 (3)
N3A—C24A1.362 (3)C17A—C18A1.353 (4)
N4A—C22A1.327 (3)C17A—H17A0.9500
N4A—C23A1.366 (3)C18A—C19A1.436 (3)
C1A—C2A1.404 (3)C18A—H18A0.9500
C1A—H1A0.9500C19A—C23A1.405 (3)
C2A—C3A1.372 (3)C19A—C20A1.410 (3)
C2A—H2A0.9500C20A—C21A1.378 (3)
C3A—C4A1.413 (3)C20A—H20A0.9500
C3A—H3A0.9500C21A—C22A1.404 (3)
C4A—C12A1.404 (3)C21A—H21A0.9500
C4A—C5A1.430 (3)C22A—H22A0.9500
C5A—C6A1.361 (3)C23A—C24A1.426 (3)
C5A—H5A0.9500Zn1B—Cl3B2.2443 (7)
C6A—C7A1.432 (3)Zn1B—Cl2B2.2744 (8)
C6A—H6A0.9500Zn1B—Cl4B2.2830 (9)
C7A—C11A1.404 (3)Zn1B—Cl1B2.2854 (7)
C7A—C8A1.414 (3)O1W—H1OW0.851 (10)
C8A—C9A1.376 (3)O1W—H2OW0.855 (10)
O1A—Cr1A—N4A174.86 (7)C8A—C9A—H9A120.1
O1A—Cr1A—N3A94.66 (7)C10A—C9A—H9A120.1
N4A—Cr1A—N3A80.23 (7)N2A—C10A—C9A122.6 (2)
O1A—Cr1A—N1A91.43 (7)N2A—C10A—H10A118.7
N4A—Cr1A—N1A93.56 (7)C9A—C10A—H10A118.7
N3A—Cr1A—N1A169.79 (7)N2A—C11A—C7A122.96 (19)
O1A—Cr1A—N2A86.75 (7)N2A—C11A—C12A116.85 (17)
N4A—Cr1A—N2A92.95 (7)C7A—C11A—C12A120.19 (18)
N3A—Cr1A—N2A92.39 (7)N1A—C12A—C4A122.94 (18)
N1A—Cr1A—N2A79.76 (7)N1A—C12A—C11A117.07 (17)
O1A—Cr1A—Cl1A89.79 (5)C4A—C12A—C11A119.99 (18)
N4A—Cr1A—Cl1A91.17 (5)N3A—C13A—C14A122.3 (2)
N3A—Cr1A—Cl1A95.39 (5)N3A—C13A—H13A118.9
N1A—Cr1A—Cl1A92.82 (5)C14A—C13A—H13A118.9
N2A—Cr1A—Cl1A171.72 (5)C15A—C14A—C13A119.8 (2)
Cr1A—O1A—H1O1129 (2)C15A—C14A—H14A120.1
Cr1A—O1A—H2O1115 (2)C13A—C14A—H14A120.1
H1O1—O1A—H2O1103 (2)C14A—C15A—C16A119.26 (19)
C1A—N1A—C12A118.63 (17)C14A—C15A—H15A120.4
C1A—N1A—Cr1A128.22 (14)C16A—C15A—H15A120.4
C12A—N1A—Cr1A113.12 (13)C24A—C16A—C15A117.26 (19)
C10A—N2A—C11A118.07 (18)C24A—C16A—C17A118.4 (2)
C10A—N2A—Cr1A129.02 (15)C15A—C16A—C17A124.32 (19)
C11A—N2A—Cr1A112.69 (13)C18A—C17A—C16A121.5 (2)
C13A—N3A—C24A118.07 (17)C18A—C17A—H17A119.3
C13A—N3A—Cr1A128.73 (14)C16A—C17A—H17A119.3
C24A—N3A—Cr1A113.20 (13)C17A—C18A—C19A121.0 (2)
C22A—N4A—C23A118.51 (18)C17A—C18A—H18A119.5
C22A—N4A—Cr1A128.07 (15)C19A—C18A—H18A119.5
C23A—N4A—Cr1A113.30 (14)C23A—C19A—C20A117.3 (2)
N1A—C1A—C2A121.9 (2)C23A—C19A—C18A118.5 (2)
N1A—C1A—H1A119.0C20A—C19A—C18A124.1 (2)
C2A—C1A—H1A119.0C21A—C20A—C19A119.5 (2)
C3A—C2A—C1A119.7 (2)C21A—C20A—H20A120.2
C3A—C2A—H2A120.1C19A—C20A—H20A120.2
C1A—C2A—H2A120.1C20A—C21A—C22A119.3 (2)
C2A—C3A—C4A119.57 (19)C20A—C21A—H21A120.4
C2A—C3A—H3A120.2C22A—C21A—H21A120.4
C4A—C3A—H3A120.2N4A—C22A—C21A122.5 (2)
C12A—C4A—C3A117.17 (19)N4A—C22A—H22A118.7
C12A—C4A—C5A118.95 (19)C21A—C22A—H22A118.7
C3A—C4A—C5A123.88 (19)N4A—C23A—C19A122.77 (19)
C6A—C5A—C4A121.0 (2)N4A—C23A—C24A116.80 (17)
C6A—C5A—H5A119.5C19A—C23A—C24A120.39 (18)
C4A—C5A—H5A119.5N3A—C24A—C16A123.38 (19)
C5A—C6A—C7A121.1 (2)N3A—C24A—C23A116.47 (17)
C5A—C6A—H6A119.5C16A—C24A—C23A120.14 (18)
C7A—C6A—H6A119.5Cl3B—Zn1B—Cl2B111.57 (3)
C11A—C7A—C8A117.5 (2)Cl3B—Zn1B—Cl4B107.54 (4)
C11A—C7A—C6A118.7 (2)Cl2B—Zn1B—Cl4B109.89 (4)
C8A—C7A—C6A123.7 (2)Cl3B—Zn1B—Cl1B107.97 (3)
