research communications
Structure cristalline de la triple molybdate Ag0.90Al1.06Co2.94(MoO4)5
aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar Tunis, Tunisia
*Courier électronique: c.fatouma@yahoo.fr
Silver(I) aluminiun tricobalt(II) pentakis[tetraoxidomolybdate(VI)], Ag0.90Al1.06Co2.94(MoO4)5, was synthesized using a solid-state reaction at 845 K. The structure can be described as a three-dimensional framework formed from dimeric M2O10 (M = Co/Al) and trimeric M3O14 units linked to MoO4 tetrahedra by sharing corners, with the cavities occupied by disordered Ag+ cations. It is shown that the Co and Al atoms occupy common positions with different occupancies. The Ag+ cations are located at two different sites with occupancies of 0.486 (1) and 0.408 (1). The title coumpond is isotypic with NaMg3Al(MoO4)5 and NaFe4(MoO4)5. Differences and similarities with other related structures are discussed.
CCDC reference: 1054352
1. Contexte chimique
Les molybdates triples des métaux de transition ont un champ prometteur pour diverses applications: catalyse (Ivanov et al., 1998), spectroscopie (Méndez-Blas et al., 2004). L'assemblage octaèdres-tétraèdres dans ces matériaux conduit à des charpentes ouvertes présentant des propriétés physiques importantes, en particulier la conduction ionique (Judeinstein et al., 1994; Sanz et al., 1999). L'exploration du système A–Co–Al–Mo–O (A = ion monovalent) nous a permis d'élaborer un nouveau matériau de formulation Ag0.90Al1.06Co2.94(MoO4)5. Un examen bibliographique montre que le matériau étudié est isostructural aux composés: NaMg3Al(MoO4)5 (Hermanowicz et al., 2006) et NaFe4(MoO4)5 (Muessig et al., 2003).
2. Commentaire structurelle
L'unité structurale renferme un dimère M2O10 (M = Co/Al), deux octaèdres MO6 et cinq tétraèdres MoO4 reliés par mise en commun de sommets. La compensation de charges dans la structure est assurée par les cations Ag+ (Fig. 1). La charpente anionique peut être décrite moyennant la succession de différents types de couches reliées par partage de sommets et d'arêtes. Elle peut être subdivisée en couches de type A, B, C et D. Les couches de type A sont formées par les dimères M2O10 (M = Co2/Al2) reliés par mise en commun de sommets uniquement avec les tétraèdres Mo3O4 disposés en `trans' (Fig. 2a). Dans les couches de type D, les dimères M2O10 (M = Co1/Al1, Co3/Al3), se connectent par mise en commun de sommets avec les tétraèdres Mo1O4 et Mo4O4, dans lequels les sommets non engagés dans la couche sont tous orientés selon la même direction en `cis' (Fig. 2b). Dans les couches de type C, les octaèdres MO6 (M = Co4/Al4) et les tétraèdres Mo2O4 et Mo5O4 se connectent par mise en commun de sommets pour former des chaînes classiques de type MMoO8 (Fig. 2c).
La disposition particulière, des tétraèdres MoO4 en `cis' dans les couches de type D et en `trans' dans les couches A, respectivement permet la jonction de ces dernières par ponts mixtes pour conduire à des doubles couches de type B (Fig. 2d). La jonction des différentes couches A et bicouches B parallèlement au plan (001), selon la disposition A–BB–A–BB par ponts mixtes de type M–O–Mo conduit à une charpente tridimentionnelle possédant des canaux dans lesquels résident les cations Ag+, mais excentrés (Fig. 3).
Un examen des caractéristiques géométriques relevées de l'étude structurale montre que les distances moyennes dans les tétraèdres MoO4 et dans les octaèdres MO6 (M = Co/Al), sont égales respectivement à 1.762 (4) et 2.036 (4) Å. La première Mo—O, est conforme à celles rencontrées dans la litérature (Ennajeh et al., 2013; Engel et al., 2009; Huyghe et al., 1991). La seconde M—O (M=Co/Al), s'avère une moyenne entre celles CoII–O (Engel et al., 2009; Sanz et al., 1999) et Al—O (Brik & Avram, 2011; Hermanowicz et al., 2006). Dans les dimères M2O10, la distance courte métal–métal égale à 3.109 (8) Å, pourrait conduire à des propriétés magnétiques (Feng et al., 1997). De plus, le calcul des charges des ions, utilisant la formule empirique de Brown & Altermatt (1985), conduit aux valeurs des charges des ions suivants: Mo1 (6.047), Mo2 (6.012), Mo3 (5.949), Mo4 (5.965), Mo5 (5.993), (Co1/Al1) (2.140), (Co2/Al2) (2.314), (Co3/Al3) (2.312), (Co4/Al4) (2.481), Ag1 (0.965) et Ag2 (0.998). En effet, en tenant compte des taux d'occupation des sites, la charge globale calculée des cations restants [+10,1(2)] est égale en module à celle de l'ion molybdate [Mo5O20]10−.
Un examen rigoureux des travaux antérieurs montre une analogie structurale entre les connections des polyèdres dans les composés appartenant à la famille de type alluaudite Na3In2As3O12 et Na3In2P3O12 (Lii & Ye, 1997), le matériau Ag2Co2(MoO4)3 (Tsyrenova et al., 2004) et les différentes variétés du composé K2Co2(MoO4)3 (Engel et al., 2009). Dans ces phases, une différence nette a été observée dans les charpentes anioniques. En effet, on remarque que dans le cas des alluaudites, les dimères adoptent une disposition perpendiculaire les uns aux autres. Contrairement à notre structure dans laquelle les dimères sont disposès d'une façon parallèle.
La charpente anionique dans le composé K2Co2(MoO4)3 présente contrairement à notre structure des tétramères au lieu des dimères et trimères. L'association, par partage de sommets, des tétramères avec les tétraèdres MoO4 conduit dans la forme β-K2Co2(MoO4)3 à une structure en couches (two-dimensional) (Fig. 4a). Par contre, leur jonction dans la forme α-K2Co2(MoO4)3 engendre une charpente tridimensionnelle possédant des canaux allongés où résident des cations potassium (Fig. 4b).
3. Synthèse et cristallisation
Dans le but de préparer un composé de formulation analogue à NaMg3Al(MoO4)5 ayant des propriétés physiques intéressantes, nous avons voulu synthétiser la phase AgAlCo3(MoO4)5. Un mélange de réactifs: AgNO3 (Merck, 101510), Co(NO3)2·6H2O (FLUKA, 60832), Al2O3 (FLUKA, 60109) et (NH4)2Mo4O13 (FLUKA, 69858) a été pris dans les proportions tel que les rapports sont Ag:Al:Co:Mo=1:1:3:5. Après un broyage poussé dans un mortier en agate, le mélange a été mis dans un creuset en porcelaine préchauffé à l'air à 673 K pendant 12 heures en vue d'éliminer les composés volatils. Il est ensuite porté jusqu'à une température de synthèse proche de celle de la fusion à 845 K. Le mélange est abandonné à cette température pendant deux semaines pour favoriser la germination et la croissance des cristaux. Par la suite, il a subi en premier lieu un refroidissement lent (5°/jour) jusqu'à 800 K puis rapide (50°/h) jusqu'à la température ambiante. Des cristaux de couleur rouge, de taille suffisante pour les mesures des intensités, ont été séparés du par l'eau chaude. Une analyse qualitative au MEB de marque FEI et de type QUANTA 200 confirme la présence des éléments chimiques attendus: Ag, Al, Co, Mo et l'oxygène.
4. Affinement
Détails de donnés crystallines, collection de donnés et affinement sont résumés dans le tableau 1. La structure a été résolue par des méthodes directes de SHELXS97 (Sheldrick, 2008), et interpretée en partant de la formule AgAlCo3Mo5O20 similaire au composé isotype NaAlMg3Mo5O20. Un examen de la carte de Fourier différence montre des résidus non négligeables autour des cations Co2+ et Ag+. L'affinement, en se basant sur les grandeurs géométriques, a été mené d'une part avec des taux d'occupation variables pour les atomes de cobalt et de l'aluminium occupant statiquement les mêmes positions et ayant les mêmes ellipsoïdes utilisant les deux fonctions EXYZ et EADP autorisées par le programme SHELXL97 (Sheldrick, 2008), et d'autre part en considérant que l'ion Ag+ est reparti sur deux positions proches dans la structure. En effet, l'affinement de tous les paramètres variables conduit à des ellipsoïdes bien définis. Les densités électroniques maximum et minimum restantes dans la carte de Fourier différence sont acceptables et sont situées respectivements à 0.92 Å de Mo4 et à 0.93 Å de Mo3.
Supporting information
CCDC reference: 1054352
10.1107/S2056989015005290/vn2089sup1.cif
contains datablock I. DOI:10.1107/S2056989015005290/vn2089sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015005290/vn2089Isup2.hkl
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).Ag0.90Al1.06Co2.94(MoO4)5 | Z = 2 |
Mr = 1098.64 | F(000) = 1010.92 |
Triclinic, P1 | Dx = 4.448 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8547 (8) Å | Cell parameters from 25 reflections |
b = 6.9410 (8) Å | θ = 10–15° |
c = 17.597 (2) Å | µ = 7.79 mm−1 |
α = 87.958 (6)° | T = 298 K |
β = 87.462 (6)° | Prism, red |
γ = 78.818 (4)° | 0.22 × 0.16 × 0.12 mm |
V = 820.20 (16) Å3 |
Enraf–Nonius CAD-4 diffractometer | 3086 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 27.0°, θmin = 2.3° |
ω/2θ scans | h = −8→1 |
Absorption correction: ψ scan (North et al., 1968) | k = −8→8 |
Tmin = 0.233, Tmax = 0.407 | l = −22→22 |
3912 measured reflections | 2 standard reflections every 120 min |
3527 independent reflections | intensity decay: 1.2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0285P)2 + 3.7871P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.070 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 1.28 e Å−3 |
3527 reflections | Δρmin = −0.77 e Å−3 |
287 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00088 (12) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mo1 | 0.22547 (6) | 0.43949 (6) | 0.09513 (2) | 0.00816 (11) | |
Mo2 | 0.71279 (6) | 0.32538 (6) | 0.28488 (2) | 0.00936 (11) | |
Mo3 | 0.77392 (6) | 0.80749 (6) | 0.52742 (2) | 0.00941 (11) | |
Mo4 | 0.74619 (6) | 0.04587 (6) | 0.08587 (2) | 0.01000 (11) | |
Mo5 | 0.18593 (7) | 0.71922 (7) | 0.30929 (3) | 0.01203 (11) | |
Ag1 | 0.6084 (2) | 0.8428 (4) | 0.3355 (3) | 0.0375 (8) | 0.486 (11) |
Ag2 | 0.6351 (7) | 0.8417 (3) | 0.2935 (6) | 0.056 (2) | 0.408 (11) |
Co1 | 0.66729 (10) | 0.58420 (10) | 0.11583 (4) | 0.0087 (2) | 0.920 (6) |
Al1 | 0.66729 (10) | 0.58420 (10) | 0.11583 (4) | 0.0087 (2) | 0.080 (6) |
Co2 | 0.68200 (11) | 0.32794 (11) | 0.49318 (4) | 0.0083 (3) | 0.742 (6) |
Al2 | 0.68200 (11) | 0.32794 (11) | 0.49318 (4) | 0.0083 (3) | 0.258 (6) |
Co3 | 0.27664 (11) | 0.92534 (11) | 0.12614 (4) | 0.0076 (3) | 0.737 (6) |
Al3 | 0.27664 (11) | 0.92534 (11) | 0.12614 (4) | 0.0076 (3) | 0.263 (6) |
Co4 | 0.24922 (13) | 0.19504 (13) | 0.26423 (5) | 0.0088 (3) | 0.542 (6) |
Al4 | 0.24922 (13) | 0.19504 (13) | 0.26423 (5) | 0.0088 (3) | 0.458 (6) |
O1 | 0.6232 (6) | 0.6325 (6) | 0.5034 (2) | 0.0151 (8) | |
O2 | 0.2678 (6) | 0.9019 (6) | 0.2444 (2) | 0.0170 (8) | |
O3 | 0.3541 (5) | 0.6292 (6) | 0.1188 (2) | 0.0141 (7) | |
O4 | 0.6898 (6) | 0.3752 (6) | 0.3811 (2) | 0.0201 (8) | |
O5 | 0.6529 (6) | 0.5519 (6) | 0.2336 (2) | 0.0163 (8) | |
O6 | 0.9815 (6) | 0.9588 (6) | 0.1222 (2) | 0.0216 (9) | |
O7 | 0.2186 (7) | 0.4863 (6) | 0.2692 (2) | 0.0260 (9) | |
O8 | 0.3258 (6) | 0.7020 (6) | 0.3915 (2) | 0.0201 (8) | |
O9 | 1.0223 (6) | 0.7103 (6) | 0.5056 (2) | 0.0203 (8) | |
O10 | 0.2933 (6) | 0.3839 (6) | 0.0016 (2) | 0.0198 (8) | |
O11 | 0.7036 (6) | 0.0327 (6) | 0.4785 (2) | 0.0188 (8) | |
O12 | 0.5836 (5) | 0.8879 (5) | 0.1247 (2) | 0.0135 (7) | |
O13 | 0.2675 (5) | 0.2115 (5) | 0.1509 (2) | 0.0132 (7) | |
O14 | −0.0592 (6) | 0.7932 (7) | 0.3351 (3) | 0.0304 (10) | |
O15 | 0.9585 (6) | 0.2166 (6) | 0.2630 (2) | 0.0197 (8) | |
O16 | −0.0250 (6) | 0.5351 (6) | 0.1053 (2) | 0.0209 (9) | |
O17 | 0.7454 (6) | 0.0344 (6) | −0.0127 (2) | 0.0222 (9) | |
O18 | 0.7497 (7) | 0.8501 (6) | 0.6254 (2) | 0.0226 (9) | |
O19 | 0.5474 (6) | 0.1619 (6) | 0.2671 (2) | 0.0195 (8) | |
O20 | 0.6641 (7) | 0.2928 (6) | 0.1097 (2) | 0.0236 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.0090 (2) | 0.0058 (2) | 0.0104 (2) | −0.00328 (15) | −0.00181 (15) | 0.00175 (15) |
Mo2 | 0.0101 (2) | 0.0082 (2) | 0.0097 (2) | −0.00186 (16) | −0.00103 (15) | 0.00114 (15) |
Mo3 | 0.0103 (2) | 0.0078 (2) | 0.0111 (2) | −0.00401 (16) | −0.00117 (15) | 0.00059 (15) |
Mo4 | 0.0115 (2) | 0.0074 (2) | 0.0121 (2) | −0.00496 (16) | 0.00168 (16) | 0.00012 (15) |
Mo5 | 0.0115 (2) | 0.0104 (2) | 0.0147 (2) | −0.00390 (17) | −0.00107 (16) | 0.00338 (16) |
Ag1 | 0.0138 (6) | 0.0340 (8) | 0.065 (2) | −0.0072 (5) | −0.0068 (7) | 0.0149 (8) |
Ag2 | 0.0357 (14) | 0.0136 (8) | 0.120 (5) | 0.0020 (7) | −0.043 (2) | −0.0071 (13) |
Co1 | 0.0084 (4) | 0.0066 (4) | 0.0113 (4) | −0.0023 (3) | −0.0010 (3) | 0.0013 (3) |
Al1 | 0.0084 (4) | 0.0066 (4) | 0.0113 (4) | −0.0023 (3) | −0.0010 (3) | 0.0013 (3) |
Co2 | 0.0082 (4) | 0.0073 (4) | 0.0095 (4) | −0.0021 (3) | −0.0013 (3) | 0.0007 (3) |
Al2 | 0.0082 (4) | 0.0073 (4) | 0.0095 (4) | −0.0021 (3) | −0.0013 (3) | 0.0007 (3) |
Co3 | 0.0083 (4) | 0.0054 (4) | 0.0093 (4) | −0.0019 (3) | −0.0014 (3) | 0.0003 (3) |
Al3 | 0.0083 (4) | 0.0054 (4) | 0.0093 (4) | −0.0019 (3) | −0.0014 (3) | 0.0003 (3) |
Co4 | 0.0100 (5) | 0.0079 (5) | 0.0088 (5) | −0.0028 (3) | −0.0012 (3) | 0.0007 (3) |
Al4 | 0.0100 (5) | 0.0079 (5) | 0.0088 (5) | −0.0028 (3) | −0.0012 (3) | 0.0007 (3) |
O1 | 0.0148 (18) | 0.0153 (19) | 0.0155 (18) | −0.0040 (15) | −0.0011 (14) | 0.0011 (14) |
O2 | 0.0164 (19) | 0.0146 (19) | 0.0187 (19) | −0.0014 (15) | 0.0047 (15) | 0.0024 (15) |
O3 | 0.0118 (17) | 0.0158 (19) | 0.0168 (18) | −0.0074 (15) | −0.0017 (14) | −0.0006 (14) |
O4 | 0.025 (2) | 0.021 (2) | 0.0146 (19) | −0.0043 (17) | −0.0020 (16) | 0.0007 (16) |
O5 | 0.020 (2) | 0.0146 (19) | 0.0154 (18) | −0.0041 (16) | −0.0071 (15) | 0.0034 (15) |
O6 | 0.0147 (19) | 0.024 (2) | 0.028 (2) | −0.0076 (17) | −0.0049 (16) | 0.0013 (17) |
O7 | 0.034 (2) | 0.023 (2) | 0.024 (2) | −0.0126 (19) | 0.0037 (18) | −0.0011 (17) |
O8 | 0.021 (2) | 0.018 (2) | 0.021 (2) | −0.0043 (17) | −0.0042 (16) | 0.0013 (16) |
O9 | 0.0133 (18) | 0.021 (2) | 0.027 (2) | −0.0051 (16) | 0.0014 (16) | −0.0007 (17) |
O10 | 0.028 (2) | 0.017 (2) | 0.0134 (18) | −0.0040 (17) | −0.0023 (16) | 0.0000 (15) |
O11 | 0.022 (2) | 0.0139 (19) | 0.021 (2) | −0.0055 (16) | −0.0011 (16) | 0.0030 (15) |
O12 | 0.0145 (18) | 0.0065 (17) | 0.0194 (19) | −0.0021 (14) | 0.0005 (14) | −0.0014 (14) |
O13 | 0.0117 (17) | 0.0104 (17) | 0.0167 (18) | −0.0003 (14) | −0.0027 (14) | 0.0028 (14) |
O14 | 0.016 (2) | 0.036 (3) | 0.039 (3) | −0.0045 (19) | 0.0043 (18) | 0.003 (2) |
O15 | 0.017 (2) | 0.016 (2) | 0.025 (2) | 0.0008 (16) | 0.0014 (16) | −0.0003 (16) |
O16 | 0.0109 (18) | 0.018 (2) | 0.033 (2) | −0.0019 (16) | −0.0022 (16) | 0.0047 (17) |
O17 | 0.032 (2) | 0.021 (2) | 0.0155 (19) | −0.0117 (18) | 0.0034 (17) | 0.0006 (16) |
O18 | 0.036 (2) | 0.018 (2) | 0.0149 (19) | −0.0101 (18) | 0.0015 (17) | −0.0017 (16) |
O19 | 0.023 (2) | 0.016 (2) | 0.021 (2) | −0.0087 (17) | −0.0081 (16) | 0.0035 (15) |
O20 | 0.031 (2) | 0.0101 (19) | 0.031 (2) | −0.0083 (17) | 0.0058 (18) | −0.0035 (16) |
Mo1—O16 | 1.720 (4) | Ag2—O5 | 2.284 (5) |
Mo1—O10 | 1.726 (4) | Co1—O20 | 2.033 (4) |
Mo1—O3 | 1.791 (4) | Co1—O16iii | 2.072 (4) |
Mo1—O13 | 1.813 (4) | Co1—O5 | 2.076 (4) |
Mo2—O4 | 1.735 (4) | Co1—O10iv | 2.082 (4) |
Mo2—O15 | 1.740 (4) | Co1—O12 | 2.084 (4) |
Mo2—O5 | 1.771 (4) | Co1—O3 | 2.107 (4) |
Mo2—O19 | 1.796 (4) | Co2—O4 | 1.987 (4) |
Mo3—O9 | 1.736 (4) | Co2—O9v | 1.994 (4) |
Mo3—O11i | 1.751 (4) | Co2—O8vi | 2.033 (4) |
Mo3—O18 | 1.754 (4) | Co2—O11 | 2.050 (4) |
Mo3—O1 | 1.812 (4) | Co2—O1vi | 2.055 (4) |
Mo4—O17 | 1.739 (4) | Co2—O1 | 2.087 (4) |
Mo4—O6ii | 1.750 (4) | Co3—O6vii | 1.995 (4) |
Mo4—O20 | 1.757 (4) | Co3—O17iv | 2.014 (4) |
Mo4—O12ii | 1.807 (4) | Co3—O3 | 2.028 (4) |
Mo5—O14 | 1.705 (4) | Co3—O13i | 2.037 (4) |
Mo5—O7 | 1.757 (4) | Co3—O12 | 2.068 (4) |
Mo5—O8 | 1.758 (4) | Co3—O2 | 2.080 (4) |
Mo5—O2 | 1.828 (4) | Co4—O18vi | 1.957 (4) |
Ag1—O14iii | 2.237 (5) | Co4—O15vii | 1.970 (4) |
Ag1—O19i | 2.455 (4) | Co4—O13 | 1.994 (4) |
Ag1—O8 | 2.484 (4) | Co4—O7 | 1.996 (4) |
Ag2—O14iii | 2.210 (5) | Co4—O19 | 2.015 (4) |
Ag2—O19i | 2.225 (5) | Co4—O2ii | 2.056 (4) |
O16—Mo1—O10 | 111.2 (2) | O5—Co1—O3 | 87.85 (15) |
O16—Mo1—O3 | 106.92 (18) | O10iv—Co1—O3 | 96.81 (15) |
O10—Mo1—O3 | 106.34 (18) | O12—Co1—O3 | 77.15 (15) |
O16—Mo1—O13 | 106.10 (18) | O4—Co2—O9v | 90.75 (17) |
O10—Mo1—O13 | 107.77 (18) | O4—Co2—O8vi | 176.36 (17) |
O3—Mo1—O13 | 118.55 (17) | O9v—Co2—O8vi | 88.98 (17) |
O4—Mo2—O15 | 108.65 (19) | O4—Co2—O11 | 90.57 (16) |
O4—Mo2—O5 | 107.77 (18) | O9v—Co2—O11 | 89.95 (17) |
O15—Mo2—O5 | 109.23 (18) | O8vi—Co2—O11 | 93.06 (16) |
O4—Mo2—O19 | 107.54 (19) | O4—Co2—O1vi | 91.49 (16) |
O15—Mo2—O19 | 110.94 (19) | O9v—Co2—O1vi | 177.73 (16) |
O5—Mo2—O19 | 112.58 (18) | O8vi—Co2—O1vi | 88.76 (16) |
O9—Mo3—O11i | 109.69 (19) | O11—Co2—O1vi | 90.41 (16) |
O9—Mo3—O18 | 107.9 (2) | O4—Co2—O1 | 87.19 (16) |
O11i—Mo3—O18 | 108.25 (19) | O9v—Co2—O1 | 97.01 (16) |
O9—Mo3—O1 | 109.13 (18) | O8vi—Co2—O1 | 89.24 (15) |
O11i—Mo3—O1 | 111.73 (18) | O11—Co2—O1 | 172.71 (16) |
O18—Mo3—O1 | 110.08 (18) | O1vi—Co2—O1 | 82.72 (16) |
O17—Mo4—O6ii | 112.9 (2) | O6vii—Co3—O17iv | 82.08 (17) |
O17—Mo4—O20 | 107.5 (2) | O6vii—Co3—O3 | 99.95 (16) |
O6ii—Mo4—O20 | 109.6 (2) | O17iv—Co3—O3 | 92.94 (16) |
O17—Mo4—O12ii | 107.04 (18) | O6vii—Co3—O13i | 93.72 (16) |
O6ii—Mo4—O12ii | 107.18 (18) | O17iv—Co3—O13i | 97.00 (16) |
O20—Mo4—O12ii | 112.78 (18) | O3—Co3—O13i | 164.09 (15) |
O14—Mo5—O7 | 108.7 (2) | O6vii—Co3—O12 | 177.23 (16) |
O14—Mo5—O8 | 108.4 (2) | O17iv—Co3—O12 | 95.29 (16) |
O7—Mo5—O8 | 109.1 (2) | O3—Co3—O12 | 79.28 (14) |
O14—Mo5—O2 | 110.1 (2) | O13i—Co3—O12 | 87.43 (14) |
O7—Mo5—O2 | 112.59 (18) | O6vii—Co3—O2 | 92.31 (16) |
O8—Mo5—O2 | 107.84 (18) | O17iv—Co3—O2 | 173.71 (17) |
O14iii—Ag1—O19i | 98.42 (17) | O3—Co3—O2 | 90.81 (15) |
O14iii—Ag1—O8 | 140.69 (19) | O13i—Co3—O2 | 80.47 (15) |
O19i—Ag1—O8 | 120.42 (15) | O12—Co3—O2 | 90.37 (15) |
O14iii—Ag2—O19i | 106.6 (2) | O18vi—Co4—O15vii | 92.13 (18) |
O14iii—Ag2—O5 | 99.1 (2) | O18vi—Co4—O13 | 173.62 (17) |
O19i—Ag2—O5 | 138.3 (5) | O15vii—Co4—O13 | 90.93 (16) |
O20—Co1—O16iii | 92.15 (17) | O18vi—Co4—O7 | 94.80 (17) |
O20—Co1—O5 | 88.35 (16) | O15vii—Co4—O7 | 91.14 (18) |
O16iii—Co1—O5 | 95.76 (16) | O13—Co4—O7 | 90.73 (16) |
O20—Co1—O10iv | 92.55 (16) | O18vi—Co4—O19 | 86.79 (17) |
O16iii—Co1—O10iv | 79.59 (16) | O15vii—Co4—O19 | 177.71 (17) |
O5—Co1—O10iv | 175.29 (16) | O13—Co4—O19 | 89.94 (15) |
O20—Co1—O12 | 163.71 (16) | O7—Co4—O19 | 90.96 (18) |
O16iii—Co1—O12 | 104.13 (16) | O18vi—Co4—O2ii | 92.52 (16) |
O5—Co1—O12 | 90.12 (15) | O15vii—Co4—O2ii | 86.18 (16) |
O10iv—Co1—O12 | 90.31 (15) | O13—Co4—O2ii | 82.09 (15) |
O20—Co1—O3 | 86.59 (16) | O7—Co4—O2ii | 172.29 (17) |
O16iii—Co1—O3 | 176.14 (16) | O19—Co4—O2ii | 91.85 (16) |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z; (v) −x+2, −y+1, −z+1; (vi) −x+1, −y+1, −z+1; (vii) x−1, y, z. |
Acknowledgements
Les auteurs remercient le Ministére de l'Enseignement Supérieur, de la Recherche Scientifique et de la technologie de la Tunisie pour le financement du laboratoire LMC (code LR01ES11).
Références
Brandenburg, K. & Putz, H. (2001). DIAMOND. Crystal Impact GbR, Bonn, Allemagne. Google Scholar
Brik, M. G. & Avram, C. N. (2011). J. Lumin. 131, 2642–2645. CrossRef CAS Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Engel, J. M., Ahsbahs, H., Fuess, H. & Ehrenberg, H. (2009). Acta Cryst. B65, 29–35. Web of Science CrossRef IUCr Journals Google Scholar
Ennajeh, I., Zid, M. F. & Driss, A. (2013). Acta Cryst. E69, i54–i55. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feng, P., Bu, X. & Stucky, G. D. (1997). J. Solid State Chem. 129, 328–333. CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Allemagne. Google Scholar
Hermanowicz, K., Mączka, M., Wołcyrz, M., Tomaszewski, P. E., Paściak, M. & Hanuza, J. (2006). J. Solid State Chem. 179, 685–695. Web of Science CrossRef CAS Google Scholar
Huyghe, M., Lee, M.-R., Quarton, M. & Robert, F. (1991). Acta Cryst. C47, 244–246. CrossRef CAS IUCr Journals Google Scholar
Ivanov, K., Krustev, S. & Litcheva, P. (1998). J. Alloys Compd, 279, 132–135. CrossRef CAS Google Scholar
Judeinstein, P., Titman, J., Stamm, M. & Schmidt, H. (1994). Chem. Mater. 6, 127–134. CrossRef CAS Web of Science Google Scholar
Lii, K.-H. & Ye, J. (1997). J. Solid State Chem. 131, 131–137. CrossRef CAS Web of Science Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
Méndez-Blas, A., Rico, M., Volkov, V., Cascales, C., Zaldo, C., Coya, C., Kling, A. & Alves, L. C. (2004). J. Phys. Condens. Matter, 16, 2139–2160. Google Scholar
Muessig, E., Bramnik, K. G. & Ehrenberg, H. (2003). Acta Cryst. B59, 611–616. Web of Science CrossRef CAS IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sanz, F., Parada, C., Rojo, J. M., Ruiz-Valero, C. & Saez-Puche, R. (1999). J. Solid State Chem. 145, 604–611. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsyrenova, G. D., Solodovnikov, S. F., Khaikina, E. G., Khobrakova, E. T., Bazarova, Zh. G. & Solodovnikova, Z. A. (2004). J. Solid State Chem. 177, 2158–2167. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.