metal-organic compounds
κ2O,O′)oxido(2-{[(2-oxidoethyl)imino]methyl}phenolato-κ3O,N,O′)vanadium(V)
of (2-formylphenolato-aNational Centre for Catalysis Research, Chemistry Department, Indian Institute of Technology-Madras, Chennai 600 032, India, bNew Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan, and cSchool of Science and Health, University of Western, Sydney, Penrith, NSW 275, Australia
*Correspondence e-mail: selvam@iitm.ac.in
In the unsymmetrical title vanadyl complex, [V(C9H9NO2)(C7H5O2)O], one of the ligands (2-formylphenol) is disordered over two sets of sites, with an occupancy ratio of 0.55 (2):0.45 (2). The metal atom is hexacoordinated, with a distorted octahedral geometry. The vanadyl O atom (which subtends the shortest V—O bond) occupies one of the apical positions and the remaining axial bond (the longest in the polyhedron) is provided by the (disordered) formyl O atoms. The basal plane is defined by the two phenoxide O atoms, the iminoalcoholic O and the imino N atom. The planes of the two benzene rings are almost perpendicular to each other, subtending an interplanar angle of 84.1 (2)° between the major parts. The features weak C—H⋯O and C—H⋯π interactions, forming a lateral arrangement of adjacent molecules.
Keywords: crystal structure; vanadyl complex; catalyst; hydrogen bonding; C—H⋯π interactions.
CCDC reference: 1057002
1. Related literature
For general background to catalysis, see: Forzatti et al. (1987); Harding et al. (1994); Xia et al. (2012); Salavati-Niasari et al. (2004). For C—H oxidation reactions, see: Grivani et al. (2013); Maurya et al. (2011); Talsi et al. (1993); Zhang et al. (2005).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/7.
Supporting information
CCDC reference: 1057002
https://doi.org/10.1107/S2056989015006477/bg2547sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015006477/bg2547Isup2.hkl
Vanadyl complexes are good catalysts for oxidation of organic compounds as they have the ability to transfer an oxygen atom for epoxidation and C—H oxidation reactions by hydrogen peroxide and tertiary butyl hydroperoxide. In the presence of
they are readily converted into oxoperoxovanadium(V) complexes or alkylhydroperoxideVanadium(V) complex.The title complex was synthesized by the reaction of Vanadylsulphate ( 4.52g, 0.025mol) in 20ml of methanol with 2-formylphenol ( 5.24ml, 0.05mol) in 20ml of methanol and the mixture was refluxed for 1 hr. To the above mixture, 10ml of methanol containing 2-aminoethanol (1.5ml, 0.025mol) was added and the reflux was continued for 6 hr. The resulting dark brown crystalline solid was filtered, washed quickly with cold methanol and recrystallized from methanol to get pure blackish brown crystals.
All the hydrogen atoms in the molecule were identified from the difference
further idealized and treated as riding with a distance d(C—H)=0.93Å (for aromatic C—H) and d(C—H)=0.97 for (CH2)respectively. In all cases Uiso(H)=-1.2Ueq.The 2-formylphenyl moeity is disordered over two sites, with site occupancies 0.55:0.452 (2). C—C and C—O bond distances in the disordered moieties were restrained using similarity restraints (SAME command in SHELXL2014), while continuity restraints were applied to the anisotropic displacement parameters Uij for all atoms (RIGU command in SHELXL2014).
Crystal data, data collection and structure
details for the title compound C16H14NO5V (I) are summarized in Table 1, while bond distances are summarized in Table 2. An ORTEP diagram of the molecule with 30% probability displacement factors is shown in Figure 1.The molecule consists of a vanadyl moiety with (O,O') 2-formylphenol and (O,N,O') ((2-hydroxyethylimino)methyl)phenol ligands bound to vanadium and defining a distorted octahedral geometry around the cation. The (2-formylphenol) group is disordered over two sites with occupancies of 55:45 (2). The basal plane of the (distorted) vanadium octahedral environment is defined by phenoxide oxygens O1 (C1—C6) and O3 (C11—C16), the imino N1 and the iminoalcoholic O2. The vanadyl oxygen O5 (which subtends the shortest V—O bond, see Table 2) occupies one of the apical positions; this axial oxygen atom is suitable for the formation of a cyclic V—O—O intermediate which is an important step in the mechanism of peroxidative oxidation of organic compounds. The remaining axial bond is provided by O4 from the formyl group belonging to the phenyl ring C11—C16, and which displays the longest V—O distance in the molecule. The planes of the two phenyl rings are almost perpendicular to each other, subtending an interplanar angle of 84.1 (2)ο. between major parts.
The π contacts presented in Table 3.
is stabilized by some weak C—H···O and C—H···Vanadyl complexes are good catalysts for oxidation of organic compounds as they have the ability to transfer an oxygen atom for epoxidation and C—H oxidation reactions by hydrogen peroxide and tertiary butyl hydroperoxide. In the presence of
they are readily converted into oxoperoxovanadium(V) complexes or alkylhydroperoxideVanadium(V) complex.Crystal data, data collection and structure
details for the title compound C16H14NO5V (I) are summarized in Table 1, while bond distances are summarized in Table 2. An ORTEP diagram of the molecule with 30% probability displacement factors is shown in Figure 1.The molecule consists of a vanadyl moiety with (O,O') 2-formylphenol and (O,N,O') ((2-hydroxyethylimino)methyl)phenol ligands bound to vanadium and defining a distorted octahedral geometry around the cation. The (2-formylphenol) group is disordered over two sites with occupancies of 55:45 (2). The basal plane of the (distorted) vanadium octahedral environment is defined by phenoxide oxygens O1 (C1—C6) and O3 (C11—C16), the imino N1 and the iminoalcoholic O2. The vanadyl oxygen O5 (which subtends the shortest V—O bond, see Table 2) occupies one of the apical positions; this axial oxygen atom is suitable for the formation of a cyclic V—O—O intermediate which is an important step in the mechanism of peroxidative oxidation of organic compounds. The remaining axial bond is provided by O4 from the formyl group belonging to the phenyl ring C11—C16, and which displays the longest V—O distance in the molecule. The planes of the two phenyl rings are almost perpendicular to each other, subtending an interplanar angle of 84.1 (2)ο. between major parts.
The π contacts presented in Table 3.
is stabilized by some weak C—H···O and C—H···For general background to catalysis, see: Forzatti et al. (1987); Harding et al. (1994); Xia et al. (2012); Salavati-Niasari et al. (2004). For C—H oxidation reactions, see: Grivani et al. (2013); Maurya et al. (2011); Talsi et al. (1993); Zhang et al. (2005).
The title complex was synthesized by the reaction of Vanadylsulphate ( 4.52g, 0.025mol) in 20ml of methanol with 2-formylphenol ( 5.24ml, 0.05mol) in 20ml of methanol and the mixture was refluxed for 1 hr. To the above mixture, 10ml of methanol containing 2-aminoethanol (1.5ml, 0.025mol) was added and the reflux was continued for 6 hr. The resulting dark brown crystalline solid was filtered, washed quickly with cold methanol and recrystallized from methanol to get pure blackish brown crystals.
detailsAll the hydrogen atoms in the molecule were identified from the difference
further idealized and treated as riding with a distance d(C—H)=0.93Å (for aromatic C—H) and d(C—H)=0.97 for (CH2)respectively. In all cases Uiso(H)=-1.2Ueq.The 2-formylphenyl moeity is disordered over two sites, with site occupancies 0.55:0.452 (2). C—C and C—O bond distances in the disordered moieties were restrained using similarity restraints (SAME command in SHELXL2014), while continuity restraints were applied to the anisotropic displacement parameters Uij for all atoms (RIGU command in SHELXL2014).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).[V(C9H9NO2)(C7H5O2)O] | F(000) = 720 |
Mr = 351.22 | Dx = 1.567 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6915 (2) Å | Cell parameters from 7573 reflections |
b = 7.6542 (4) Å | θ = 2.8–29.9° |
c = 29.1847 (9) Å | µ = 0.69 mm−1 |
β = 95.126 (3)° | T = 293 K |
V = 1488.81 (10) Å3 | Blocks, black |
Z = 4 | 0.25 × 0.25 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 2918 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.025 |
ω and φ scan | θmax = 27.0°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −8→8 |
Tmin = 0.846, Tmax = 0.880 | k = −9→9 |
18824 measured reflections | l = −37→37 |
3249 independent reflections |
Refinement on F2 | 143 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0298P)2 + 1.478P] where P = (Fo2 + 2Fc2)/3 |
S = 1.22 | (Δ/σ)max = 0.001 |
3249 reflections | Δρmax = 0.29 e Å−3 |
290 parameters | Δρmin = −0.35 e Å−3 |
[V(C9H9NO2)(C7H5O2)O] | V = 1488.81 (10) Å3 |
Mr = 351.22 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.6915 (2) Å | µ = 0.69 mm−1 |
b = 7.6542 (4) Å | T = 293 K |
c = 29.1847 (9) Å | 0.25 × 0.25 × 0.20 mm |
β = 95.126 (3)° |
Bruker Kappa APEXII CCD diffractometer | 3249 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2918 reflections with I > 2σ(I) |
Tmin = 0.846, Tmax = 0.880 | Rint = 0.025 |
18824 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 143 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.22 | Δρmax = 0.29 e Å−3 |
3249 reflections | Δρmin = −0.35 e Å−3 |
290 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
V1 | 0.26635 (5) | 0.25635 (6) | 0.12647 (2) | 0.02941 (13) | |
N1 | 0.5270 (3) | 0.2221 (3) | 0.17101 (7) | 0.0309 (4) | |
O1 | 0.1761 (2) | 0.3678 (2) | 0.17886 (5) | 0.0335 (4) | |
O2 | 0.4526 (3) | 0.2057 (3) | 0.08602 (6) | 0.0441 (5) | |
O5 | 0.1870 (3) | 0.0660 (3) | 0.13678 (7) | 0.0430 (4) | |
C1 | 0.1947 (3) | 0.3159 (3) | 0.22234 (8) | 0.0283 (5) | |
C2 | 0.0450 (4) | 0.3559 (3) | 0.25122 (9) | 0.0353 (5) | |
H2 | −0.0677 | 0.4184 | 0.2398 | 0.042* | |
C3 | 0.0638 (4) | 0.3033 (4) | 0.29651 (9) | 0.0430 (6) | |
H3 | −0.0391 | 0.3274 | 0.3150 | 0.052* | |
C4 | 0.2328 (5) | 0.2150 (4) | 0.31514 (9) | 0.0450 (7) | |
H4 | 0.2430 | 0.1793 | 0.3457 | 0.054* | |
C5 | 0.3843 (4) | 0.1810 (4) | 0.28796 (9) | 0.0392 (6) | |
H5 | 0.5002 | 0.1259 | 0.3006 | 0.047* | |
C6 | 0.3684 (3) | 0.2278 (3) | 0.24135 (8) | 0.0315 (5) | |
C7 | 0.5346 (3) | 0.1987 (3) | 0.21439 (9) | 0.0334 (5) | |
H7 | 0.6550 | 0.1606 | 0.2295 | 0.040* | |
C8 | 0.7059 (4) | 0.1994 (4) | 0.14621 (10) | 0.0395 (6) | |
H8A | 0.8031 | 0.1246 | 0.1633 | 0.047* | |
H8B | 0.7682 | 0.3111 | 0.1409 | 0.047* | |
C9 | 0.6286 (4) | 0.1157 (4) | 0.10163 (10) | 0.0438 (6) | |
H9A | 0.7273 | 0.1248 | 0.0793 | 0.053* | |
H9B | 0.5998 | −0.0069 | 0.1063 | 0.053* | |
O3 | 0.0652 (12) | 0.3279 (8) | 0.0824 (4) | 0.0280 (19) | 0.55 (2) |
O4 | 0.3721 (14) | 0.5368 (8) | 0.1196 (5) | 0.035 (2) | 0.55 (2) |
C10 | 0.2794 (14) | 0.6543 (7) | 0.0990 (4) | 0.0368 (19) | 0.55 (2) |
H10 | 0.3396 | 0.7639 | 0.1000 | 0.044* | 0.55 (2) |
C11 | 0.0863 (13) | 0.6404 (7) | 0.0732 (3) | 0.0310 (16) | 0.55 (2) |
C12 | 0.0013 (15) | 0.7914 (8) | 0.0525 (3) | 0.043 (2) | 0.55 (2) |
H12 | 0.0660 | 0.8983 | 0.0572 | 0.052* | 0.55 (2) |
C13 | −0.1765 (14) | 0.7829 (11) | 0.0252 (3) | 0.044 (2) | 0.55 (2) |
H13 | −0.2320 | 0.8833 | 0.0114 | 0.053* | 0.55 (2) |
C14 | −0.2714 (11) | 0.6253 (12) | 0.0186 (3) | 0.0386 (18) | 0.55 (2) |
H14 | −0.3922 | 0.6200 | 0.0002 | 0.046* | 0.55 (2) |
C15 | −0.1924 (9) | 0.4741 (11) | 0.0386 (3) | 0.0338 (17) | 0.55 (2) |
H15 | −0.2611 | 0.3690 | 0.0340 | 0.041* | 0.55 (2) |
C16 | −0.0087 (11) | 0.4785 (8) | 0.0657 (4) | 0.0262 (16) | 0.55 (2) |
O3' | 0.0547 (14) | 0.3519 (9) | 0.0891 (5) | 0.028 (2) | 0.45 (2) |
O4' | 0.4058 (16) | 0.5227 (10) | 0.1170 (6) | 0.039 (3) | 0.45 (2) |
C10' | 0.3244 (16) | 0.6488 (8) | 0.0978 (5) | 0.041 (3) | 0.45 (2) |
H10' | 0.3946 | 0.7538 | 0.1001 | 0.050* | 0.45 (2) |
C11' | 0.1309 (15) | 0.6516 (8) | 0.0720 (5) | 0.037 (2) | 0.45 (2) |
C12' | 0.0638 (18) | 0.8090 (8) | 0.0514 (4) | 0.043 (2) | 0.45 (2) |
H12' | 0.1444 | 0.9080 | 0.0547 | 0.052* | 0.45 (2) |
C13' | −0.1199 (18) | 0.8183 (11) | 0.0266 (4) | 0.045 (2) | 0.45 (2) |
H13' | −0.1619 | 0.9218 | 0.0121 | 0.054* | 0.45 (2) |
C14' | −0.2409 (14) | 0.6738 (14) | 0.0234 (4) | 0.043 (2) | 0.45 (2) |
H14' | −0.3661 | 0.6809 | 0.0069 | 0.052* | 0.45 (2) |
C15' | −0.1817 (13) | 0.5178 (13) | 0.0441 (4) | 0.039 (2) | 0.45 (2) |
H15' | −0.2659 | 0.4211 | 0.0410 | 0.047* | 0.45 (2) |
C16' | 0.0050 (13) | 0.5050 (10) | 0.0697 (5) | 0.031 (2) | 0.45 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.0230 (2) | 0.0370 (2) | 0.0279 (2) | −0.00340 (17) | 0.00052 (14) | 0.00299 (17) |
N1 | 0.0210 (9) | 0.0339 (11) | 0.0381 (11) | 0.0003 (8) | 0.0031 (8) | 0.0045 (9) |
O1 | 0.0282 (8) | 0.0432 (10) | 0.0289 (8) | 0.0098 (7) | 0.0016 (6) | 0.0045 (7) |
O2 | 0.0359 (9) | 0.0629 (13) | 0.0347 (9) | 0.0014 (9) | 0.0096 (8) | −0.0020 (9) |
O5 | 0.0384 (10) | 0.0422 (11) | 0.0479 (11) | −0.0069 (8) | 0.0020 (8) | 0.0045 (9) |
C1 | 0.0277 (11) | 0.0292 (11) | 0.0275 (11) | −0.0026 (9) | −0.0002 (9) | −0.0030 (9) |
C2 | 0.0324 (13) | 0.0342 (13) | 0.0398 (13) | 0.0035 (10) | 0.0056 (10) | −0.0041 (11) |
C3 | 0.0520 (16) | 0.0416 (15) | 0.0376 (14) | −0.0031 (13) | 0.0153 (12) | −0.0097 (12) |
C4 | 0.0621 (18) | 0.0452 (16) | 0.0273 (12) | −0.0051 (14) | 0.0025 (12) | −0.0001 (11) |
C5 | 0.0418 (14) | 0.0405 (14) | 0.0336 (13) | 0.0004 (12) | −0.0058 (11) | 0.0037 (11) |
C6 | 0.0299 (11) | 0.0329 (13) | 0.0306 (12) | −0.0031 (10) | −0.0024 (9) | 0.0016 (10) |
C7 | 0.0226 (11) | 0.0355 (13) | 0.0407 (13) | 0.0017 (9) | −0.0057 (9) | 0.0059 (11) |
C8 | 0.0230 (11) | 0.0460 (15) | 0.0508 (16) | 0.0018 (11) | 0.0102 (10) | 0.0048 (12) |
C9 | 0.0386 (14) | 0.0441 (15) | 0.0513 (16) | 0.0002 (12) | 0.0186 (12) | −0.0007 (13) |
O3 | 0.030 (3) | 0.036 (2) | 0.017 (3) | −0.0034 (18) | −0.002 (2) | −0.002 (2) |
O4 | 0.026 (3) | 0.040 (3) | 0.036 (3) | −0.007 (2) | −0.003 (3) | −0.002 (2) |
C10 | 0.034 (3) | 0.038 (3) | 0.037 (3) | −0.0057 (17) | −0.005 (3) | −0.004 (2) |
C11 | 0.031 (3) | 0.037 (2) | 0.024 (3) | −0.0048 (15) | 0.000 (2) | −0.0031 (16) |
C12 | 0.042 (4) | 0.036 (3) | 0.048 (3) | −0.007 (2) | −0.013 (3) | 0.000 (2) |
C13 | 0.041 (4) | 0.038 (3) | 0.048 (3) | −0.004 (2) | −0.014 (3) | 0.000 (2) |
C14 | 0.040 (3) | 0.040 (3) | 0.033 (3) | −0.005 (2) | −0.012 (2) | 0.000 (2) |
C15 | 0.032 (2) | 0.039 (3) | 0.028 (3) | −0.0076 (19) | −0.0067 (19) | 0.001 (3) |
C16 | 0.028 (2) | 0.035 (2) | 0.015 (3) | −0.0042 (15) | 0.0015 (18) | −0.0029 (19) |
O3' | 0.026 (3) | 0.035 (3) | 0.022 (4) | −0.005 (2) | 0.001 (2) | −0.002 (3) |
O4' | 0.029 (4) | 0.048 (4) | 0.039 (4) | −0.009 (3) | 0.005 (3) | 0.003 (3) |
C10' | 0.037 (4) | 0.045 (4) | 0.041 (4) | −0.011 (2) | −0.001 (3) | 0.000 (3) |
C11' | 0.038 (3) | 0.039 (3) | 0.034 (4) | −0.008 (2) | 0.003 (3) | −0.002 (2) |
C12' | 0.048 (4) | 0.038 (3) | 0.042 (4) | −0.009 (2) | −0.005 (4) | −0.001 (3) |
C13' | 0.049 (4) | 0.039 (3) | 0.046 (4) | −0.008 (3) | −0.007 (3) | −0.004 (3) |
C14' | 0.040 (4) | 0.039 (3) | 0.048 (5) | −0.004 (3) | −0.013 (3) | −0.001 (3) |
C15' | 0.040 (3) | 0.038 (3) | 0.037 (4) | −0.003 (2) | −0.008 (3) | −0.004 (3) |
C16' | 0.034 (3) | 0.037 (3) | 0.020 (4) | −0.0031 (19) | 0.001 (2) | −0.001 (3) |
V1—O5 | 1.5886 (19) | O3—C16 | 1.330 (4) |
V1—O3 | 1.859 (3) | O4—C10 | 1.220 (4) |
V1—O2 | 1.8333 (18) | C10—C11 | 1.439 (5) |
V1—O1 | 1.8957 (17) | C10—H10 | 0.9300 |
V1—O3' | 1.859 (3) | C11—C12 | 1.402 (4) |
V1—N1 | 2.0966 (19) | C11—C16 | 1.401 (5) |
V1—O4' | 2.269 (4) | C12—C13 | 1.372 (6) |
V1—O4 | 2.275 (3) | C12—H12 | 0.9300 |
N1—C7 | 1.275 (3) | C13—C14 | 1.369 (7) |
N1—C8 | 1.464 (3) | C13—H13 | 0.9300 |
O1—C1 | 1.325 (3) | C14—C15 | 1.379 (5) |
O2—C9 | 1.404 (3) | C14—H14 | 0.9300 |
C1—C2 | 1.400 (3) | C15—C16 | 1.401 (4) |
C1—C6 | 1.413 (3) | C15—H15 | 0.9300 |
C2—C3 | 1.377 (4) | O3'—C16' | 1.330 (4) |
C2—H2 | 0.9300 | O4'—C10' | 1.220 (4) |
C3—C4 | 1.386 (4) | C10'—C11' | 1.439 (5) |
C3—H3 | 0.9300 | C10'—H10' | 0.9300 |
C4—C5 | 1.367 (4) | C11'—C12' | 1.402 (4) |
C4—H4 | 0.9300 | C11'—C16' | 1.401 (5) |
C5—C6 | 1.401 (3) | C12'—C13' | 1.372 (6) |
C5—H5 | 0.9300 | C12'—H12' | 0.9300 |
C6—C7 | 1.436 (3) | C13'—C14' | 1.369 (7) |
C7—H7 | 0.9300 | C13'—H13' | 0.9300 |
C8—C9 | 1.500 (4) | C14'—C15' | 1.380 (5) |
C8—H8A | 0.9700 | C14'—H14' | 0.9300 |
C8—H8B | 0.9700 | C15'—C16' | 1.402 (4) |
C9—H9A | 0.9700 | C15'—H15' | 0.9300 |
C9—H9B | 0.9700 | ||
O5—V1—O3 | 99.65 (14) | C9—C8—H8B | 110.9 |
O5—V1—O2 | 100.72 (10) | H8A—C8—H8B | 108.9 |
O3—V1—O2 | 96.2 (5) | O2—C9—C8 | 106.6 (2) |
O5—V1—O1 | 97.12 (9) | O2—C9—H9A | 110.4 |
O3—V1—O1 | 99.3 (5) | C8—C9—H9A | 110.4 |
O2—V1—O1 | 153.94 (8) | O2—C9—H9B | 110.4 |
O5—V1—O3' | 102.82 (18) | C8—C9—H9B | 110.4 |
O2—V1—O3' | 103.4 (6) | H9A—C9—H9B | 108.6 |
O1—V1—O3' | 90.9 (6) | C16—O3—V1 | 137.1 (4) |
O5—V1—N1 | 92.39 (9) | C10—O4—V1 | 126.2 (3) |
O3—V1—N1 | 167.5 (2) | O4—C10—C11 | 126.6 (3) |
O2—V1—N1 | 78.28 (8) | O4—C10—H10 | 116.7 |
O1—V1—N1 | 82.15 (7) | C11—C10—H10 | 116.7 |
O3'—V1—N1 | 164.0 (2) | C12—C11—C16 | 120.1 (4) |
O5—V1—O4' | 174.29 (18) | C12—C11—C10 | 118.4 (4) |
O2—V1—O4' | 78.5 (5) | C16—C11—C10 | 121.4 (3) |
O1—V1—O4' | 81.8 (5) | C13—C12—C11 | 120.5 (4) |
O3'—V1—O4' | 82.83 (15) | C13—C12—H12 | 119.7 |
N1—V1—O4' | 81.91 (16) | C11—C12—H12 | 119.7 |
O5—V1—O4 | 173.8 (4) | C12—C13—C14 | 119.4 (4) |
O3—V1—O4 | 82.66 (13) | C12—C13—H13 | 120.3 |
O2—V1—O4 | 84.7 (4) | C14—C13—H13 | 120.3 |
O1—V1—O4 | 76.8 (4) | C13—C14—C15 | 121.6 (4) |
N1—V1—O4 | 85.69 (13) | C13—C14—H14 | 119.2 |
C7—N1—C8 | 120.8 (2) | C15—C14—H14 | 119.2 |
C7—N1—V1 | 126.16 (16) | C14—C15—C16 | 120.1 (4) |
C8—N1—V1 | 112.34 (16) | C14—C15—H15 | 119.9 |
C1—O1—V1 | 128.93 (15) | C16—C15—H15 | 119.9 |
C9—O2—V1 | 119.57 (16) | O3—C16—C15 | 117.7 (4) |
O1—C1—C2 | 120.0 (2) | O3—C16—C11 | 124.1 (3) |
O1—C1—C6 | 121.5 (2) | C15—C16—C11 | 118.2 (3) |
C2—C1—C6 | 118.4 (2) | C16'—O3'—V1 | 138.1 (2) |
C3—C2—C1 | 120.4 (2) | C10'—O4'—V1 | 126.5 (3) |
C3—C2—H2 | 119.8 | O4'—C10'—C11' | 126.6 (3) |
C1—C2—H2 | 119.8 | O4'—C10'—H10' | 116.7 |
C2—C3—C4 | 121.3 (3) | C11'—C10'—H10' | 116.7 |
C2—C3—H3 | 119.3 | C12'—C11'—C16' | 120.0 (4) |
C4—C3—H3 | 119.3 | C12'—C11'—C10' | 118.4 (4) |
C5—C4—C3 | 119.1 (2) | C16'—C11'—C10' | 121.4 (3) |
C5—C4—H4 | 120.4 | C13'—C12'—C11' | 120.5 (4) |
C3—C4—H4 | 120.4 | C13'—C12'—H12' | 119.7 |
C4—C5—C6 | 121.2 (2) | C11'—C12'—H12' | 119.7 |
C4—C5—H5 | 119.4 | C12'—C13'—C14' | 119.4 (4) |
C6—C5—H5 | 119.4 | C12'—C13'—H13' | 120.3 |
C5—C6—C1 | 119.5 (2) | C14'—C13'—H13' | 120.3 |
C5—C6—C7 | 119.8 (2) | C13'—C14'—C15' | 121.6 (4) |
C1—C6—C7 | 120.6 (2) | C13'—C14'—H14' | 119.2 |
N1—C7—C6 | 123.9 (2) | C15'—C14'—H14' | 119.2 |
N1—C7—H7 | 118.0 | C14'—C15'—C16' | 120.1 (4) |
C6—C7—H7 | 118.0 | C14'—C15'—H15' | 119.9 |
N1—C8—C9 | 104.2 (2) | C16'—C15'—H15' | 119.9 |
N1—C8—H8A | 110.9 | O3'—C16'—C15' | 117.7 (4) |
C9—C8—H8A | 110.9 | O3'—C16'—C11' | 124.0 (3) |
N1—C8—H8B | 110.9 | C15'—C16'—C11' | 118.2 (3) |
O5—V1—O1—C1 | 46.7 (2) | O4—V1—O3—C16 | −16.3 (14) |
O3—V1—O1—C1 | 147.7 (2) | V1—O4—C10—C11 | −2.3 (18) |
O2—V1—O1—C1 | −86.3 (3) | O4—C10—C11—C12 | 178.8 (12) |
O3'—V1—O1—C1 | 149.7 (3) | O4—C10—C11—C16 | −6.3 (16) |
N1—V1—O1—C1 | −44.75 (19) | C16—C11—C12—C13 | 1.0 (14) |
O4'—V1—O1—C1 | −127.6 (2) | C10—C11—C12—C13 | 176.0 (8) |
O4—V1—O1—C1 | −132.1 (2) | C11—C12—C13—C14 | 0.4 (12) |
O5—V1—O2—C9 | −68.2 (2) | C12—C13—C14—C15 | −0.2 (12) |
O3—V1—O2—C9 | −169.3 (2) | C13—C14—C15—C16 | −1.3 (13) |
O1—V1—O2—C9 | 64.2 (3) | V1—O3—C16—C15 | −166.8 (12) |
O3'—V1—O2—C9 | −174.3 (3) | V1—O3—C16—C11 | 14 (2) |
N1—V1—O2—C9 | 22.07 (19) | C14—C15—C16—O3 | −177.1 (11) |
O4'—V1—O2—C9 | 106.1 (3) | C14—C15—C16—C11 | 2.5 (13) |
O4—V1—O2—C9 | 108.7 (2) | C12—C11—C16—O3 | 177.2 (12) |
V1—O1—C1—C2 | −147.23 (18) | C10—C11—C16—O3 | 2.3 (15) |
V1—O1—C1—C6 | 36.1 (3) | C12—C11—C16—C15 | −2.4 (13) |
O1—C1—C2—C3 | −179.7 (2) | C10—C11—C16—C15 | −177.2 (9) |
C6—C1—C2—C3 | −2.9 (4) | O5—V1—O3'—C16' | 174.4 (17) |
C1—C2—C3—C4 | 2.1 (4) | O2—V1—O3'—C16' | −81.1 (18) |
C2—C3—C4—C5 | 0.6 (4) | O1—V1—O3'—C16' | 76.9 (18) |
C3—C4—C5—C6 | −2.5 (4) | N1—V1—O3'—C16' | 13 (4) |
C4—C5—C6—C1 | 1.7 (4) | O4'—V1—O3'—C16' | −4.7 (17) |
C4—C5—C6—C7 | 176.7 (3) | V1—O4'—C10'—C11' | −8 (2) |
O1—C1—C6—C5 | 177.7 (2) | O4'—C10'—C11'—C12' | −178.7 (16) |
C2—C1—C6—C5 | 1.0 (4) | O4'—C10'—C11'—C16' | 6 (2) |
O1—C1—C6—C7 | 2.8 (4) | C16'—C11'—C12'—C13' | −4.1 (17) |
C2—C1—C6—C7 | −173.9 (2) | C10'—C11'—C12'—C13' | −179.8 (10) |
C8—N1—C7—C6 | 176.5 (2) | C11'—C12'—C13'—C14' | 2.4 (15) |
V1—N1—C7—C6 | −13.5 (4) | C12'—C13'—C14'—C15' | −0.8 (14) |
C5—C6—C7—N1 | 173.2 (2) | C13'—C14'—C15'—C16' | 1.0 (16) |
C1—C6—C7—N1 | −11.9 (4) | V1—O3'—C16'—C15' | −178.2 (15) |
C7—N1—C8—C9 | 141.9 (2) | V1—O3'—C16'—C11' | 4 (2) |
V1—N1—C8—C9 | −29.4 (2) | C14'—C15'—C16'—O3' | 179.8 (13) |
V1—O2—C9—C8 | −45.1 (3) | C14'—C15'—C16'—C11' | −2.6 (17) |
N1—C8—C9—O2 | 44.1 (3) | C12'—C11'—C16'—O3' | −178.5 (15) |
O5—V1—O3—C16 | 157.8 (14) | C10'—C11'—C16'—O3' | −2.9 (19) |
O2—V1—O3—C16 | −100.1 (14) | C12'—C11'—C16'—C15' | 4.1 (17) |
O1—V1—O3—C16 | 58.9 (15) | C10'—C11'—C16'—C15' | 179.7 (12) |
N1—V1—O3—C16 | −37 (3) |
Cg is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O5i | 0.93 | 2.56 | 3.352 (4) | 143 |
C5—H5···O4ii | 0.93 | 2.50 | 3.220 (13) | 134 |
C2—H2···Cgi | 0.93 | 2.84 | 3.615 (3) | 141 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
V1—O5 | 1.5886 (19) | V1—O3' | 1.859 (3) |
V1—O3 | 1.859 (3) | V1—N1 | 2.0966 (19) |
V1—O2 | 1.8333 (18) | V1—O4' | 2.269 (4) |
V1—O1 | 1.8957 (17) | V1—O4 | 2.275 (3) |
Cg is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O5i | 0.93 | 2.56 | 3.352 (4) | 143 |
C5—H5···O4ii | 0.93 | 2.50 | 3.220 (13) | 134 |
C2—H2···Cgi | 0.93 | 2.84 | 3.615 (3) | 141 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Department of Science and Technology (DST), Government of India, for funding the National Centre for Catalysis Research (NCCR), IIT-Madras. The authors also thank Dr Babu Varghese and Dr P. K. Sudhadevi Antharjanam, SAIF, IIT-Madras, for the X-ray data collection and technical assistance in the preparation of the manuscript.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Forzatti, P., Tronconi, E., Busca, G. & Tittarelli, P. (1987). Catal. Today, 1, 209–218. CrossRef CAS Google Scholar
Grivani, G., Delkhosh, S., Fejfarová, K., Dušek, M. & Khalaji, A. D. (2013). Inorg. Chem. Commun. 27, 82–87. Web of Science CSD CrossRef CAS Google Scholar
Harding, W., Birkeland, K. E. & Kung, H. H. (1994). Catal. Lett. 28, 1–7. CrossRef Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maurya, M. R., Kumar, A. & Pessoa, J. C. (2011). Coord. Chem. Rev. 255, 2315–2344. Web of Science CrossRef CAS Google Scholar
Salavati-Niasari, M., Elzami, M., Mansournia, M. R. & Hydarzadeh, S. (2004). J. Mol. Catal. A Chem. 221, 169–175. CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Talsi, E. P., Chinakov, V. D., Babenko, V. P. & Zamaraev, K. I. (1993). J. Mol. Catal. 81, 235–254. CrossRef CAS Web of Science Google Scholar
Xia, J.-B., Cormier, K. W. & Chen, C. (2012). Chem. Sci. 3, 2240–2245. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, W., Basak, K., Kosugi, Y., Hoshino, Y. & Yamamoto, H. (2005). Angew. Chem. Int. Ed. 44, 4389–4391. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.