C9A—C8A—C7A119.0 (2)Cl2B—Zn1B—Cl1B109.29 (3)
C9A—C8A—H8A120.5Cl4B—Zn1B—Cl1B110.56 (3)
C7A—C8A—H8A120.5H1OW—O1W—H2OW105 (2)
C8A—C9A—C10A119.7 (2)
C12A—N1A—C1A—C2A0.6 (3)C24A—N3A—C13A—C14A0.4 (3)
Cr1A—N1A—C1A—C2A177.22 (15)Cr1A—N3A—C13A—C14A179.76 (16)
N1A—C1A—C2A—C3A1.1 (3)N3A—C13A—C14A—C15A0.1 (3)
C1A—C2A—C3A—C4A1.4 (3)C13A—C14A—C15A—C16A0.5 (3)
C2A—C3A—C4A—C12A0.0 (3)C14A—C15A—C16A—C24A0.8 (3)
C2A—C3A—C4A—C5A179.1 (2)C14A—C15A—C16A—C17A178.6 (2)
C12A—C4A—C5A—C6A2.3 (3)C24A—C16A—C17A—C18A1.3 (3)
C3A—C4A—C5A—C6A178.6 (2)C15A—C16A—C17A—C18A178.1 (2)
C4A—C5A—C6A—C7A0.6 (4)C16A—C17A—C18A—C19A1.2 (3)
C5A—C6A—C7A—C11A2.5 (3)C17A—C18A—C19A—C23A0.1 (3)
C5A—C6A—C7A—C8A176.9 (2)C17A—C18A—C19A—C20A179.0 (2)
C11A—C7A—C8A—C9A1.4 (3)C23A—C19A—C20A—C21A1.6 (3)
C6A—C7A—C8A—C9A179.1 (2)C18A—C19A—C20A—C21A177.5 (2)
C7A—C8A—C9A—C10A0.2 (4)C19A—C20A—C21A—C22A1.4 (4)
C11A—N2A—C10A—C9A1.1 (3)C23A—N4A—C22A—C21A1.9 (3)
Cr1A—N2A—C10A—C9A175.09 (18)Cr1A—N4A—C22A—C21A177.73 (17)
C8A—C9A—C10A—N2A1.5 (4)C20A—C21A—C22A—N4A0.3 (4)
C10A—N2A—C11A—C7A0.7 (3)C22A—N4A—C23A—C19A1.7 (3)
Cr1A—N2A—C11A—C7A174.29 (16)Cr1A—N4A—C23A—C19A178.16 (15)
C10A—N2A—C11A—C12A179.22 (19)C22A—N4A—C23A—C24A176.20 (18)
Cr1A—N2A—C11A—C12A5.8 (2)Cr1A—N4A—C23A—C24A0.2 (2)
C8A—C7A—C11A—N2A1.9 (3)C20A—C19A—C23A—N4A0.0 (3)
C6A—C7A—C11A—N2A178.62 (19)C18A—C19A—C23A—N4A179.15 (19)
C8A—C7A—C11A—C12A177.99 (19)C20A—C19A—C23A—C24A177.84 (19)
C6A—C7A—C11A—C12A1.5 (3)C18A—C19A—C23A—C24A1.3 (3)
C1A—N1A—C12A—C4A2.0 (3)C13A—N3A—C24A—C16A0.0 (3)
Cr1A—N1A—C12A—C4A176.07 (15)Cr1A—N3A—C24A—C16A179.48 (15)
C1A—N1A—C12A—C11A177.33 (18)C13A—N3A—C24A—C23A178.80 (18)
Cr1A—N1A—C12A—C11A4.6 (2)Cr1A—N3A—C24A—C23A0.7 (2)
C3A—C4A—C12A—N1A1.7 (3)C15A—C16A—C24A—N3A0.6 (3)
C5A—C4A—C12A—N1A177.40 (19)C17A—C16A—C24A—N3A178.90 (19)
C3A—C4A—C12A—C11A177.60 (18)C15A—C16A—C24A—C23A179.37 (18)
C5A—C4A—C12A—C11A3.3 (3)C17A—C16A—C24A—C23A0.1 (3)
N2A—C11A—C12A—N1A0.9 (3)N4A—C23A—C24A—N3A0.3 (3)
C7A—C11A—C12A—N1A179.23 (18)C19A—C23A—C24A—N3A177.69 (18)
N2A—C11A—C12A—C4A178.51 (18)N4A—C23A—C24A—C16A179.14 (18)
C7A—C11A—C12A—C4A1.4 (3)C19A—C23A—C24A—C16A1.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1O1···O1W0.83 (1)1.72 (1)2.536 (3)170 (3)
O1A—H2O1···Cl1B0.84 (1)2.20 (1)3.0208 (19)168 (3)
O1W—H2OW···Cl2B0.86 (1)2.39 (2)3.172 (3)153 (3)
O1W—H1OW···Cl4Bi0.85 (1)2.31 (1)3.155 (2)170 (3)
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1O1···O1W0.829 (10)1.715 (11)2.536 (3)170 (3)
O1A—H2O1···Cl1B0.839 (10)2.195 (12)3.0208 (19)168 (3)
O1W—H2OW···Cl2B0.855 (10)2.388 (17)3.172 (3)153 (3)
O1W—H1OW···Cl4Bi0.851 (10)2.314 (13)3.155 (2)170 (3)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[CrCl(C12H8N2)2(H2O)][ZnCl4]·H2O
Mr691.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.2710 (17), 19.535 (4), 16.934 (3)
β (°) 100.55 (3)
V3)2689.8 (10)
Z4
Radiation typeSynchrotron, λ = 0.62998 Å
µ (mm1)1.30
Crystal size (mm)0.10 × 0.08 × 0.05
Data collection
DiffractometerADSC Q210 CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.881, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
25530, 7554, 7016
Rint0.045
(sin θ/λ)max1)0.696
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.02
No. of reflections7554
No. of parameters348
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.96, 0.87

Computer programs: PAL ADSC Quantum-210 ADX (Arvai & Nielsen, 1983), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2014/7 (Sheldrick, 2015b), DIAMOND (Putz & Brandenburg, 2014), publCIF (Westrip, 2010).

 

Acknowledgements

The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationArvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.  Google Scholar
First citationBirk, T. & Bendix, J. (2010). Acta Cryst. E66, m121–m122.  CSD CrossRef IUCr Journals Google Scholar
First citationBirk, T., Bendix, J. & Weihe, H. (2008). Acta Cryst. E64, m369–m370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. & Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796–801.  Web of Science CrossRef Google Scholar
First citationChoi, J.-H. & Lee, U. (2008). Acta Cryst. E64, m1186.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Linder, R. & Schönherr, T. (2004a). Chem. Phys. 297, 7–12.  Web of Science CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.  CSD CrossRef CAS Google Scholar
First citationDreiser, J., Pedersen, K. S., Birk, T., Schau-Magnussen, M., Piamonteze, C., Rusponi, S., Weyhermüller, T., Brune, H., Nolting, F. & Bendix, J. (2012). J. Phys. Chem. A, 116, 7842–7847.  CSD CrossRef CAS PubMed Google Scholar
First citationFerreira, A. D. Q., Bino, A. & Gibson, D. (1998). Inorg. Chem. 37, 6560–6561.  CSD CrossRef PubMed CAS Google Scholar
First citationGao, X. (2011). Acta Cryst. E67, m139.  CSD CrossRef IUCr Journals Google Scholar
First citationGlerup, J., Josephsen, J., Michelsen, K. E., Pedersen, E., Schäffer, C. E., Sunde, E. & Sørensen, N. A. (1970). Acta Chem. Scand. 24, 247–254.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationLuck, R. L., Gawryszewska, P. & Riehl, J. P. (2000). Acta Cryst. C56, e238–e239.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoon, D. & Choi, J. H. (2015). Spectrochim. Acta A Part A, 138, 774–779.  CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press  Google Scholar
First citationPowell, R. C. (1998). In Physics of Solid-State Laser Materials. New York: AIP Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationScarborough, C. S., Sproules, S., Doonan, C. J., Hagen, K. S., Weyhermüller, T. & Wieghardt, K. (2012). Inorg. Chem. 51, 6969–6982.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 3| March 2015| Pages 288-290
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds