research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 406-413

The crystal structures of three clozapinium salts: different mol­ecular configurations, and supra­molecular assembly in one, two and three dimensions

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: jjasinski@keene.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 March 2015; accepted 18 March 2015; online 25 March 2015)

The structures of three salts derived from clozapine, 8-chloro-11-(4-methyl­piperazin-1-yl)-5H-dibenzo[b,e][1,4]diazepine, are reported, namely, clo­za­pin­ium 3,5-di­nitro­benzoate dimethyl sulfoxide monosolvate, C18H20ClN4+·C7H3N2O6·C2H6OS, (I), where the dimethyl sulfoxide component is disordered over two sets of atomic sites having occupancies 0.627 (2) and 0.373 (2); clo­za­pin­ium hydrogen maleate 0.21-hydrate, C18H20ClN4+·C4H3O4·0.21H2O, (II), and clozapinium 2-hy­droxy­benzoate, C18H20ClN4+·C7H5O3, (III). In all three salts, the protonation site is the methyl­ated N atom of the piperazine ring, and the dimensions and conformations of the fused tricyclic system are very similar. However, differences are apparent in the piperazine component: in both compounds (II) and (III), the unprotonated N atom of this ring has a pyramidal geometry, but in compound (I) this atom has a planar geometry. In compound (III), both N-substituents in this ring occupy equatorial sites, but in compound (II) the fused tricyclic system occupies an axial site of the piperazine ring. The independent components of compound (I) are linked within the selected asymmetric unit by a combination of N—H⋯O and C—H⋯O hydrogen bonds, and these hydrogen-bonded aggregates are linked into chains by an aromatic ππ stacking inter­action. In compound (II), the components are linked into sheets by a combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and in compound (III), a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds links the components into a three-dimensional framework structure. Comparisons are made with some similar compounds.

1. Chemical context

Clozapine, 8-chloro-11-(4-methyl­piperazin-1-yl)-5H-dibenzo[b,e][1,4]diazepine, is a well established medication used in the treatment of schizophrenia which in general leads to a lower incidence of adverse side effects such as Parkinsonian-type symptoms than some other treatments (Breier et al., 1994[Breier, A., Buchanan, R. W., Kirkpatrick, B., David, O. R., Irish, D., Summerfelt, A. & Carpenter, J. W. Jr (1994). Am. J. Psychiatry, 151, 20-26.]). Although structures have been reported for both the free base itself (Petcher & Weber, 1976[Petcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415-1420.]) and for its doubly-protonated di-cation, as the dibromide salt (Fillers & Hawkinson, 1982[Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750-1753.]), there appear to be no reports of the structures of any monoprotonated clozapine derivatives. Accordingly, we have now determined the structures of three such salts with a variety of counter-ions. Of these salts, the 3,5-di­nitro­benzoate crystallizes from dimethyl sulfoxide as a stoichiometric monosolvate (I)[link] (Fig. 1[link], Scheme 1); however, the hydrogen maleate crystallizes from the same solvent as a partial hydrate (II)[link] (Fig. 2[link]); and the 2-hy­droxy­benzoate crystallizes from a 1:1 mixture of aceto­nitrile and methanol in a solvent-free form (III)[link] (Fig. 3[link]). A number of other such salts were prepared, but no crystals suitable for single-crystal X-ray diffraction have so far been obtained from these, despite attempts to prepare crystals using a range of solvents. The aims of the present study are firstly to establish the site of protonation in the mono-protonated cations; secondly, to compare the conformations of the clozapinium cations; and thirdly, to explore the supra­molecular assembly in these three salts.

[Scheme 1]
[Figure 1]
Figure 1
The independent components of compound (I)[link], showing the atom-labelling scheme and the N—H⋯O hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and the major and minor orientations of the disordered dimethyl sulfoxide component, containing atoms S31 and S41, respectively, have occupancies 0.627 (2) and 0.373 (2).
[Figure 2]
Figure 2
The independent components of compound (II)[link], showing the atom-labelling scheme, and the O—H⋯O and N—H⋯O hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and the water mol­ecule, containing atom O31, has occupancy 0.210 (7).
[Figure 3]
Figure 3
The independent components of compound (III)[link], showing the atom-labelling scheme, and the O—H⋯O and N—H⋯O hydrogen bonds within the selected asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

Compound (I)[link] consists of a clozapinium cation, in which protonation has occurred at the protonated N atom of the piperazine ring, as is also observed in both of compounds (II)[link] and (III)[link], a 3,5-di­nitro­benzoate anion, and a mol­ecule of dimethyl sulfoxide (DMSO), which is disordered over two orientations having site occupancies of 0.627 (2) and 0.273 (2), respectively (Fig. 1[link]). It was possible to select an asymmetric unit for (I)[link] in which the three components are linked by N—H⋯O hydrogen bonds (Fig. 1[link], Table 1[link]). The N—H⋯O hydrogen bond between the two ionic components within the selected asymmetric unit is a charge-assisted hydrogen bond (Gilli et al., 1994[Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909-915.]) and it is nearly linear with fairly short H⋯O and N⋯O distances (Table 1[link]). There are also some short C—H⋯O contacts between the cation and the disordered DMSO components, but those to the major component, in particular, have long H⋯O distances, and C—H⋯O angles which are less than 140° (cf. Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]) so these may be better regarded as adventitious contacts rather than structurally significant inter­actions.

Table 1
Hydrogen bonds and short intra­molecular contacts (Å, °) for compounds (I)–(III)

Cg1 and Cg2 represent the centroids of rings C5A/C6–C9/C9A and C1–C4/C4A/C11A, respectively

Compound D—H⋯A   D—H H⋯A DA D—H⋯A
(I) N5—H5⋯O31   0.83 (3) 2.10 (3) 2.921 (4) 170 (3)
  N14—H14⋯O22   1.00 (3) 1.58 (3) 2.575 (3) 176 (2)
  C4—H4⋯O31   0.95 2.58 3.342 (4) 137
  C4—H4⋯O41   0.95 2.38 3.208 (7) 146
  C6—H6⋯O31   0.95 2.54 3.313 (5) 139
(II) N5—H5⋯O22i   0.86 (3) 2.24 (3) 3.084 (2) 170 (3)
  N14—H14⋯O23   0.87 (3) 1.83 (2) 2.688 (2) 173 (2)
  O21—H21⋯O24   1.00 (5) 1.47 (5) 2.420 (3) 157 (5)
  O31—H31A⋯O24   0.90 2.05 2.913 (11) 160
  O31—H31B⋯O21ii   0.90 2.37 3.232 (11) 161
  C12—H12A⋯O22iii   0.99 2.48 3.308 (2) 141
  C15—H15ACg1iv   0.99 2.95 3.642 (2) 128
  C15—H15BCg2iv   0.99 2.95 3.759 (2) 139
(III) N14—H14⋯O22   0.89 (6) 1.75 (6) 2.612 (4) 164 (5)
  O23—H23⋯O21   1.01 (11) 1.52 (10) 2.507 (5) 161 (9)
  C4—H4⋯O22v   0.95 2.23 3.261 (4) 166
  C9—H9⋯O22v   0.95 2.25 3.202 (4) 176
  C12—H12A⋯O21   0.99 2.44 3.306 (5) 146
  C12—H12B⋯N5vi   0.99 2.56 3.539 (4) 170
  C24—H24⋯Cg1vii   0.95 2.83 3.637 (5) 144
Symmetry codes: (i) −1 + x, [{3\over 2}] − y, −[{1\over 2}] + z; (ii) −x, 2 − y, 1 − z; (iii) 2 − x, 1 − y, 1 − z; (iv) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (v) [{1\over 2}] + x, −[{1\over 2}] + y, z; (vi) x, 1 − y, [{1\over 2}] + z; (vii) −[{1\over 2}] + x, [{1\over 2}] + y, −1 + z.

Compound (II)[link] consists of a clozapinium cation, a hydrogen maleate anion which contains a short intra-anion O—H⋯O hydrogen bond (Table 1[link]), and a partial occupancy water mol­ecule whose refined site occupancy is 0.210 (7): despite the short O⋯O distance in the intra-anion hydrogen bond, the H atom is significantly displaced from a position equidistant from the two O atoms involved (Table 1[link]). The two ionic components are linked by a nearly linear charge-assisted hydrogen bond (Fig. 2[link]), while the partially occupied water site forms hydrogen bonds to two anions (Table 1[link]).

There is again an intra-anion O—H⋯O hydrogen bond in the 2-hy­droxy­benzoate component of compound (III)[link] and, again, the two ionic components are linked by a fairly short, charge-assisted hydrogen bond (Fig. 3[link]). It is of inter­est to note both the general similarity in the dimensions of the two intra-anion hydrogen bonds in compounds (II)[link] and (III)[link], and also that in each of (I)–(III), the site of the protonation of the clozapine is the methyl­ated atom N14 of the piperazine ring. In each case, this N—H bond participates in a short charge-assisted hydrogen bond between the ionic components. As discussed below, this is the only N—H⋯O hydrogen bond involving the ionic components in both compound (I)[link] and compound (III)[link].

In the clozapinium cations of compounds (I)–(III), the fused tricyclic units exhibit very similar conformations, as shown by the relevant torsional and dihedral angles (Table 2[link]) which define the relative orientations of the three rings. It is inter­esting to note that corresponding pairs of torsional angles involving either one or the other of the two aryl rings consistently have similar magnitudes but opposite signs, indicative of near mirror symmetry, provided the difference in the atomic types N10 and C11 is ignored, with the pseudo mirror containing the bond N5—H5 and passing through the mid-point of the bond N10—C11. However, there are some inter­esting differences between (I)–(III) in respect of the piperazine rings, which in each compound adopt a chair conformation, with protonation at the methyl­ated atom N14, where the methyl atom C17 always occupies the equatorial site. While the geometry at N11 is planar within experimental uncertainty in compound (I)[link], it is pyramidal in each of (II)[link] and (III)[link]. In addition, the atom C11 (and hence the bulky tricyclic system) occupies the equatorial site at N11 in compound (III)[link], but in compound (II)[link] the tricyclic unit unexpectedly occupies the axial site at atom N11, as indicated by the values of the torsional angles C11—N11—C12—C13 for these two compounds (Table 2[link]).

Table 2
Selected geometric parameters (°) for compounds (I)–(III)

`Dihedral' denotes the dihedral angles between the mean planes of rings C1–C4/C4A/C11A and C5A/C6–C9/C9A.

Parameter   (I) (II) (III)
C11—N11—C12   120.80 (19) 118.45 (15) 118.3 (3)
C11—N11—C16   126.01 (19) 122.04 (15) 121.7 (3)
C12—N11—C16   112.91 (18) 111.09 (14) 111.0 (3)
C4A—N5—C5A—C6   −117.8 (2) −116.17 (19) −117.1 (3)
C5A—N5—C4A—C4   115.1 (3) 120.07 (19)) 115.3 (3)
C1—C11A—C11—N10   −129.2 (3) −137.5 (2) −139.6 (3)
C9—C9A—N10—C11   146.3 (2) 141.11 (19) 141.9 (3)
C9A—N10—C11—C11A   −7.9 (4) 0.9 (3) 1.0 (5)
N10—C11—N11—C12   6.3 (3) 2.7 (3) 5.5 (4)
C11—N11—C12—C13   −120.8 (2) −90.0 (2) 151.8 (3)
Dihedral   62.21 (11) 60.97 (9) 59.07 (16)

3. Supra­molecular features

The supra­molecular assembly in compounds (I)–(III) provides structures in one, two and three dimensions respectively. There are no hydrogen bonds in the structure of compound (I)[link] other than those within the selected asymmetric unit (Table 1[link], Fig. 1[link]). However, the hydrogen-bonded ionic components are linked into a chain by an aromatic ππ stacking inter­action. The C5A,C6–C9,C9A ring in the cation at (x, y, z) makes a dihedral angle of only 1.34 (12)° with the C21–C26 ring in the anion at (x, [{1\over 2}] − y, [{1\over 2}] + z). The distance between the centroids of these two rings is 3.4583 (14) Å and the shortest perpendicular distance between the centroid of one ring and the plane of the other is 3.2761 (1) Å, corresponding to a ring-centroid offset of ca 1.11 Å. This stacking inter­action links the hydrogen-bonded ionic components into a chain running parallel to the [001] direction (Fig. 4[link]). Two chains of this type, related to one another by inversion, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains. The DMSO mol­ecules are pendent from the chains but otherwise play no part in the supra­molecular assembly, so that their role may be largely that of filling otherwise empty cavities within the structure formed by the ionic components.

[Figure 4]
Figure 4
A stereoview of part of the crystal structure of compound (I)[link], showing the formation of a π-stacked chain of hydrogen-bonded ion pairs. For the sake of clarity, H atoms not involved in the hydrogen bonds (shown as dashed lines) have been omitted, as have the disordered DMSO mol­ecules.

In compound (II)[link] a combination of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) links the independent components into complex sheets, but the sheet formation can readily be analysed in terms of a small number of fairly simple sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). Ion pairs (Fig. 2[link]) which are related by inversion are linked by C—H⋯O hydrogen bonds, forming a cyclic centrosymmetric aggregate characterized by an R44(22) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) motif, with the reference aggregate centred at (1, [{1\over 2}], [{1\over 2}]) (Fig. 5[link]). In a second sub-structure, ion pairs which are related by a glide plane are linked by N—H⋯O hydrogen bonds to form a C22(16) chain running parallel to the [201] direction (Fig. 6[link]). This chain motif directly links the reference four-ion aggregate (Fig. 5[link]) centred at (1, [{1\over 2}], [{1\over 2}]) to the four symmetry-related aggregates centred at (0, 0, 0), (0, 1, 0), (2, 0, 1) and (2, 1, 1), so forming a sheet lying parallel to (1 0 [\overline{2}]) (Fig. 7[link]). Embedded within this sheet is a further cyclic motif, which is formally centrosymmetric, containing two anions and two water mol­ecules. However, since the occupancy of the water sites is only 0.210 (7), if either of the two water sites in this motif is occupied there is a high probability that the other such site will be unoccupied: indeed, in the majority of cases, neither site will be occupied.

[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link] showing the formation of a centrosymmetric four-ion aggregate. For the sake of clarity, the unit-cell outline and the H atoms bonded to C atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (2 − x, 1 − y, 1 − z).
[Figure 6]
Figure 6
A stereoview of part of the crystal structure of compound (II)[link] showing the formation of hydrogen-bonded C22(16) chain parallel to [201]. For the sake of clarity, H atoms bonded to C atoms and the partial-occupancy water mol­ecules have been omitted.
[Figure 7]
Figure 7
A stereoview of part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded sheet lying parallel to (10[\overline{2}]). For the sake of clarity, H atoms bonded to C atoms not involved in the motifs shown have been omitted.

The independent components of compound (III)[link] are linked into a three-dimensional framework structure by a combination of N—H⋯O, O—H⋯O and C—H⋯N hydrogen bonds (Table 1[link]), and again the formation of the framework is most readily analysed in terms of three one-dimensional substructures. In the simplest of these sub-structures, the C—H⋯O hydrogen bond involving atom C4 links ion pairs related by translation into a C22(11) chain running parallel to the [1[\overline{1}]0] direction (Fig. 8[link]). The second sub-structure involves both C—H⋯N and C—H⋯O hydrogen bonds: cations related by the c-glide plane at y = 0.5 are linked by C—H⋯N hydrogen bonds into C(7) chains running parallel to the [001] direction, and similarly related ion pairs are linked by the C—H⋯O hydrogen bond involving atom C9 to form a C22(11) chain also running parallel to [001], such that the combined effect of these two hydrogen bonds generates a C(7) C22(11)[R32(19)] chain of rings running parallel to [001] (Fig. 9[link]). Finally, the alternating action of the hydrogen bonds involving, atom C4 on the one hand, and atoms C9 and C15 on the other (Table 1[link]) generates a complex chain running parallel to the [101] direction (Fig. 10[link]).

[Figure 8]
Figure 8
A stereoview of part of the crystal structure of compound (III)[link] showing the formation of a hydrogen-bonded C22(11) chain running parallel to [1[\overline{1}]0]. For the sake of clarity, H atoms not involved in the motif shown have been omitted.
[Figure 9]
Figure 9
A stereoview of part of the crystal structure of compound (III)[link] showing the formation of a hydrogen-bonded C(7) C22(11)[R32(19)] chain of rings running parallel to [001]. For the sake of clarity, H atoms bonded to the C atoms not involved in the motif shown have been omitted.
[Figure 10]
Figure 10
A stereoview of part of the crystal structure of compound (III)[link] showing the formation of a hydrogen-bonded chain running parallel to [101]. For the sake of clarity, H atoms bonded to the C atoms not involved in the motif shown have been omitted.

4. Database survey

It is of inter­est briefly to compare the structures reported here for the salts (I)–(III) with those of some closely related analogues, in particular clozapine itself, compound (IV) (see Scheme 2) and the di­hydro­bromide salt (V).

[Scheme 2]

In the free base clozapine, which crystallizes in the space group P212121 (Petcher & Weber, 1976[Petcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415-1420.]), the geometry at the piperazinyl N atom corresponding to atom N11 in compounds (I)–(III) is very nearly planar, with a sum of inter­bond angles of 357 (2)°, and there are no direction-specific inter­actions between the mol­ecules: in particular, the N—H bond does not participate in any kind of hydrogen bond. In the salt (V), which crystallizes in space group P21/c (Fillers & Hawkinson, 1982[Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750-1753.]), the protonation sites are the N atoms corresponding to atoms N10 and N14 in compounds (I)–(III), so that the doubly bonded N atom of the diazepine ring is protonated in preference to the second N atom of the piperazine ring where, as in (IV), the geometry in nearly planar, with a sum of inter­bond angles of 357 (2)°: the individual ionic components in (V) are linked by charge-assisted N—H⋯Br hydrogen bonds, such that cations related by a 21 screw axis are bridged by one of the two independent anions to form a C21(7) chain, from which the anions of the second type are pendent. Loxapine, compound (VI), is similar to clozapine but differs from it in two respects: the nature of the hetero-atoms in the seven-membered ring, and the location of the Cl substituent. Here again there are no direction-specific inter­actions between the mol­ecules (Petcher & Weber, 1976[Petcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415-1420.]). The overall mol­ecular shapes of the mol­ecules of compounds (IV) and (VI) are extremely similar, and it was suggested (Petcher & Weber, 1976[Petcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415-1420.]) that the structures observed in the solid state represented a preferred form which persists in aqueous solutions and at the site of neuroleptic receptors. However, in the presence of charge-assisted hydrogen bonds in compounds (I)–(III), reported here, which are probably slightly stronger that those between the mol­ecules of (IV) and (VI) and adjacent water mol­ecules in solution, the mol­ecular configurations show some significant differences, as noted above, so that no preferred configuration is apparent from the structures of (I)–(III).

5. Synthesis and crystallization

Clozapine was a gift from R L Fine Chem, Bengaluru, Karnataka, India. Equimolar qu­anti­ties of clozapine and the appropriate acid (1.53 mmol of each component) were dissolved in methanol at 333 K. The solutions were permitted to cool to ambient temperature, and the resulting crystals were then collected by filtration, and dried over phospho­rus(V) oxide. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of solutions in dimethyl sulfoxide, for compounds (I)[link] and (II)[link], and a mixture (1:1 v/v) of aceto­nitrile and methanol for compound (III)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms bonded to C or N atoms in the ionic components of compounds (I)–(III) were all located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.95 Å (alkenyl and aromatic), 0.98 Å (CH3) or 0.99 Å (CH2) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), giving the N—H and O—H distances shown in Table 1[link].

Table 3
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C18H20ClN4+·C7H3N2O6·C2H6OS C18H20ClN4+·C4H3O4·0.21H2O C18H20ClN4+·C7H5O3
Mr 617.07 446.68 464.94
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, Cc
Temperature (K) 173 173 173
a, b, c (Å) 15.3593 (2), 15.7685 (2), 11.8679 (2) 9.7166 (3), 9.9699 (2), 23.1059 (6) 17.4296 (5), 15.3728 (5), 8.6359 (3)
β (°) 91.8097 (14) 96.800 (3) 90.325 (3)
V3) 2872.89 (7) 2222.60 (10) 2313.88 (13)
Z 4 4 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 2.34 1.84 1.75
Crystal size (mm) 0.26 × 0.22 × 0.18 0.46 × 0.32 × 0.22 0.42 × 0.36 × 0.20
 
Data collection
Diffractometer Agilent Eos Gemini Agilent Eos Gemini Agilent Eos Gemini
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.424, 0.656 0.440, 0.668 0.399, 0.705
No. of measured, independent and observed [I > 2σ(I)] reflections 19784, 5527, 4623 8634, 4228, 3552 7244, 4069, 3962
Rint 0.032 0.026 0.048
(sin θ/λ)max−1) 0.614 0.614 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.152, 1.04 0.048, 0.133, 1.03 0.056, 0.141, 1.08
No. of reflections 5527 4228 4069
No. of parameters 409 295 308
No. of restraints 6 0 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.89, −0.97 0.46, −0.30 0.53, −0.36
Absolute structure Flack x determined using 1674 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.022 (17)
Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

In compound (I)[link], the dimethyl sulfoxide component is disordered over two sets of atomic sites having unequal occupancy (cf. Fig. 1[link]). For the minor disorder component, the bonded distances and the one-angle non-bonded distances were all restrained to be the same as the corresponding distances in the major component subject to uncertainties of 0.005 Å and 0.01 Å respectively. The anisotropic displacement parameters for those pairs of partial-occupancy C and O atoms occupying essentially the same physical space were constrained to be identical, and the H atoms of the dimethyl sulfoxide components were included as riding atoms with C—H distances 0.95 Å and Uiso(H) = 1.5Ueq(C). Subject to these conditions, independent refinement of the site occupancies for the two disorder components gave values of 0.613 (3) and 0.359 (3): thereafter the occupancies were constrained to sum to unity, giving final values of 0.627 (2) and 0.373 (2). At this stage of the refinements there were no significant features in the difference maps for compounds (I)[link] and (III)[link], but for (II)[link] there was a single significant peak, 1.51 e Å−3, which was within plausible hydrogen-bonding distance of two O atoms. Examination of the structures of compounds (I)[link] and (III)[link] using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) showed that there were no solvent-accessible voids in these structures. However, in compound (II)[link], there was a total void volume of ca 88 Å3 per unit cell, and examination of the structure of (II)[link] using the SQUEEZE tool (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) within PLATON disclosed the presence of an addition 8.8 electrons per unit cell, equivalent to 0.22 mol­ecules of water per ion pair. Accordingly, the large residual was modeled as the O atom, denoted O31, of a partial occupancy water mol­ecule, which was refined isotropically: it was not possible to locate the H atoms associated with atom O31 in difference maps, but they were included in calculated positions with O—H 0.90 Å and Uiso(H) = 1.5Uiso(O). Subject to these conditions, the occupancy of the water mol­ecule refined to a value of 0.210 (7), very close to that indicated by SQUEEZE. It should be emphasized here that the application of the SQUEEZE procedure referred to above was intended only to estimate the number of electrons not yet accounted for at that stage of the refinement, and that the refinements at every stage were undertaken with the original data, independent of SQUEEZE. For compound (III)[link], the correct orientation of the structure with respect to the polar axis directions was established by means of the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), x = −0.022 (17), calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 1674 quotients of the type [(I+)−(I)]/[(I+)+(I)].

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) Clozapinium 3,5-dinitrobenzoate dimethyl sulfoxide monosolvate top
Crystal data top
C18H20ClN4+·C7H3N2O6·C2H6OSF(000) = 1288
Mr = 617.07Dx = 1.427 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.3593 (2) ÅCell parameters from 5527 reflections
b = 15.7685 (2) Åθ = 4.0–71.3°
c = 11.8679 (2) ŵ = 2.34 mm1
β = 91.8097 (14)°T = 173 K
V = 2872.89 (7) Å3Block, colourless
Z = 40.26 × 0.22 × 0.18 mm
Data collection top
Agilent Eos Gemini
diffractometer
4623 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.032
ω scansθmax = 71.3°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 1718
Tmin = 0.424, Tmax = 0.656k = 1915
19784 measured reflectionsl = 1414
5527 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0639P)2 + 2.7986P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5527 reflectionsΔρmax = 0.89 e Å3
409 parametersΔρmin = 0.97 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.35763 (15)0.19065 (15)0.64680 (19)0.0349 (5)
H10.35260.15460.58280.042*
C20.40839 (15)0.16561 (16)0.7394 (2)0.0396 (5)
H20.43880.11320.73850.048*
C30.41440 (16)0.21776 (18)0.8335 (2)0.0428 (6)
H30.44520.19900.89960.051*
C40.37586 (16)0.29647 (17)0.8315 (2)0.0406 (5)
H40.38300.33320.89450.049*
C4A0.32657 (14)0.32265 (15)0.7379 (2)0.0344 (5)
N50.28834 (14)0.40442 (13)0.73413 (19)0.0398 (5)
H50.296 (2)0.4270 (19)0.797 (3)0.048*
C5A0.32343 (14)0.45611 (15)0.6491 (2)0.0374 (5)
C60.36736 (17)0.53078 (17)0.6785 (3)0.0479 (6)
H60.37440.54580.75570.057*
C70.40067 (17)0.58291 (18)0.5976 (3)0.0534 (7)
H70.42900.63450.61800.064*
C80.39217 (16)0.55887 (17)0.4864 (3)0.0491 (7)
Cl80.43801 (6)0.62363 (5)0.38475 (8)0.0715 (3)
C90.34849 (16)0.48559 (16)0.4543 (2)0.0422 (6)
H90.34300.47090.37670.051*
C9A0.31242 (14)0.43313 (14)0.5354 (2)0.0355 (5)
N100.25884 (12)0.36645 (12)0.49775 (17)0.0361 (4)
C110.25516 (14)0.29455 (14)0.54945 (19)0.0333 (5)
C11A0.31376 (14)0.26801 (14)0.64620 (19)0.0328 (5)
N110.19690 (14)0.23520 (13)0.50890 (17)0.0393 (5)
C120.14714 (16)0.24954 (16)0.4036 (2)0.0399 (5)
H12A0.16210.20520.34840.048*
H12B0.16340.30520.37200.048*
C130.05023 (16)0.24786 (15)0.4213 (2)0.0396 (5)
H13A0.03400.29520.47120.047*
H13B0.01840.25510.34800.047*
N140.02552 (12)0.16556 (12)0.47312 (16)0.0344 (4)
H140.0420 (18)0.1196 (18)0.420 (2)0.041*
C150.07363 (16)0.15561 (16)0.5833 (2)0.0387 (5)
H15A0.05760.10100.61810.046*
H15B0.05700.20180.63480.046*
C160.17085 (16)0.15805 (15)0.5671 (2)0.0375 (5)
H16A0.20160.15510.64150.045*
H16B0.18820.10800.52270.045*
C170.06991 (17)0.1565 (2)0.4843 (3)0.0531 (7)
H17A0.08260.10170.51900.080*
H17B0.09870.15950.40950.080*
H17C0.09150.20240.53160.080*
C210.10211 (14)0.00223 (14)0.1606 (2)0.0328 (5)
C220.14232 (15)0.07486 (15)0.2025 (2)0.0392 (5)
H220.14450.08620.28110.047*
C230.17913 (16)0.13049 (15)0.1277 (3)0.0457 (6)
C240.17770 (16)0.11803 (18)0.0129 (3)0.0483 (7)
H240.20320.15730.03700.058*
C250.13710 (15)0.04533 (18)0.0255 (2)0.0431 (6)
C260.09975 (14)0.01300 (15)0.0456 (2)0.0362 (5)
H260.07290.06280.01580.043*
C270.06407 (15)0.06224 (15)0.2402 (2)0.0359 (5)
O210.03166 (12)0.12736 (11)0.19957 (16)0.0466 (4)
O220.07009 (12)0.04261 (11)0.34434 (15)0.0442 (4)
N230.22603 (19)0.20507 (16)0.1753 (3)0.0687 (8)
O230.2293 (3)0.21397 (19)0.2776 (3)0.1090 (11)
O240.26036 (17)0.25228 (15)0.1091 (3)0.0895 (9)
N250.13695 (16)0.0268 (2)0.1471 (2)0.0619 (7)
O250.17166 (18)0.0786 (2)0.2086 (2)0.1021 (11)
O260.10244 (16)0.03914 (18)0.18044 (18)0.0696 (7)
S310.31808 (7)0.56967 (6)1.00103 (8)0.0448 (3)0.627 (2)
O310.3389 (3)0.4857 (2)0.9475 (3)0.0655 (11)0.627 (2)
C310.4020 (7)0.6409 (4)0.9689 (7)0.083 (3)0.627 (2)
H31A0.39630.65740.88940.125*0.627 (2)
H31B0.45860.61350.98300.125*0.627 (2)
H31C0.39790.69141.01650.125*0.627 (2)
C320.3429 (6)0.5547 (4)1.1451 (4)0.081 (2)0.627 (2)
H32A0.40500.54161.15570.122*0.627 (2)
H32B0.30820.50761.17350.122*0.627 (2)
H32C0.32930.60661.18650.122*0.627 (2)
S410.39889 (18)0.53363 (13)1.05795 (17)0.0678 (8)0.373 (2)
O410.3879 (5)0.4760 (4)0.9582 (6)0.0655 (11)0.373 (2)
C410.4247 (12)0.6356 (6)1.0098 (12)0.083 (3)0.373 (2)
H41A0.37460.65900.96700.125*0.373 (2)
H41B0.47490.63230.96100.125*0.373 (2)
H41C0.43880.67231.07440.125*0.373 (2)
C420.2944 (5)0.5526 (6)1.1067 (8)0.081 (2)0.373 (2)
H42A0.27250.50121.14260.122*0.373 (2)
H42B0.25540.56831.04320.122*0.373 (2)
H42C0.29670.59891.16180.122*0.373 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0350 (11)0.0347 (11)0.0348 (11)0.0028 (9)0.0013 (9)0.0032 (9)
C20.0350 (12)0.0400 (13)0.0437 (13)0.0097 (10)0.0005 (10)0.0000 (10)
C30.0363 (12)0.0554 (15)0.0363 (12)0.0065 (11)0.0053 (10)0.0002 (11)
C40.0372 (12)0.0489 (14)0.0357 (12)0.0012 (11)0.0011 (10)0.0089 (10)
C4A0.0283 (11)0.0352 (12)0.0398 (12)0.0012 (9)0.0030 (9)0.0039 (9)
N50.0391 (11)0.0353 (11)0.0452 (12)0.0046 (9)0.0042 (9)0.0088 (9)
C5A0.0257 (10)0.0322 (11)0.0543 (14)0.0039 (9)0.0006 (10)0.0038 (10)
C60.0348 (13)0.0416 (14)0.0670 (17)0.0027 (11)0.0037 (12)0.0089 (12)
C70.0365 (13)0.0398 (14)0.084 (2)0.0080 (11)0.0040 (13)0.0051 (14)
C80.0301 (12)0.0383 (13)0.079 (2)0.0014 (10)0.0071 (12)0.0105 (13)
Cl80.0632 (5)0.0533 (4)0.0991 (6)0.0144 (4)0.0176 (4)0.0167 (4)
C90.0332 (12)0.0361 (12)0.0573 (15)0.0052 (10)0.0037 (11)0.0031 (11)
C9A0.0237 (10)0.0291 (11)0.0534 (14)0.0042 (9)0.0015 (9)0.0004 (10)
N100.0305 (9)0.0315 (10)0.0459 (11)0.0015 (8)0.0031 (8)0.0014 (8)
C110.0293 (11)0.0331 (11)0.0373 (12)0.0029 (9)0.0015 (9)0.0012 (9)
C11A0.0288 (10)0.0328 (11)0.0365 (11)0.0005 (9)0.0016 (9)0.0009 (9)
N110.0423 (11)0.0353 (10)0.0394 (10)0.0076 (9)0.0112 (9)0.0057 (8)
C120.0437 (13)0.0390 (13)0.0362 (12)0.0066 (10)0.0098 (10)0.0055 (10)
C130.0435 (13)0.0321 (12)0.0426 (13)0.0041 (10)0.0073 (10)0.0016 (10)
N140.0316 (10)0.0342 (10)0.0373 (10)0.0035 (8)0.0008 (8)0.0004 (8)
C150.0434 (13)0.0372 (12)0.0354 (12)0.0004 (10)0.0015 (10)0.0017 (10)
C160.0402 (12)0.0327 (12)0.0389 (12)0.0025 (10)0.0094 (10)0.0053 (9)
C170.0336 (13)0.0621 (18)0.0636 (18)0.0058 (12)0.0029 (12)0.0058 (14)
C210.0254 (10)0.0292 (11)0.0436 (12)0.0045 (9)0.0015 (9)0.0033 (9)
C220.0352 (12)0.0313 (11)0.0510 (14)0.0026 (10)0.0029 (10)0.0001 (10)
C230.0332 (12)0.0296 (12)0.0742 (19)0.0001 (10)0.0026 (12)0.0076 (12)
C240.0305 (12)0.0480 (15)0.0665 (18)0.0061 (11)0.0048 (11)0.0243 (13)
C250.0290 (11)0.0542 (15)0.0459 (14)0.0113 (11)0.0010 (10)0.0122 (11)
C260.0262 (11)0.0364 (12)0.0458 (13)0.0076 (9)0.0025 (9)0.0015 (10)
C270.0308 (11)0.0323 (12)0.0445 (13)0.0032 (9)0.0008 (9)0.0059 (10)
O210.0480 (10)0.0359 (9)0.0554 (11)0.0104 (8)0.0054 (8)0.0052 (8)
O220.0519 (10)0.0388 (9)0.0420 (9)0.0027 (8)0.0013 (8)0.0051 (7)
N230.0586 (16)0.0345 (13)0.113 (3)0.0082 (12)0.0038 (16)0.0085 (15)
O230.142 (3)0.0668 (18)0.117 (3)0.0490 (19)0.017 (2)0.0159 (17)
O240.0714 (16)0.0442 (12)0.153 (3)0.0188 (12)0.0088 (16)0.0227 (15)
N250.0389 (12)0.100 (2)0.0472 (13)0.0174 (14)0.0037 (10)0.0139 (15)
O250.0687 (16)0.179 (3)0.0587 (15)0.0199 (19)0.0102 (12)0.0409 (18)
O260.0705 (15)0.0915 (18)0.0462 (12)0.0312 (14)0.0086 (10)0.0062 (12)
S310.0570 (7)0.0362 (5)0.0410 (5)0.0028 (4)0.0024 (4)0.0033 (4)
O310.094 (3)0.0484 (16)0.0543 (16)0.009 (2)0.009 (2)0.0199 (13)
C310.081 (6)0.060 (2)0.111 (7)0.030 (3)0.040 (6)0.037 (3)
C320.145 (7)0.054 (2)0.044 (3)0.021 (4)0.006 (3)0.002 (2)
S410.109 (2)0.0467 (11)0.0475 (11)0.0257 (11)0.0001 (11)0.0104 (8)
O410.094 (3)0.0484 (16)0.0543 (16)0.009 (2)0.009 (2)0.0199 (13)
C410.081 (6)0.060 (2)0.111 (7)0.030 (3)0.040 (6)0.037 (3)
C420.145 (7)0.054 (2)0.044 (3)0.021 (4)0.006 (3)0.002 (2)
Geometric parameters (Å, º) top
C1—C21.385 (3)C16—H16A0.9900
C1—C11A1.394 (3)C16—H16B0.9900
C1—H10.9500C17—H17A0.9800
C2—C31.388 (4)C17—H17B0.9800
C2—H20.9500C17—H17C0.9800
C3—C41.375 (4)C21—C221.386 (3)
C3—H30.9500C21—C261.386 (3)
C4—C4A1.387 (3)C21—C271.517 (3)
C4—H40.9500C22—C231.381 (4)
C4A—C11A1.397 (3)C22—H220.9500
C4A—N51.417 (3)C23—C241.376 (4)
N5—C5A1.417 (3)C23—N231.482 (4)
N5—H50.83 (3)C24—C251.376 (4)
C5A—C61.396 (3)C24—H240.9500
C5A—C9A1.402 (4)C25—C261.384 (4)
C6—C71.375 (4)C25—N251.473 (4)
C6—H60.9500C26—H260.9500
C7—C81.375 (4)C27—O211.233 (3)
C7—H70.9500C27—O221.274 (3)
C8—C91.384 (4)N23—O241.215 (4)
C8—Cl81.746 (3)N23—O231.222 (4)
C9—C9A1.397 (4)N25—O261.227 (4)
C9—H90.9500N25—O251.228 (4)
C9A—N101.400 (3)S31—O311.507 (3)
N10—C111.291 (3)S31—C321.756 (5)
C11—N111.372 (3)S31—C311.760 (5)
C11—C11A1.496 (3)C31—H31A0.9800
N11—C161.461 (3)C31—H31B0.9800
N11—C121.461 (3)C31—H31C0.9800
C12—C131.510 (4)C32—H32A0.9800
C12—H12A0.9900C32—H32B0.9800
C12—H12B0.9900C32—H32C0.9800
C13—N141.491 (3)S41—O411.497 (4)
C13—H13A0.9900S41—C421.749 (6)
C13—H13B0.9900S41—C411.756 (6)
N14—C171.483 (3)C41—H41A0.9800
N14—C151.490 (3)C41—H41B0.9800
N14—H141.00 (3)C41—H41C0.9800
C15—C161.512 (3)C42—H42A0.9800
C15—H15A0.9900C42—H42B0.9800
C15—H15B0.9900C42—H42C0.9800
C2—C1—C11A120.9 (2)N11—C16—C15111.57 (19)
C2—C1—H1119.5N11—C16—H16A109.3
C11A—C1—H1119.5C15—C16—H16A109.3
C1—C2—C3119.4 (2)N11—C16—H16B109.3
C1—C2—H2120.3C15—C16—H16B109.3
C3—C2—H2120.3H16A—C16—H16B108.0
C4—C3—C2120.2 (2)N14—C17—H17A109.5
C4—C3—H3119.9N14—C17—H17B109.5
C2—C3—H3119.9H17A—C17—H17B109.5
C3—C4—C4A120.5 (2)N14—C17—H17C109.5
C3—C4—H4119.8H17A—C17—H17C109.5
C4A—C4—H4119.8H17B—C17—H17C109.5
C4—C4A—C11A120.0 (2)C22—C21—C26119.6 (2)
C4—C4A—N5120.8 (2)C22—C21—C27120.5 (2)
C11A—C4A—N5119.2 (2)C26—C21—C27119.9 (2)
C4A—N5—C5A112.30 (19)C23—C22—C21118.8 (2)
C4A—N5—H5109 (2)C23—C22—H22120.6
C5A—N5—H5110 (2)C21—C22—H22120.6
C6—C5A—C9A120.1 (2)C24—C23—C22123.5 (2)
C6—C5A—N5119.9 (2)C24—C23—N23118.9 (3)
C9A—C5A—N5120.0 (2)C22—C23—N23117.6 (3)
C7—C6—C5A121.1 (3)C25—C24—C23116.1 (2)
C7—C6—H6119.4C25—C24—H24122.0
C5A—C6—H6119.4C23—C24—H24122.0
C8—C7—C6118.6 (3)C24—C25—C26123.0 (3)
C8—C7—H7120.7C24—C25—N25118.4 (3)
C6—C7—H7120.7C26—C25—N25118.5 (3)
C7—C8—C9121.7 (3)C25—C26—C21119.1 (2)
C7—C8—Cl8118.3 (2)C25—C26—H26120.4
C9—C8—Cl8120.0 (2)C21—C26—H26120.4
C8—C9—C9A120.3 (3)O21—C27—O22126.7 (2)
C8—C9—H9119.9O21—C27—C21118.2 (2)
C9A—C9—H9119.9O22—C27—C21115.0 (2)
C9—C9A—N10117.8 (2)O24—N23—O23124.6 (3)
C9—C9A—C5A118.1 (2)O24—N23—C23117.1 (3)
N10—C9A—C5A123.6 (2)O23—N23—C23118.3 (3)
C11—N10—C9A122.8 (2)O26—N25—O25124.3 (3)
N10—C11—N11118.1 (2)O26—N25—C25118.2 (3)
N10—C11—C11A125.2 (2)O25—N25—C25117.6 (3)
N11—C11—C11A116.6 (2)O31—S31—C32104.5 (2)
C1—C11A—C4A118.7 (2)O31—S31—C31107.6 (3)
C1—C11A—C11121.9 (2)C32—S31—C3199.1 (4)
C4A—C11A—C11119.5 (2)S31—C31—H31A109.5
C11—N11—C16126.01 (19)S31—C31—H31B109.5
C11—N11—C12120.80 (19)H31A—C31—H31B109.5
C16—N11—C12112.91 (18)S31—C31—H31C109.5
N11—C12—C13111.7 (2)H31A—C31—H31C109.5
N11—C12—H12A109.3H31B—C31—H31C109.5
C13—C12—H12A109.3S31—C32—H32A109.5
N11—C12—H12B109.3S31—C32—H32B109.5
C13—C12—H12B109.3H32A—C32—H32B109.5
H12A—C12—H12B107.9S31—C32—H32C109.5
N14—C13—C12109.72 (19)H32A—C32—H32C109.5
N14—C13—H13A109.7H32B—C32—H32C109.5
C12—C13—H13A109.7O41—S41—C42106.5 (4)
N14—C13—H13B109.7O41—S41—C41108.6 (5)
C12—C13—H13B109.7C42—S41—C4199.8 (5)
H13A—C13—H13B108.2S41—C41—H41A109.5
C17—N14—C15112.1 (2)S41—C41—H41B109.5
C17—N14—C13112.7 (2)H41A—C41—H41B109.5
C15—N14—C13109.17 (18)S41—C41—H41C109.5
C17—N14—H14104.9 (16)H41A—C41—H41C109.5
C15—N14—H14110.5 (16)H41B—C41—H41C109.5
C13—N14—H14107.3 (16)S41—C42—H42A109.5
N14—C15—C16110.49 (19)S41—C42—H42B109.5
N14—C15—H15A109.6H42A—C42—H42B109.5
C16—C15—H15A109.6S41—C42—H42C109.5
N14—C15—H15B109.6H42A—C42—H42C109.5
C16—C15—H15B109.6H42B—C42—H42C109.5
H15A—C15—H15B108.1
C11A—C1—C2—C31.1 (4)C11A—C11—N11—C1616.8 (3)
C1—C2—C3—C45.1 (4)N10—C11—N11—C126.3 (3)
C2—C3—C4—C4A3.6 (4)C11A—C11—N11—C12169.7 (2)
C3—C4—C4A—C11A1.8 (4)C11—N11—C12—C13120.8 (2)
C3—C4—C4A—N5178.5 (2)C16—N11—C12—C1353.4 (3)
C4—C4A—N5—C5A115.1 (3)N11—C12—C13—N1456.7 (3)
C11A—C4A—N5—C5A65.2 (3)C12—C13—N14—C17175.3 (2)
C4A—N5—C5A—C6117.8 (2)C12—C13—N14—C1559.5 (2)
C4A—N5—C5A—C9A63.5 (3)C17—N14—C15—C16175.4 (2)
C9A—C5A—C6—C70.1 (4)C13—N14—C15—C1659.1 (2)
N5—C5A—C6—C7178.8 (2)C11—N11—C16—C15121.5 (2)
C5A—C6—C7—C81.9 (4)C12—N11—C16—C1552.4 (3)
C6—C7—C8—C92.3 (4)N14—C15—C16—N1155.3 (3)
C6—C7—C8—Cl8177.8 (2)C26—C21—C22—C230.1 (3)
C7—C8—C9—C9A0.8 (4)C27—C21—C22—C23177.5 (2)
Cl8—C8—C9—C9A179.38 (18)C21—C22—C23—C240.4 (4)
C8—C9—C9A—N10171.3 (2)C21—C22—C23—N23176.6 (2)
C8—C9—C9A—C5A1.3 (3)C22—C23—C24—C250.3 (4)
C6—C5A—C9A—C91.7 (3)N23—C23—C24—C25176.7 (2)
N5—C5A—C9A—C9179.6 (2)C23—C24—C25—C260.3 (4)
C6—C5A—C9A—N10170.4 (2)C23—C24—C25—N25177.4 (2)
N5—C5A—C9A—N108.2 (3)C24—C25—C26—C210.7 (3)
C9—C9A—N10—C11146.3 (2)N25—C25—C26—C21177.8 (2)
C5A—C9A—N10—C1141.5 (3)C22—C21—C26—C250.6 (3)
C9A—N10—C11—N11176.4 (2)C27—C21—C26—C25178.1 (2)
C9A—N10—C11—C11A7.9 (4)C22—C21—C27—O21177.5 (2)
C2—C1—C11A—C4A4.3 (3)C26—C21—C27—O210.0 (3)
C2—C1—C11A—C11177.0 (2)C22—C21—C27—O222.0 (3)
C4—C4A—C11A—C15.7 (3)C26—C21—C27—O22179.5 (2)
N5—C4A—C11A—C1174.6 (2)C24—C23—N23—O240.8 (4)
C4—C4A—C11A—C11175.5 (2)C22—C23—N23—O24177.9 (3)
N5—C4A—C11A—C114.1 (3)C24—C23—N23—O23177.6 (3)
N10—C11—C11A—C1129.2 (3)C22—C23—N23—O230.5 (4)
N11—C11—C11A—C146.5 (3)C24—C25—N25—O26178.3 (2)
N10—C11—C11A—C4A49.5 (3)C26—C25—N25—O261.1 (4)
N11—C11—C11A—C4A134.7 (2)C24—C25—N25—O251.6 (4)
N10—C11—N11—C16167.1 (2)C26—C25—N25—O25178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O310.83 (3)2.10 (3)2.921 (4)170 (3)
N14—H14···O221.00 (3)1.58 (3)2.575 (3)176 (2)
C4—H4···O310.952.583.342 (4)137
C4—H4···O410.952.383.208 (7)146
C6—H6···O310.952.543.313 (5)139
(II) Clozapinium hydrogen maleate 0.21-hydrate top
Crystal data top
C18H20ClN4+·C4H3O4·0.21H2OF(000) = 936.4
Mr = 446.68Dx = 1.335 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.7166 (3) ÅCell parameters from 4228 reflections
b = 9.9699 (2) Åθ = 3.9–71.2°
c = 23.1059 (6) ŵ = 1.84 mm1
β = 96.800 (3)°T = 173 K
V = 2222.60 (10) Å3Block, colourless
Z = 40.46 × 0.32 × 0.22 mm
Data collection top
Agilent Eos Gemini
diffractometer
3552 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.026
ω scansθmax = 71.2°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 1111
Tmin = 0.440, Tmax = 0.668k = 127
8634 measured reflectionsl = 2827
4228 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.069P)2 + 0.8133P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4228 reflectionsΔρmax = 0.46 e Å3
295 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6656 (2)0.4997 (2)0.23723 (9)0.0361 (4)
H10.70480.44660.26910.043*
C20.7438 (2)0.5303 (2)0.19279 (9)0.0417 (5)
H20.83620.49810.19400.050*
C30.6866 (2)0.6083 (2)0.14640 (9)0.0409 (5)
H30.74170.63400.11690.049*
C40.5503 (2)0.6488 (2)0.14272 (8)0.0356 (4)
H40.51100.69940.11000.043*
C4A0.46942 (19)0.61605 (19)0.18684 (8)0.0291 (4)
N50.32745 (17)0.65240 (17)0.18232 (7)0.0326 (3)
H50.307 (2)0.703 (3)0.1527 (11)0.039*
C5A0.23552 (18)0.54101 (19)0.18333 (8)0.0296 (4)
C60.1401 (2)0.5111 (2)0.13518 (8)0.0357 (4)
H60.13640.56600.10140.043*
C70.0501 (2)0.4028 (2)0.13556 (9)0.0385 (5)
H70.01500.38350.10260.046*
C80.05780 (19)0.3239 (2)0.18497 (9)0.0360 (4)
Cl80.05340 (6)0.18656 (6)0.18694 (3)0.0560 (2)
C90.14961 (19)0.3526 (2)0.23364 (9)0.0334 (4)
H90.15070.29840.26750.040*
C9A0.24090 (18)0.46068 (19)0.23353 (8)0.0290 (4)
N100.32420 (16)0.48876 (16)0.28580 (6)0.0301 (3)
C110.45129 (18)0.52545 (18)0.28708 (8)0.0283 (4)
C11A0.52924 (19)0.54587 (19)0.23581 (8)0.0293 (4)
N110.52983 (16)0.53872 (17)0.34067 (6)0.0315 (4)
C120.46621 (19)0.50463 (19)0.39301 (7)0.0300 (4)
H12A0.53810.46870.42290.036*
H12B0.39600.43360.38340.036*
C130.39818 (18)0.62443 (19)0.41749 (8)0.0302 (4)
H13A0.32140.65690.38890.036*
H13B0.35920.59860.45360.036*
N140.50291 (17)0.73320 (17)0.43053 (7)0.0324 (4)
H140.565 (3)0.702 (2)0.4574 (11)0.039*
C150.5702 (2)0.7683 (2)0.37746 (8)0.0382 (5)
H15A0.64370.83580.38780.046*
H15B0.50040.80820.34770.046*
C160.63243 (19)0.6451 (2)0.35254 (8)0.0361 (4)
H16A0.67010.66940.31600.043*
H16B0.71010.61200.38050.043*
C170.4417 (3)0.8518 (2)0.45611 (11)0.0561 (6)
H17A0.36900.88960.42780.084*
H17B0.51400.91930.46610.084*
H17C0.40170.82510.49140.084*
C211.1468 (2)0.6834 (2)0.54450 (9)0.0415 (5)
O211.1086 (2)0.7228 (3)0.49282 (8)0.0910 (9)
H211.006 (5)0.739 (5)0.488 (2)0.137*
O221.26642 (15)0.69322 (19)0.56647 (7)0.0533 (4)
C221.0433 (2)0.6232 (3)0.57919 (10)0.0490 (6)
H221.08170.58440.61510.059*
C230.9056 (2)0.6141 (3)0.56863 (10)0.0494 (6)
H230.86180.57190.59840.059*
C240.8103 (2)0.6601 (2)0.51734 (8)0.0356 (4)
O230.68470 (15)0.6486 (2)0.51985 (7)0.0526 (4)
O240.85884 (18)0.7068 (3)0.47375 (8)0.0810 (8)
O310.7719 (11)0.9745 (11)0.5046 (5)0.074 (4)*0.210 (7)
H31A0.81830.90160.49510.111*0.210 (7)
H31B0.82471.04900.50810.111*0.210 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (9)0.0429 (11)0.0324 (9)0.0035 (8)0.0016 (7)0.0027 (8)
C20.0333 (10)0.0513 (13)0.0421 (11)0.0024 (9)0.0106 (8)0.0098 (10)
C30.0439 (11)0.0483 (12)0.0328 (10)0.0098 (9)0.0148 (8)0.0075 (9)
C40.0435 (11)0.0355 (10)0.0273 (9)0.0063 (8)0.0031 (8)0.0016 (8)
C4A0.0319 (9)0.0278 (9)0.0271 (8)0.0028 (7)0.0018 (7)0.0056 (7)
N50.0350 (8)0.0308 (8)0.0308 (8)0.0020 (7)0.0011 (6)0.0024 (7)
C5A0.0259 (8)0.0304 (9)0.0321 (9)0.0043 (7)0.0013 (7)0.0053 (7)
C60.0331 (9)0.0416 (11)0.0310 (9)0.0058 (8)0.0016 (7)0.0024 (8)
C70.0277 (9)0.0469 (12)0.0388 (10)0.0021 (8)0.0047 (8)0.0118 (9)
C80.0250 (9)0.0357 (10)0.0467 (11)0.0019 (8)0.0017 (8)0.0088 (9)
Cl80.0448 (3)0.0505 (3)0.0690 (4)0.0191 (2)0.0089 (3)0.0033 (3)
C90.0279 (9)0.0355 (10)0.0365 (9)0.0002 (8)0.0022 (7)0.0017 (8)
C9A0.0245 (8)0.0322 (9)0.0301 (9)0.0035 (7)0.0020 (7)0.0059 (7)
N100.0299 (8)0.0341 (8)0.0261 (7)0.0022 (6)0.0020 (6)0.0023 (6)
C110.0294 (9)0.0293 (9)0.0258 (8)0.0004 (7)0.0016 (7)0.0011 (7)
C11A0.0297 (9)0.0325 (9)0.0254 (8)0.0012 (7)0.0028 (7)0.0038 (7)
N110.0308 (8)0.0407 (9)0.0227 (7)0.0074 (7)0.0025 (6)0.0006 (6)
C120.0341 (9)0.0316 (9)0.0237 (8)0.0051 (7)0.0012 (7)0.0029 (7)
C130.0274 (8)0.0358 (10)0.0268 (8)0.0034 (7)0.0001 (7)0.0030 (7)
N140.0388 (9)0.0302 (8)0.0265 (7)0.0031 (7)0.0026 (6)0.0028 (6)
C150.0458 (11)0.0390 (11)0.0281 (9)0.0157 (9)0.0022 (8)0.0080 (8)
C160.0297 (9)0.0537 (12)0.0241 (8)0.0129 (9)0.0004 (7)0.0012 (8)
C170.0829 (18)0.0339 (11)0.0526 (14)0.0015 (12)0.0122 (13)0.0047 (10)
C210.0347 (10)0.0498 (12)0.0383 (10)0.0006 (9)0.0032 (8)0.0123 (9)
O210.0376 (9)0.183 (3)0.0495 (10)0.0273 (13)0.0053 (8)0.0325 (14)
O220.0315 (8)0.0719 (12)0.0541 (9)0.0031 (7)0.0052 (7)0.0144 (8)
C220.0418 (11)0.0594 (15)0.0421 (11)0.0017 (10)0.0102 (9)0.0144 (10)
C230.0419 (11)0.0644 (15)0.0401 (11)0.0090 (11)0.0029 (9)0.0215 (11)
C240.0354 (10)0.0418 (11)0.0278 (9)0.0107 (9)0.0041 (7)0.0051 (8)
O230.0344 (8)0.0847 (13)0.0367 (8)0.0113 (8)0.0040 (6)0.0215 (8)
O240.0400 (9)0.158 (2)0.0418 (9)0.0252 (11)0.0089 (7)0.0419 (12)
Geometric parameters (Å, º) top
C1—C21.382 (3)C12—C131.507 (3)
C1—C11A1.399 (3)C12—H12A0.9900
C1—H10.9500C12—H12B0.9900
C2—C31.387 (3)C13—N141.493 (2)
C2—H20.9500C13—H13A0.9900
C3—C41.377 (3)C13—H13B0.9900
C3—H30.9500N14—C171.478 (3)
C4—C4A1.397 (3)N14—C151.498 (2)
C4—H40.9500N14—H140.87 (3)
C4A—C11A1.397 (3)C15—C161.513 (3)
C4A—N51.418 (2)C15—H15A0.9900
N5—C5A1.427 (3)C15—H15B0.9900
N5—H50.86 (3)C16—H16A0.9900
C5A—C61.394 (3)C16—H16B0.9900
C5A—C9A1.405 (3)C17—H17A0.9800
C6—C71.390 (3)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C7—C81.381 (3)C21—O221.216 (3)
C7—H70.9500C21—O211.270 (3)
C8—C91.380 (3)C21—C221.485 (3)
C8—Cl81.748 (2)O21—H211.00 (5)
C9—C9A1.396 (3)C22—C231.334 (3)
C9—H90.9500C22—H220.9500
C9A—N101.400 (2)C23—C241.487 (3)
N10—C111.285 (2)C23—H230.9500
C11—N111.382 (2)C24—O231.234 (2)
C11—C11A1.494 (2)C24—O241.251 (3)
N11—C161.459 (2)O31—H31A0.8959
N11—C121.462 (2)O31—H31B0.9007
C2—C1—C11A120.84 (19)N11—C12—H12B109.2
C2—C1—H1119.6C13—C12—H12B109.2
C11A—C1—H1119.6H12A—C12—H12B107.9
C1—C2—C3119.49 (19)N14—C13—C12109.42 (15)
C1—C2—H2120.3N14—C13—H13A109.8
C3—C2—H2120.3C12—C13—H13A109.8
C4—C3—C2120.47 (18)N14—C13—H13B109.8
C4—C3—H3119.8C12—C13—H13B109.8
C2—C3—H3119.8H13A—C13—H13B108.2
C3—C4—C4A120.39 (19)C17—N14—C13111.41 (17)
C3—C4—H4119.8C17—N14—C15112.05 (17)
C4A—C4—H4119.8C13—N14—C15110.95 (14)
C11A—C4A—C4119.47 (17)C17—N14—H14106.2 (16)
C11A—C4A—N5119.70 (16)C13—N14—H14106.3 (16)
C4—C4A—N5120.83 (17)C15—N14—H14109.6 (16)
C4A—N5—C5A113.90 (15)N14—C15—C16110.77 (16)
C4A—N5—H5110.1 (16)N14—C15—H15A109.5
C5A—N5—H5112.8 (17)C16—C15—H15A109.5
C6—C5A—C9A119.55 (18)N14—C15—H15B109.5
C6—C5A—N5120.79 (18)C16—C15—H15B109.5
C9A—C5A—N5119.66 (16)H15A—C15—H15B108.1
C7—C6—C5A121.36 (19)N11—C16—C15111.51 (16)
C7—C6—H6119.3N11—C16—H16A109.3
C5A—C6—H6119.3C15—C16—H16A109.3
C8—C7—C6118.39 (18)N11—C16—H16B109.3
C8—C7—H7120.8C15—C16—H16B109.3
C6—C7—H7120.8H16A—C16—H16B108.0
C9—C8—C7121.44 (19)N14—C17—H17A109.5
C9—C8—Cl8118.90 (17)N14—C17—H17B109.5
C7—C8—Cl8119.65 (15)H17A—C17—H17B109.5
C8—C9—C9A120.55 (19)N14—C17—H17C109.5
C8—C9—H9119.7H17A—C17—H17C109.5
C9A—C9—H9119.7H17B—C17—H17C109.5
C9—C9A—N10117.09 (17)O22—C21—O21121.8 (2)
C9—C9A—C5A118.67 (17)O22—C21—C22118.8 (2)
N10—C9A—C5A124.00 (17)O21—C21—C22119.42 (19)
C11—N10—C9A122.17 (15)C21—O21—H21109 (3)
N10—C11—N11118.36 (16)C23—C22—C21131.1 (2)
N10—C11—C11A126.65 (16)C23—C22—H22114.5
N11—C11—C11A114.80 (15)C21—C22—H22114.5
C4A—C11A—C1119.06 (17)C22—C23—C24129.9 (2)
C4A—C11A—C11120.61 (16)C22—C23—H23115.1
C1—C11A—C11120.28 (17)C24—C23—H23115.1
C11—N11—C16122.04 (15)O23—C24—O24122.78 (19)
C11—N11—C12118.45 (15)O23—C24—C23117.38 (18)
C16—N11—C12111.09 (14)O24—C24—C23119.84 (19)
N11—C12—C13111.93 (15)C24—O24—H21110.7 (19)
N11—C12—H12A109.2H31A—O31—H31B113.2
C13—C12—H12A109.2
C11A—C1—C2—C30.3 (3)C4—C4A—C11A—C11171.79 (17)
C1—C2—C3—C43.7 (3)N5—C4A—C11A—C118.6 (3)
C2—C3—C4—C4A2.4 (3)C2—C1—C11A—C4A4.3 (3)
C3—C4—C4A—C11A2.3 (3)C2—C1—C11A—C11173.05 (19)
C3—C4—C4A—N5177.34 (18)N10—C11—C11A—C4A45.2 (3)
C11A—C4A—N5—C5A59.5 (2)N11—C11—C11A—C4A139.81 (18)
C4—C4A—N5—C5A120.07 (19)N10—C11—C11A—C1137.5 (2)
C4A—N5—C5A—C6116.17 (19)N11—C11—C11A—C137.5 (3)
C4A—N5—C5A—C9A64.0 (2)N10—C11—N11—C16142.60 (19)
C9A—C5A—C6—C70.3 (3)C11A—C11—N11—C1642.0 (2)
N5—C5A—C6—C7179.87 (17)N10—C11—N11—C122.7 (3)
C5A—C6—C7—C80.4 (3)C11A—C11—N11—C12172.74 (16)
C6—C7—C8—C91.6 (3)C11—N11—C12—C1391.0 (2)
C6—C7—C8—Cl8179.85 (15)C16—N11—C12—C1357.8 (2)
C7—C8—C9—C9A2.0 (3)N11—C12—C13—N1457.45 (19)
Cl8—C8—C9—C9A179.39 (14)C12—C13—N14—C17178.53 (16)
C8—C9—C9A—N10175.80 (17)C12—C13—N14—C1555.9 (2)
C8—C9—C9A—C5A1.2 (3)C17—N14—C15—C16179.67 (18)
C6—C5A—C9A—C90.1 (3)C13—N14—C15—C1655.1 (2)
N5—C5A—C9A—C9179.71 (16)C11—N11—C16—C1591.5 (2)
C6—C5A—C9A—N10174.23 (16)C12—N11—C16—C1556.0 (2)
N5—C5A—C9A—N105.6 (3)N14—C15—C16—N1154.9 (2)
C9—C9A—N10—C11141.11 (19)O22—C21—C22—C23171.5 (3)
C5A—C9A—N10—C1144.6 (3)O21—C21—C22—C238.7 (5)
C9A—N10—C11—N11173.90 (17)C21—C22—C23—C241.3 (5)
C9A—N10—C11—C11A0.9 (3)C22—C23—C24—O23174.8 (3)
C4—C4A—C11A—C15.6 (3)C22—C23—C24—O246.0 (5)
N5—C4A—C11A—C1174.05 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 represent the centroids of the rings (C5A,C6–C9,C9A) and (C1–C4,C4A,C11A), respectively.
D—H···AD—HH···AD···AD—H···A
N5—H5···O22i0.86 (3)2.24 (3)3.084 (2)170 (3)
N14—H14···O230.87 (3)1.82 (3)2.688 (2)173 (2)
O21—H21···O241.00 (5)1.46 (5)2.420 (3)157 (5)
O31—H31A···O240.902.052.913 (11)160
O31—H31B···O21ii0.902.373.232 (11)161
C12—H12A···O22iii0.992.483.308 (2)141
C15—H15A···Cg1iv0.992.953.642 (2)128
C15—H15B···Cg2iv0.992.953.759 (2)139
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+2, y+2, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+1/2, z+1/2.
(III) Clozapinium 2-hydroxybenzoate top
Crystal data top
C18H20ClN4+·C7H5O3F(000) = 976
Mr = 464.94Dx = 1.335 Mg m3
Monoclinic, CcCu Kα radiation, λ = 1.54184 Å
a = 17.4296 (5) ÅCell parameters from 4069 reflections
b = 15.3728 (5) Åθ = 3.8–72.6°
c = 8.6359 (3) ŵ = 1.75 mm1
β = 90.325 (3)°T = 173 K
V = 2313.88 (13) Å3Block, colourless
Z = 40.42 × 0.36 × 0.20 mm
Data collection top
Agilent Eos Gemini
diffractometer
3962 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.048
ω scansθmax = 72.6°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 2121
Tmin = 0.399, Tmax = 0.705k = 1018
7244 measured reflectionsl = 1010
4069 independent reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.1069P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.141(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.53 e Å3
4069 reflectionsΔρmin = 0.36 e Å3
308 parametersAbsolute structure: Flack x determined using 1674 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.022 (17)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.68573 (19)0.4925 (2)0.8347 (4)0.0296 (6)
H10.65660.53240.89450.036*
C20.7650 (2)0.4966 (2)0.8402 (4)0.0346 (7)
H20.78990.53940.90180.042*
C30.80783 (19)0.4372 (2)0.7545 (4)0.0338 (7)
H30.86230.44050.75520.041*
C40.77094 (19)0.3730 (2)0.6681 (4)0.0322 (7)
H40.80030.33100.61360.039*
C4A0.69150 (18)0.3700 (2)0.6611 (3)0.0273 (6)
N50.65422 (16)0.30589 (18)0.5690 (3)0.0306 (6)
H50.688 (3)0.276 (3)0.511 (6)0.037*
C5A0.60999 (17)0.2452 (2)0.6565 (3)0.0290 (6)
C60.6279 (2)0.1568 (2)0.6588 (4)0.0368 (7)
H60.67020.13630.60040.044*
C70.5850 (2)0.0983 (2)0.7448 (5)0.0403 (8)
H70.59690.03800.74420.048*
C80.5249 (2)0.1300 (2)0.8312 (5)0.0369 (7)
Cl80.47247 (6)0.05843 (6)0.94789 (14)0.0561 (3)
C90.50474 (19)0.2173 (2)0.8300 (4)0.0332 (7)
H90.46220.23690.88860.040*
C9A0.54720 (18)0.2761 (2)0.7424 (4)0.0287 (6)
N100.51934 (16)0.36170 (18)0.7350 (3)0.0294 (5)
C110.56224 (18)0.4295 (2)0.7362 (3)0.0267 (6)
C11A0.64754 (19)0.4310 (2)0.7428 (3)0.0272 (6)
N110.52619 (16)0.50963 (18)0.7496 (3)0.0303 (6)
C120.44338 (19)0.5111 (2)0.7757 (4)0.0334 (7)
H12A0.42810.45910.83560.040*
H12B0.41590.50980.67510.040*
C130.4218 (2)0.5929 (2)0.8641 (4)0.0357 (7)
H13A0.36540.59490.87740.043*
H13B0.44580.59140.96820.043*
N140.44753 (17)0.6726 (2)0.7804 (3)0.0331 (6)
H140.423 (3)0.675 (3)0.690 (7)0.040*
C150.5313 (2)0.6687 (2)0.7446 (4)0.0338 (7)
H15A0.56140.67120.84220.041*
H15B0.54570.71950.68050.041*
C160.55040 (19)0.5851 (2)0.6580 (4)0.0306 (6)
H16A0.52370.58470.55650.037*
H16B0.60630.58210.63930.037*
C170.4297 (3)0.7522 (3)0.8713 (5)0.0482 (9)
H17A0.45880.75130.96870.072*
H17B0.37470.75390.89370.072*
H17C0.44390.80380.81140.072*
C210.28195 (18)0.6783 (2)0.3237 (4)0.0306 (6)
C220.2327 (2)0.6192 (3)0.2489 (5)0.0462 (9)
C230.1947 (3)0.6426 (4)0.1142 (7)0.0657 (14)
H23A0.16230.60200.06270.079*
C240.2041 (3)0.7258 (5)0.0548 (6)0.0673 (15)
H240.17740.74220.03690.081*
C250.2518 (3)0.7851 (3)0.1272 (5)0.0509 (10)
H250.25760.84190.08560.061*
C260.2911 (2)0.7617 (2)0.2602 (4)0.0354 (7)
H260.32450.80220.30890.042*
C270.32403 (17)0.6517 (2)0.4680 (4)0.0286 (6)
O210.31483 (16)0.57583 (18)0.5174 (4)0.0445 (6)
O220.36650 (14)0.70751 (16)0.5327 (3)0.0332 (5)
O230.2212 (2)0.5383 (2)0.3064 (5)0.0661 (10)
H230.259 (6)0.544 (6)0.394 (13)0.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0314 (15)0.0289 (13)0.0285 (14)0.0049 (11)0.0008 (12)0.0026 (11)
C20.0345 (17)0.0331 (15)0.0363 (16)0.0012 (12)0.0036 (13)0.0015 (12)
C30.0239 (13)0.0341 (15)0.0433 (18)0.0016 (11)0.0013 (12)0.0033 (12)
C40.0311 (16)0.0340 (15)0.0317 (16)0.0088 (12)0.0028 (12)0.0018 (12)
C4A0.0305 (16)0.0285 (14)0.0229 (13)0.0044 (11)0.0013 (11)0.0035 (10)
N50.0311 (13)0.0348 (13)0.0259 (12)0.0058 (11)0.0038 (10)0.0053 (10)
C5A0.0255 (15)0.0335 (15)0.0279 (15)0.0030 (11)0.0050 (12)0.0046 (11)
C60.0329 (15)0.0346 (17)0.0429 (19)0.0062 (12)0.0030 (13)0.0084 (13)
C70.0354 (17)0.0276 (15)0.058 (2)0.0028 (12)0.0092 (15)0.0047 (13)
C80.0300 (15)0.0340 (16)0.0466 (19)0.0048 (12)0.0060 (14)0.0011 (13)
Cl80.0461 (5)0.0410 (5)0.0813 (8)0.0089 (4)0.0056 (5)0.0139 (4)
C90.0243 (14)0.0387 (16)0.0364 (17)0.0001 (11)0.0050 (12)0.0021 (12)
C9A0.0241 (13)0.0336 (15)0.0281 (14)0.0035 (11)0.0074 (11)0.0035 (11)
N100.0253 (11)0.0345 (13)0.0284 (13)0.0068 (10)0.0013 (10)0.0003 (10)
C110.0272 (15)0.0338 (15)0.0190 (13)0.0063 (11)0.0000 (10)0.0004 (10)
C11A0.0277 (15)0.0296 (13)0.0242 (14)0.0034 (11)0.0004 (11)0.0022 (10)
N110.0272 (13)0.0328 (13)0.0310 (13)0.0088 (10)0.0028 (10)0.0038 (10)
C120.0269 (15)0.0355 (16)0.0378 (17)0.0087 (12)0.0056 (12)0.0048 (12)
C130.0338 (16)0.0443 (18)0.0290 (15)0.0149 (14)0.0048 (12)0.0022 (13)
N140.0352 (14)0.0367 (14)0.0271 (14)0.0137 (11)0.0073 (11)0.0033 (10)
C150.0329 (15)0.0329 (15)0.0357 (16)0.0062 (12)0.0082 (13)0.0000 (12)
C160.0315 (15)0.0311 (15)0.0292 (14)0.0069 (11)0.0017 (12)0.0038 (12)
C170.053 (2)0.049 (2)0.0425 (19)0.0227 (18)0.0116 (17)0.0150 (16)
C210.0250 (13)0.0386 (16)0.0282 (15)0.0046 (12)0.0008 (11)0.0034 (12)
C220.0366 (18)0.053 (2)0.049 (2)0.0049 (16)0.0060 (16)0.0092 (17)
C230.053 (3)0.093 (4)0.051 (3)0.011 (3)0.021 (2)0.014 (3)
C240.052 (3)0.114 (5)0.036 (2)0.012 (3)0.0204 (19)0.002 (2)
C250.047 (2)0.068 (3)0.0374 (19)0.0157 (19)0.0009 (17)0.0149 (18)
C260.0311 (16)0.0442 (18)0.0307 (16)0.0052 (13)0.0020 (13)0.0025 (13)
C270.0212 (13)0.0339 (15)0.0308 (15)0.0054 (11)0.0030 (11)0.0010 (11)
O210.0373 (14)0.0400 (13)0.0562 (16)0.0004 (11)0.0038 (11)0.0128 (12)
O220.0315 (11)0.0375 (11)0.0304 (11)0.0034 (9)0.0075 (9)0.0002 (8)
O230.060 (2)0.0520 (17)0.086 (3)0.0213 (17)0.0142 (18)0.0066 (18)
Geometric parameters (Å, º) top
C1—C21.383 (5)C12—H12B0.9900
C1—C11A1.400 (5)C13—N141.493 (5)
C1—H10.9500C13—H13A0.9900
C2—C31.395 (5)C13—H13B0.9900
C2—H20.9500N14—C171.487 (4)
C3—C41.393 (5)N14—C151.496 (4)
C3—H30.9500N14—H140.88 (6)
C4—C4A1.386 (4)C15—C161.524 (4)
C4—H40.9500C15—H15A0.9900
C4A—C11A1.404 (4)C15—H15B0.9900
C4A—N51.422 (4)C16—H16A0.9900
N5—C5A1.429 (4)C16—H16B0.9900
N5—H50.90 (5)C17—H17A0.9800
C5A—C61.394 (5)C17—H17B0.9800
C5A—C9A1.408 (4)C17—H17C0.9800
C6—C71.387 (6)C21—C261.403 (5)
C6—H60.9500C21—C221.406 (5)
C7—C81.379 (6)C21—C271.499 (4)
C7—H70.9500C22—O231.355 (6)
C8—C91.387 (5)C22—C231.383 (7)
C8—Cl81.752 (4)C23—C241.389 (9)
C9—C9A1.394 (5)C23—H23A0.9500
C9—H90.9500C24—C251.381 (9)
C9A—N101.405 (4)C24—H240.9500
N10—C111.283 (5)C25—C261.381 (5)
C11—N111.388 (4)C25—H250.9500
C11—C11A1.488 (4)C26—H260.9500
N11—C121.462 (4)C27—O211.253 (4)
N11—C161.467 (4)C27—O221.261 (4)
C12—C131.520 (4)O23—H231.00 (11)
C12—H12A0.9900
C2—C1—C11A121.4 (3)N14—C13—C12111.1 (3)
C2—C1—H1119.3N14—C13—H13A109.4
C11A—C1—H1119.3C12—C13—H13A109.4
C1—C2—C3119.3 (3)N14—C13—H13B109.4
C1—C2—H2120.3C12—C13—H13B109.4
C3—C2—H2120.3H13A—C13—H13B108.0
C4—C3—C2120.1 (3)C17—N14—C13110.8 (3)
C4—C3—H3120.0C17—N14—C15110.4 (3)
C2—C3—H3120.0C13—N14—C15111.3 (3)
C4A—C4—C3120.3 (3)C17—N14—H14110 (3)
C4A—C4—H4119.9C13—N14—H14108 (3)
C3—C4—H4119.9C15—N14—H14106 (3)
C4—C4A—C11A120.3 (3)N14—C15—C16110.5 (3)
C4—C4A—N5120.0 (3)N14—C15—H15A109.5
C11A—C4A—N5119.7 (3)C16—C15—H15A109.5
C4A—N5—C5A113.8 (2)N14—C15—H15B109.5
C4A—N5—H5111 (3)C16—C15—H15B109.5
C5A—N5—H5108 (3)H15A—C15—H15B108.1
C6—C5A—C9A119.7 (3)N11—C16—C15109.8 (3)
C6—C5A—N5121.5 (3)N11—C16—H16A109.7
C9A—C5A—N5118.8 (3)C15—C16—H16A109.7
C7—C6—C5A121.3 (3)N11—C16—H16B109.7
C7—C6—H6119.4C15—C16—H16B109.7
C5A—C6—H6119.4H16A—C16—H16B108.2
C8—C7—C6118.3 (3)N14—C17—H17A109.5
C8—C7—H7120.9N14—C17—H17B109.5
C6—C7—H7120.9H17A—C17—H17B109.5
C7—C8—C9122.1 (3)N14—C17—H17C109.5
C7—C8—Cl8119.3 (3)H17A—C17—H17C109.5
C9—C8—Cl8118.6 (3)H17B—C17—H17C109.5
C8—C9—C9A119.7 (3)C26—C21—C22118.7 (3)
C8—C9—H9120.1C26—C21—C27121.2 (3)
C9A—C9—H9120.1C22—C21—C27120.0 (3)
C9—C9A—N10116.6 (3)O23—C22—C23118.4 (4)
C9—C9A—C5A119.0 (3)O23—C22—C21121.1 (4)
N10—C9A—C5A124.1 (3)C23—C22—C21120.5 (4)
C11—N10—C9A124.0 (3)C22—C23—C24119.6 (5)
N10—C11—N11117.2 (3)C22—C23—H23A120.2
N10—C11—C11A126.6 (3)C24—C23—H23A120.2
N11—C11—C11A115.8 (3)C25—C24—C23120.9 (4)
C1—C11A—C4A118.5 (3)C25—C24—H24119.6
C1—C11A—C11120.3 (3)C23—C24—H24119.6
C4A—C11A—C11121.2 (3)C24—C25—C26119.9 (5)
C11—N11—C12118.3 (3)C24—C25—H25120.0
C11—N11—C16121.7 (3)C26—C25—H25120.0
C12—N11—C16111.0 (2)C25—C26—C21120.5 (4)
N11—C12—C13109.7 (3)C25—C26—H26119.8
N11—C12—H12A109.7C21—C26—H26119.8
C13—C12—H12A109.7O21—C27—O22124.0 (3)
N11—C12—H12B109.7O21—C27—C21118.3 (3)
C13—C12—H12B109.7O22—C27—C21117.8 (3)
H12A—C12—H12B108.2C22—O23—H2396 (5)
C11A—C1—C2—C31.1 (5)N11—C11—C11A—C132.9 (4)
C1—C2—C3—C41.9 (5)N10—C11—C11A—C4A38.8 (4)
C2—C3—C4—C4A2.8 (5)N11—C11—C11A—C4A148.7 (3)
C3—C4—C4A—C11A0.8 (5)N10—C11—N11—C125.5 (4)
C3—C4—C4A—N5178.1 (3)C11A—C11—N11—C12167.7 (3)
C4—C4A—N5—C5A115.3 (3)N10—C11—N11—C16138.6 (3)
C11A—C4A—N5—C5A65.7 (3)C11A—C11—N11—C1648.2 (4)
C4A—N5—C5A—C6117.1 (3)C11—N11—C12—C13151.8 (3)
C4A—N5—C5A—C9A62.6 (4)C16—N11—C12—C1360.6 (3)
C9A—C5A—C6—C70.2 (5)N11—C12—C13—N1456.6 (4)
N5—C5A—C6—C7179.6 (3)C12—C13—N14—C17177.1 (3)
C5A—C6—C7—C81.3 (5)C12—C13—N14—C1553.8 (4)
C6—C7—C8—C92.3 (6)C17—N14—C15—C16177.3 (3)
C6—C7—C8—Cl8177.1 (3)C13—N14—C15—C1653.8 (4)
C7—C8—C9—C9A1.6 (5)C11—N11—C16—C15152.7 (3)
Cl8—C8—C9—C9A177.7 (3)C12—N11—C16—C1560.9 (4)
C8—C9—C9A—N10174.2 (3)N14—C15—C16—N1156.8 (4)
C8—C9—C9A—C5A0.0 (5)C26—C21—C22—O23179.2 (4)
C6—C5A—C9A—C90.8 (5)C27—C21—C22—O231.2 (6)
N5—C5A—C9A—C9178.9 (3)C26—C21—C22—C230.7 (6)
C6—C5A—C9A—N10172.9 (3)C27—C21—C22—C23178.9 (4)
N5—C5A—C9A—N107.4 (5)O23—C22—C23—C24178.5 (5)
C9—C9A—N10—C11141.9 (3)C21—C22—C23—C241.4 (8)
C5A—C9A—N10—C1144.2 (5)C22—C23—C24—C250.9 (9)
C9A—N10—C11—N11171.4 (3)C23—C24—C25—C260.3 (8)
C9A—N10—C11—C11A1.0 (5)C24—C25—C26—C211.0 (6)
C2—C1—C11A—C4A3.1 (5)C22—C21—C26—C250.5 (5)
C2—C1—C11A—C11178.6 (3)C27—C21—C26—C25180.0 (3)
C4—C4A—C11A—C12.1 (4)C26—C21—C27—O21178.5 (3)
N5—C4A—C11A—C1179.0 (3)C22—C21—C27—O211.1 (5)
C4—C4A—C11A—C11179.6 (3)C26—C21—C27—O221.7 (4)
N5—C4A—C11A—C110.6 (4)C22—C21—C27—O22178.7 (3)
N10—C11—C11A—C1139.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 represents the centroid of the ring (C5A,C6–C9,C9A).
D—H···AD—HH···AD···AD—H···A
N14—H14···O220.89 (6)1.75 (6)2.612 (4)164 (5)
O23—H23···O211.01 (11)1.52 (10)2.507 (5)166 (9)
C4—H4···O22i0.952.333.261 (4)166
C9—H9···O22ii0.952.253.202 (4)176
C12—H12B···O210.992.443.306 (5)146
C15—H15A···N5ii0.992.563.539 (4)170
C24—H24···Cg1iii0.952.833.637 (5)144
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z+1/2; (iii) x1/2, y+1/2, z1.
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(III) top
Cg1 and Cg2 represent the centroids of rings C5A/C6–C9/C9A and C1–C4/C4A/C11A, respectively
CompoundD—H···AD—HH···AD···AD—H···A
(I)N5—H5···O310.83 (3)2.10 (3)2.921 (4)170 (3)
N14—H14···O221.00 (3)1.58 (3)2.575 (3)176 (2)
C4—H4···O310.952.583.342 (4)137
C4—H4···O410.952.383.208 (7)146
C6—H6···O310.952.543.313 (5)139
(II)N5—H5···O22i0.86 (3)2.24 (3)3.084 (2)170 (3)
N14—H14···O230.87 (3)1.83 (2)2.688 (2)173 (2)
O21—H21···O241.00 (5)1.47 (5)2.420 (3)157 (5)
O31—H31A···O240.902.052.913 (11)160
O31—H31B···O21ii0.902.373.232 (11)161
C12—H12A···O22iii0.992.483.308 (2)141
C15—H15A···Cg1iv0.992.953.642 (2)128
C15—H15B···Cg2iv0.992.953.759 (2)139
(III)N14—H14···O220.89 (6)1.75 (6)2.612 (4)164 (5)
O23—H23···O211.01 (11)1.52 (10)2.507 (5)161 (9)
C4—H4···O22v0.952.233.261 (4)166
C9—H9···O22v0.952.253.202 (4)176
C12—H12A···O210.992.443.306 (5)146
C12—H12B···N5vi0.992.563.539 (4)170
C24—H24···Cg1vii0.952.833.637 (5)144
Symmetry codes: (i) -1 + x, 3/2 - y, -1/2 + z; (ii) -x, 2 - y, 1 - z; (iii) 2 - x, 1 - y, 1 - z; (iv) 1 - x, 1/2 + y, 1/2 - z; (v) 1/2 + x, -1/2 + y, z; (vi) x, 1 - y, 1/2 + z; (vii) -1/2 + x, 0.5 + y, -1 + z.
Selected geometric parameters (°) for compounds (I)–(III) top
`Dihedral' denotes the dihedral angles between the mean planes of rings C1–C4/C4A/C11A and C5A/C6–C9/C9A.
Parameter(I)(II)(III))
C11—N11—C12120.80 (19)118.45 (15)118.3 (3)
C11—N11—C16126.01 (19)122.04 (15)121.7 (3)
C12—N11—C16112.91 (18)111.09 (14)111.0 (3)
C4A—N5—C5A—C6-117.8 (2)-116.17 (19)-117.1 (3)
C5A—N5—C4A—C4115.1 (3)120.07 (19))115.3 (3)
C1—C11A—C11—N10-129.2 (3)-137.5 (2)-139.6 (3)
C9—C9A—N10—C11146.3 (2)141.11 (19)141.9 (3)
C9A—N10—C11—C11A-7.9 (4)0.9 (3)1.0 (5)
N10—C11—N11—C126.3 (3)2.7 (3)5.5 (4)
C11—N11—C12—C13-120.8 (2)-90.0 (2)151.8 (3)
Dihedral62.21 (11)60.97 (9)59.07 (16)
 

Acknowledgements

MK thanks the UOM for research facilities and is also grateful to CPEPA, UGC, for the award of a JRF. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBreier, A., Buchanan, R. W., Kirkpatrick, B., David, O. R., Irish, D., Summerfelt, A. & Carpenter, J. W. Jr (1994). Am. J. Psychiatry, 151, 20–26.  CAS PubMed Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 1750–1753.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (1994). J. Am. Chem. Soc. 116, 909–915.  CrossRef CAS Web of Science Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415–1420.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages 406-413
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds