metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2-formyl­phenolato-κ2O,O′)oxido(2-{[(2-oxidoeth­yl)imino]­meth­yl}phenolato-κ3O,N,O′)vanadium(V)

aNational Centre for Catalysis Research, Chemistry Department, Indian Institute of Technology-Madras, Chennai 600 032, India, bNew Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan, and cSchool of Science and Health, University of Western, Sydney, Penrith, NSW 275, Australia
*Correspondence e-mail: selvam@iitm.ac.in

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 5 January 2015; accepted 30 March 2015; online 9 April 2015)

In the unsymmetrical title vanadyl complex, [V(C9H9NO2)(C7H5O2)O], one of the ligands (2-formyl­phenol) is disordered over two sets of sites, with an occupancy ratio of 0.55 (2):0.45 (2). The metal atom is hexa­coordinated, with a distorted octa­hedral geometry. The vanadyl O atom (which subtends the shortest V—O bond) occupies one of the apical positions and the remaining axial bond (the longest in the polyhedron) is provided by the (disordered) formyl O atoms. The basal plane is defined by the two phenoxide O atoms, the imino­alcoholic O and the imino N atom. The planes of the two benzene rings are almost perpendicular to each other, subtending an inter­planar angle of 84.1 (2)° between the major parts. The crystal structure features weak C—H⋯O and C—H⋯π inter­actions, forming a lateral arrangement of adjacent molecules.

1. Related literature

For general background to catalysis, see: Forzatti et al. (1987[Forzatti, P., Tronconi, E., Busca, G. & Tittarelli, P. (1987). Catal. Today, 1, 209-218.]); Harding et al. (1994[Harding, W., Birkeland, K. E. & Kung, H. H. (1994). Catal. Lett. 28, 1-7.]); Xia et al. (2012[Xia, J.-B., Cormier, K. W. & Chen, C. (2012). Chem. Sci. 3, 2240-2245.]); Salavati-Niasari et al. (2004[Salavati-Niasari, M., Elzami, M., Mansournia, M. R. & Hydarzadeh, S. (2004). J. Mol. Catal. A Chem. 221, 169-175.]). For C—H oxidation reactions, see: Grivani et al. (2013[Grivani, G., Delkhosh, S., Fejfarová, K., Dušek, M. & Khalaji, A. D. (2013). Inorg. Chem. Commun. 27, 82-87.]); Maurya et al. (2011[Maurya, M. R., Kumar, A. & Pessoa, J. C. (2011). Coord. Chem. Rev. 255, 2315-2344.]); Talsi et al. (1993[Talsi, E. P., Chinakov, V. D., Babenko, V. P. & Zamaraev, K. I. (1993). J. Mol. Catal. 81, 235-254.]); Zhang et al. (2005[Zhang, W., Basak, K., Kosugi, Y., Hoshino, Y. & Yamamoto, H. (2005). Angew. Chem. Int. Ed. 44, 4389-4391.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [V(C9H9NO2)(C7H5O2)O]

  • Mr = 351.22

  • Monoclinic, P 21 /c

  • a = 6.6915 (2) Å

  • b = 7.6542 (4) Å

  • c = 29.1847 (9) Å

  • β = 95.126 (3)°

  • V = 1488.81 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.846, Tmax = 0.880

  • 18824 measured reflections

  • 3249 independent reflections

  • 2918 reflections with I > 2σ(I)

  • Rint = 0.025

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.102

  • S = 1.22

  • 3249 reflections

  • 290 parameters

  • 143 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

V1—O5 1.5886 (19)
V1—O3 1.859 (3)
V1—O2 1.8333 (18)
V1—O1 1.8957 (17)
V1—O3′ 1.859 (3)
V1—N1 2.0966 (19)
V1—O4′ 2.269 (4)
V1—O4 2.275 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5i 0.93 2.56 3.352 (4) 143
C5—H5⋯O4ii 0.93 2.50 3.220 (13) 134
C2—H2⋯Cgi 0.93 2.84 3.615 (3) 141
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL2014/7.

Supporting information


Introduction top

Vanadyl complexes are good catalysts for oxidation of organic compounds as they have the ability to transfer an oxygen atom for epoxidation and C—H oxidation reactions by hydrogen peroxide and tertiary butyl hydro­peroxide. In the presence of peroxides they are readily converted into oxoperoxovanadium(V) complexes or alkyl­hydro­peroxideVanadium(V) complex.

Experimental top

Synthesis and crystallization top

The title complex was synthesized by the reaction of Vanadylsulphate ( 4.52g, 0.025mol) in 20ml of methanol with 2-formyl­phenol ( 5.24ml, 0.05mol) in 20ml of methanol and the mixture was refluxed for 1 hr. To the above mixture, 10ml of methanol containing 2-amino­ethanol (1.5ml, 0.025mol) was added and the reflux was continued for 6 hr. The resulting dark brown crystalline solid was filtered, washed quickly with cold methanol and recrystallized from methanol to get pure blackish brown crystals.

Refinement top

All the hydrogen atoms in the molecule were identified from the difference electron density map, further idealized and treated as riding with a distance d(C—H)=0.93Å (for aromatic C—H) and d(C—H)=0.97 for (CH2)respectively. In all cases Uiso(H)=-1.2Ueq.

The 2-formyl­phenyl moeity is disordered over two sites, with site occupancies 0.55:0.452 (2). C—C and C—O bond distances in the disordered moieties were restrained using similarity restraints (SAME command in SHELXL2014), while continuity restraints were applied to the anisotropic displacement parameters Uij for all atoms (RIGU command in SHELXL2014).

Results and discussion top

Crystal data, data collection and structure refinement details for the title compound C16H14NO5V (I) are summarized in Table 1, while bond distances are summarized in Table 2. An ORTEP diagram of the molecule with 30% probability displacement factors is shown in Figure 1.

The molecule consists of a vanadyl moiety with (O,O') 2-formyl­phenol and (O,N,O') ((2-hy­droxy­ethyl­imino)­methyl)­phenol ligands bound to vanadium and defining a distorted o­cta­hedral geometry around the cation. The (2-formyl­phenol) group is disordered over two sites with occupancies of 55:45 (2). The basal plane of the (distorted) vanadium o­cta­hedral environment is defined by phenoxide oxygens O1 (C1—C6) and O3 (C11—C16), the imino N1 and the imino­alcoholic O2. The vanadyl oxygen O5 (which subtends the shortest V—O bond, see Table 2) occupies one of the apical positions; this axial oxygen atom is suitable for the formation of a cyclic V—O—O inter­mediate which is an important step in the mechanism of peroxidative oxidation of organic compounds. The remaining axial bond is provided by O4 from the formyl group belonging to the phenyl ring C11—C16, and which displays the longest V—O distance in the molecule. The planes of the two phenyl rings are almost perpendicular to each other, subtending an inter­planar angle of 84.1 (2)ο. between major parts.

The crystal structure is stabilized by some weak C—H···O and C—H···π contacts presented in Table 3.

Related literature top

For general background to catalysis, see: Forzatti et al. (1987); Harding et al. (1994); Xia et al. (2012); Salavati-Niasari et al. (2004). For C—H oxidation reactions, see: Grivani et al. (2013); Maurya et al. (2011); Talsi et al. (1993); Zhang et al. (2005).

Structure description top

Vanadyl complexes are good catalysts for oxidation of organic compounds as they have the ability to transfer an oxygen atom for epoxidation and C—H oxidation reactions by hydrogen peroxide and tertiary butyl hydro­peroxide. In the presence of peroxides they are readily converted into oxoperoxovanadium(V) complexes or alkyl­hydro­peroxideVanadium(V) complex.

Crystal data, data collection and structure refinement details for the title compound C16H14NO5V (I) are summarized in Table 1, while bond distances are summarized in Table 2. An ORTEP diagram of the molecule with 30% probability displacement factors is shown in Figure 1.

The molecule consists of a vanadyl moiety with (O,O') 2-formyl­phenol and (O,N,O') ((2-hy­droxy­ethyl­imino)­methyl)­phenol ligands bound to vanadium and defining a distorted o­cta­hedral geometry around the cation. The (2-formyl­phenol) group is disordered over two sites with occupancies of 55:45 (2). The basal plane of the (distorted) vanadium o­cta­hedral environment is defined by phenoxide oxygens O1 (C1—C6) and O3 (C11—C16), the imino N1 and the imino­alcoholic O2. The vanadyl oxygen O5 (which subtends the shortest V—O bond, see Table 2) occupies one of the apical positions; this axial oxygen atom is suitable for the formation of a cyclic V—O—O inter­mediate which is an important step in the mechanism of peroxidative oxidation of organic compounds. The remaining axial bond is provided by O4 from the formyl group belonging to the phenyl ring C11—C16, and which displays the longest V—O distance in the molecule. The planes of the two phenyl rings are almost perpendicular to each other, subtending an inter­planar angle of 84.1 (2)ο. between major parts.

The crystal structure is stabilized by some weak C—H···O and C—H···π contacts presented in Table 3.

For general background to catalysis, see: Forzatti et al. (1987); Harding et al. (1994); Xia et al. (2012); Salavati-Niasari et al. (2004). For C—H oxidation reactions, see: Grivani et al. (2013); Maurya et al. (2011); Talsi et al. (1993); Zhang et al. (2005).

Synthesis and crystallization top

The title complex was synthesized by the reaction of Vanadylsulphate ( 4.52g, 0.025mol) in 20ml of methanol with 2-formyl­phenol ( 5.24ml, 0.05mol) in 20ml of methanol and the mixture was refluxed for 1 hr. To the above mixture, 10ml of methanol containing 2-amino­ethanol (1.5ml, 0.025mol) was added and the reflux was continued for 6 hr. The resulting dark brown crystalline solid was filtered, washed quickly with cold methanol and recrystallized from methanol to get pure blackish brown crystals.

Refinement details top

All the hydrogen atoms in the molecule were identified from the difference electron density map, further idealized and treated as riding with a distance d(C—H)=0.93Å (for aromatic C—H) and d(C—H)=0.97 for (CH2)respectively. In all cases Uiso(H)=-1.2Ueq.

The 2-formyl­phenyl moeity is disordered over two sites, with site occupancies 0.55:0.452 (2). C—C and C—O bond distances in the disordered moieties were restrained using similarity restraints (SAME command in SHELXL2014), while continuity restraints were applied to the anisotropic displacement parameters Uij for all atoms (RIGU command in SHELXL2014).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at 30% probability level. (The minor component of the disordered 2-formylphenol moiety is not shown).
(2-formylphenolato-κ2O,O')oxido(2-{[(2-oxidoethyl)imino]methyl}phenolato-κ3O,N,O')vanadium(V) top
Crystal data top
[V(C9H9NO2)(C7H5O2)O]F(000) = 720
Mr = 351.22Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6915 (2) ÅCell parameters from 7573 reflections
b = 7.6542 (4) Åθ = 2.8–29.9°
c = 29.1847 (9) ŵ = 0.69 mm1
β = 95.126 (3)°T = 293 K
V = 1488.81 (10) Å3Blocks, black
Z = 40.25 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2918 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
ω and φ scanθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.846, Tmax = 0.880k = 99
18824 measured reflectionsl = 3737
3249 independent reflections
Refinement top
Refinement on F2143 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0298P)2 + 1.478P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
3249 reflectionsΔρmax = 0.29 e Å3
290 parametersΔρmin = 0.35 e Å3
Crystal data top
[V(C9H9NO2)(C7H5O2)O]V = 1488.81 (10) Å3
Mr = 351.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6915 (2) ŵ = 0.69 mm1
b = 7.6542 (4) ÅT = 293 K
c = 29.1847 (9) Å0.25 × 0.25 × 0.20 mm
β = 95.126 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3249 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2918 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.880Rint = 0.025
18824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044143 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.22Δρmax = 0.29 e Å3
3249 reflectionsΔρmin = 0.35 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.26635 (5)0.25635 (6)0.12647 (2)0.02941 (13)
N10.5270 (3)0.2221 (3)0.17101 (7)0.0309 (4)
O10.1761 (2)0.3678 (2)0.17886 (5)0.0335 (4)
O20.4526 (3)0.2057 (3)0.08602 (6)0.0441 (5)
O50.1870 (3)0.0660 (3)0.13678 (7)0.0430 (4)
C10.1947 (3)0.3159 (3)0.22234 (8)0.0283 (5)
C20.0450 (4)0.3559 (3)0.25122 (9)0.0353 (5)
H20.06770.41840.23980.042*
C30.0638 (4)0.3033 (4)0.29651 (9)0.0430 (6)
H30.03910.32740.31500.052*
C40.2328 (5)0.2150 (4)0.31514 (9)0.0450 (7)
H40.24300.17930.34570.054*
C50.3843 (4)0.1810 (4)0.28796 (9)0.0392 (6)
H50.50020.12590.30060.047*
C60.3684 (3)0.2278 (3)0.24135 (8)0.0315 (5)
C70.5346 (3)0.1987 (3)0.21439 (9)0.0334 (5)
H70.65500.16060.22950.040*
C80.7059 (4)0.1994 (4)0.14621 (10)0.0395 (6)
H8A0.80310.12460.16330.047*
H8B0.76820.31110.14090.047*
C90.6286 (4)0.1157 (4)0.10163 (10)0.0438 (6)
H9A0.72730.12480.07930.053*
H9B0.59980.00690.10630.053*
O30.0652 (12)0.3279 (8)0.0824 (4)0.0280 (19)0.55 (2)
O40.3721 (14)0.5368 (8)0.1196 (5)0.035 (2)0.55 (2)
C100.2794 (14)0.6543 (7)0.0990 (4)0.0368 (19)0.55 (2)
H100.33960.76390.10000.044*0.55 (2)
C110.0863 (13)0.6404 (7)0.0732 (3)0.0310 (16)0.55 (2)
C120.0013 (15)0.7914 (8)0.0525 (3)0.043 (2)0.55 (2)
H120.06600.89830.05720.052*0.55 (2)
C130.1765 (14)0.7829 (11)0.0252 (3)0.044 (2)0.55 (2)
H130.23200.88330.01140.053*0.55 (2)
C140.2714 (11)0.6253 (12)0.0186 (3)0.0386 (18)0.55 (2)
H140.39220.62000.00020.046*0.55 (2)
C150.1924 (9)0.4741 (11)0.0386 (3)0.0338 (17)0.55 (2)
H150.26110.36900.03400.041*0.55 (2)
C160.0087 (11)0.4785 (8)0.0657 (4)0.0262 (16)0.55 (2)
O3'0.0547 (14)0.3519 (9)0.0891 (5)0.028 (2)0.45 (2)
O4'0.4058 (16)0.5227 (10)0.1170 (6)0.039 (3)0.45 (2)
C10'0.3244 (16)0.6488 (8)0.0978 (5)0.041 (3)0.45 (2)
H10'0.39460.75380.10010.050*0.45 (2)
C11'0.1309 (15)0.6516 (8)0.0720 (5)0.037 (2)0.45 (2)
C12'0.0638 (18)0.8090 (8)0.0514 (4)0.043 (2)0.45 (2)
H12'0.14440.90800.05470.052*0.45 (2)
C13'0.1199 (18)0.8183 (11)0.0266 (4)0.045 (2)0.45 (2)
H13'0.16190.92180.01210.054*0.45 (2)
C14'0.2409 (14)0.6738 (14)0.0234 (4)0.043 (2)0.45 (2)
H14'0.36610.68090.00690.052*0.45 (2)
C15'0.1817 (13)0.5178 (13)0.0441 (4)0.039 (2)0.45 (2)
H15'0.26590.42110.04100.047*0.45 (2)
C16'0.0050 (13)0.5050 (10)0.0697 (5)0.031 (2)0.45 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0230 (2)0.0370 (2)0.0279 (2)0.00340 (17)0.00052 (14)0.00299 (17)
N10.0210 (9)0.0339 (11)0.0381 (11)0.0003 (8)0.0031 (8)0.0045 (9)
O10.0282 (8)0.0432 (10)0.0289 (8)0.0098 (7)0.0016 (6)0.0045 (7)
O20.0359 (9)0.0629 (13)0.0347 (9)0.0014 (9)0.0096 (8)0.0020 (9)
O50.0384 (10)0.0422 (11)0.0479 (11)0.0069 (8)0.0020 (8)0.0045 (9)
C10.0277 (11)0.0292 (11)0.0275 (11)0.0026 (9)0.0002 (9)0.0030 (9)
C20.0324 (13)0.0342 (13)0.0398 (13)0.0035 (10)0.0056 (10)0.0041 (11)
C30.0520 (16)0.0416 (15)0.0376 (14)0.0031 (13)0.0153 (12)0.0097 (12)
C40.0621 (18)0.0452 (16)0.0273 (12)0.0051 (14)0.0025 (12)0.0001 (11)
C50.0418 (14)0.0405 (14)0.0336 (13)0.0004 (12)0.0058 (11)0.0037 (11)
C60.0299 (11)0.0329 (13)0.0306 (12)0.0031 (10)0.0024 (9)0.0016 (10)
C70.0226 (11)0.0355 (13)0.0407 (13)0.0017 (9)0.0057 (9)0.0059 (11)
C80.0230 (11)0.0460 (15)0.0508 (16)0.0018 (11)0.0102 (10)0.0048 (12)
C90.0386 (14)0.0441 (15)0.0513 (16)0.0002 (12)0.0186 (12)0.0007 (13)
O30.030 (3)0.036 (2)0.017 (3)0.0034 (18)0.002 (2)0.002 (2)
O40.026 (3)0.040 (3)0.036 (3)0.007 (2)0.003 (3)0.002 (2)
C100.034 (3)0.038 (3)0.037 (3)0.0057 (17)0.005 (3)0.004 (2)
C110.031 (3)0.037 (2)0.024 (3)0.0048 (15)0.000 (2)0.0031 (16)
C120.042 (4)0.036 (3)0.048 (3)0.007 (2)0.013 (3)0.000 (2)
C130.041 (4)0.038 (3)0.048 (3)0.004 (2)0.014 (3)0.000 (2)
C140.040 (3)0.040 (3)0.033 (3)0.005 (2)0.012 (2)0.000 (2)
C150.032 (2)0.039 (3)0.028 (3)0.0076 (19)0.0067 (19)0.001 (3)
C160.028 (2)0.035 (2)0.015 (3)0.0042 (15)0.0015 (18)0.0029 (19)
O3'0.026 (3)0.035 (3)0.022 (4)0.005 (2)0.001 (2)0.002 (3)
O4'0.029 (4)0.048 (4)0.039 (4)0.009 (3)0.005 (3)0.003 (3)
C10'0.037 (4)0.045 (4)0.041 (4)0.011 (2)0.001 (3)0.000 (3)
C11'0.038 (3)0.039 (3)0.034 (4)0.008 (2)0.003 (3)0.002 (2)
C12'0.048 (4)0.038 (3)0.042 (4)0.009 (2)0.005 (4)0.001 (3)
C13'0.049 (4)0.039 (3)0.046 (4)0.008 (3)0.007 (3)0.004 (3)
C14'0.040 (4)0.039 (3)0.048 (5)0.004 (3)0.013 (3)0.001 (3)
C15'0.040 (3)0.038 (3)0.037 (4)0.003 (2)0.008 (3)0.004 (3)
C16'0.034 (3)0.037 (3)0.020 (4)0.0031 (19)0.001 (2)0.001 (3)
Geometric parameters (Å, º) top
V1—O51.5886 (19)O3—C161.330 (4)
V1—O31.859 (3)O4—C101.220 (4)
V1—O21.8333 (18)C10—C111.439 (5)
V1—O11.8957 (17)C10—H100.9300
V1—O3'1.859 (3)C11—C121.402 (4)
V1—N12.0966 (19)C11—C161.401 (5)
V1—O4'2.269 (4)C12—C131.372 (6)
V1—O42.275 (3)C12—H120.9300
N1—C71.275 (3)C13—C141.369 (7)
N1—C81.464 (3)C13—H130.9300
O1—C11.325 (3)C14—C151.379 (5)
O2—C91.404 (3)C14—H140.9300
C1—C21.400 (3)C15—C161.401 (4)
C1—C61.413 (3)C15—H150.9300
C2—C31.377 (4)O3'—C16'1.330 (4)
C2—H20.9300O4'—C10'1.220 (4)
C3—C41.386 (4)C10'—C11'1.439 (5)
C3—H30.9300C10'—H10'0.9300
C4—C51.367 (4)C11'—C12'1.402 (4)
C4—H40.9300C11'—C16'1.401 (5)
C5—C61.401 (3)C12'—C13'1.372 (6)
C5—H50.9300C12'—H12'0.9300
C6—C71.436 (3)C13'—C14'1.369 (7)
C7—H70.9300C13'—H13'0.9300
C8—C91.500 (4)C14'—C15'1.380 (5)
C8—H8A0.9700C14'—H14'0.9300
C8—H8B0.9700C15'—C16'1.402 (4)
C9—H9A0.9700C15'—H15'0.9300
C9—H9B0.9700
O5—V1—O399.65 (14)C9—C8—H8B110.9
O5—V1—O2100.72 (10)H8A—C8—H8B108.9
O3—V1—O296.2 (5)O2—C9—C8106.6 (2)
O5—V1—O197.12 (9)O2—C9—H9A110.4
O3—V1—O199.3 (5)C8—C9—H9A110.4
O2—V1—O1153.94 (8)O2—C9—H9B110.4
O5—V1—O3'102.82 (18)C8—C9—H9B110.4
O2—V1—O3'103.4 (6)H9A—C9—H9B108.6
O1—V1—O3'90.9 (6)C16—O3—V1137.1 (4)
O5—V1—N192.39 (9)C10—O4—V1126.2 (3)
O3—V1—N1167.5 (2)O4—C10—C11126.6 (3)
O2—V1—N178.28 (8)O4—C10—H10116.7
O1—V1—N182.15 (7)C11—C10—H10116.7
O3'—V1—N1164.0 (2)C12—C11—C16120.1 (4)
O5—V1—O4'174.29 (18)C12—C11—C10118.4 (4)
O2—V1—O4'78.5 (5)C16—C11—C10121.4 (3)
O1—V1—O4'81.8 (5)C13—C12—C11120.5 (4)
O3'—V1—O4'82.83 (15)C13—C12—H12119.7
N1—V1—O4'81.91 (16)C11—C12—H12119.7
O5—V1—O4173.8 (4)C12—C13—C14119.4 (4)
O3—V1—O482.66 (13)C12—C13—H13120.3
O2—V1—O484.7 (4)C14—C13—H13120.3
O1—V1—O476.8 (4)C13—C14—C15121.6 (4)
N1—V1—O485.69 (13)C13—C14—H14119.2
C7—N1—C8120.8 (2)C15—C14—H14119.2
C7—N1—V1126.16 (16)C14—C15—C16120.1 (4)
C8—N1—V1112.34 (16)C14—C15—H15119.9
C1—O1—V1128.93 (15)C16—C15—H15119.9
C9—O2—V1119.57 (16)O3—C16—C15117.7 (4)
O1—C1—C2120.0 (2)O3—C16—C11124.1 (3)
O1—C1—C6121.5 (2)C15—C16—C11118.2 (3)
C2—C1—C6118.4 (2)C16'—O3'—V1138.1 (2)
C3—C2—C1120.4 (2)C10'—O4'—V1126.5 (3)
C3—C2—H2119.8O4'—C10'—C11'126.6 (3)
C1—C2—H2119.8O4'—C10'—H10'116.7
C2—C3—C4121.3 (3)C11'—C10'—H10'116.7
C2—C3—H3119.3C12'—C11'—C16'120.0 (4)
C4—C3—H3119.3C12'—C11'—C10'118.4 (4)
C5—C4—C3119.1 (2)C16'—C11'—C10'121.4 (3)
C5—C4—H4120.4C13'—C12'—C11'120.5 (4)
C3—C4—H4120.4C13'—C12'—H12'119.7
C4—C5—C6121.2 (2)C11'—C12'—H12'119.7
C4—C5—H5119.4C12'—C13'—C14'119.4 (4)
C6—C5—H5119.4C12'—C13'—H13'120.3
C5—C6—C1119.5 (2)C14'—C13'—H13'120.3
C5—C6—C7119.8 (2)C13'—C14'—C15'121.6 (4)
C1—C6—C7120.6 (2)C13'—C14'—H14'119.2
N1—C7—C6123.9 (2)C15'—C14'—H14'119.2
N1—C7—H7118.0C14'—C15'—C16'120.1 (4)
C6—C7—H7118.0C14'—C15'—H15'119.9
N1—C8—C9104.2 (2)C16'—C15'—H15'119.9
N1—C8—H8A110.9O3'—C16'—C15'117.7 (4)
C9—C8—H8A110.9O3'—C16'—C11'124.0 (3)
N1—C8—H8B110.9C15'—C16'—C11'118.2 (3)
O5—V1—O1—C146.7 (2)O4—V1—O3—C1616.3 (14)
O3—V1—O1—C1147.7 (2)V1—O4—C10—C112.3 (18)
O2—V1—O1—C186.3 (3)O4—C10—C11—C12178.8 (12)
O3'—V1—O1—C1149.7 (3)O4—C10—C11—C166.3 (16)
N1—V1—O1—C144.75 (19)C16—C11—C12—C131.0 (14)
O4'—V1—O1—C1127.6 (2)C10—C11—C12—C13176.0 (8)
O4—V1—O1—C1132.1 (2)C11—C12—C13—C140.4 (12)
O5—V1—O2—C968.2 (2)C12—C13—C14—C150.2 (12)
O3—V1—O2—C9169.3 (2)C13—C14—C15—C161.3 (13)
O1—V1—O2—C964.2 (3)V1—O3—C16—C15166.8 (12)
O3'—V1—O2—C9174.3 (3)V1—O3—C16—C1114 (2)
N1—V1—O2—C922.07 (19)C14—C15—C16—O3177.1 (11)
O4'—V1—O2—C9106.1 (3)C14—C15—C16—C112.5 (13)
O4—V1—O2—C9108.7 (2)C12—C11—C16—O3177.2 (12)
V1—O1—C1—C2147.23 (18)C10—C11—C16—O32.3 (15)
V1—O1—C1—C636.1 (3)C12—C11—C16—C152.4 (13)
O1—C1—C2—C3179.7 (2)C10—C11—C16—C15177.2 (9)
C6—C1—C2—C32.9 (4)O5—V1—O3'—C16'174.4 (17)
C1—C2—C3—C42.1 (4)O2—V1—O3'—C16'81.1 (18)
C2—C3—C4—C50.6 (4)O1—V1—O3'—C16'76.9 (18)
C3—C4—C5—C62.5 (4)N1—V1—O3'—C16'13 (4)
C4—C5—C6—C11.7 (4)O4'—V1—O3'—C16'4.7 (17)
C4—C5—C6—C7176.7 (3)V1—O4'—C10'—C11'8 (2)
O1—C1—C6—C5177.7 (2)O4'—C10'—C11'—C12'178.7 (16)
C2—C1—C6—C51.0 (4)O4'—C10'—C11'—C16'6 (2)
O1—C1—C6—C72.8 (4)C16'—C11'—C12'—C13'4.1 (17)
C2—C1—C6—C7173.9 (2)C10'—C11'—C12'—C13'179.8 (10)
C8—N1—C7—C6176.5 (2)C11'—C12'—C13'—C14'2.4 (15)
V1—N1—C7—C613.5 (4)C12'—C13'—C14'—C15'0.8 (14)
C5—C6—C7—N1173.2 (2)C13'—C14'—C15'—C16'1.0 (16)
C1—C6—C7—N111.9 (4)V1—O3'—C16'—C15'178.2 (15)
C7—N1—C8—C9141.9 (2)V1—O3'—C16'—C11'4 (2)
V1—N1—C8—C929.4 (2)C14'—C15'—C16'—O3'179.8 (13)
V1—O2—C9—C845.1 (3)C14'—C15'—C16'—C11'2.6 (17)
N1—C8—C9—O244.1 (3)C12'—C11'—C16'—O3'178.5 (15)
O5—V1—O3—C16157.8 (14)C10'—C11'—C16'—O3'2.9 (19)
O2—V1—O3—C16100.1 (14)C12'—C11'—C16'—C15'4.1 (17)
O1—V1—O3—C1658.9 (15)C10'—C11'—C16'—C15'179.7 (12)
N1—V1—O3—C1637 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.563.352 (4)143
C5—H5···O4ii0.932.503.220 (13)134
C2—H2···Cgi0.932.843.615 (3)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Selected bond lengths (Å) top
V1—O51.5886 (19)V1—O3'1.859 (3)
V1—O31.859 (3)V1—N12.0966 (19)
V1—O21.8333 (18)V1—O4'2.269 (4)
V1—O11.8957 (17)V1—O42.275 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.932.563.352 (4)143
C5—H5···O4ii0.932.503.220 (13)134
C2—H2···Cgi0.932.843.615 (3)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Department of Science and Technology (DST), Government of India, for funding the National Centre for Catalysis Research (NCCR), IIT-Madras. The authors also thank Dr Babu Varghese and Dr P. K. Sudhadevi Antharjanam, SAIF, IIT-Madras, for the X-ray data collection and technical assistance in the preparation of the manuscript.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationForzatti, P., Tronconi, E., Busca, G. & Tittarelli, P. (1987). Catal. Today, 1, 209–218.  CrossRef CAS Google Scholar
First citationGrivani, G., Delkhosh, S., Fejfarová, K., Dušek, M. & Khalaji, A. D. (2013). Inorg. Chem. Commun. 27, 82–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarding, W., Birkeland, K. E. & Kung, H. H. (1994). Catal. Lett. 28, 1–7.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaurya, M. R., Kumar, A. & Pessoa, J. C. (2011). Coord. Chem. Rev. 255, 2315–2344.  Web of Science CrossRef CAS Google Scholar
First citationSalavati-Niasari, M., Elzami, M., Mansournia, M. R. & Hydarzadeh, S. (2004). J. Mol. Catal. A Chem. 221, 169–175.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTalsi, E. P., Chinakov, V. D., Babenko, V. P. & Zamaraev, K. I. (1993). J. Mol. Catal. 81, 235–254.  CrossRef CAS Web of Science Google Scholar
First citationXia, J.-B., Cormier, K. W. & Chen, C. (2012). Chem. Sci. 3, 2240–2245.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, W., Basak, K., Kosugi, Y., Hoshino, Y. & Yamamoto, H. (2005). Angew. Chem. Int. Ed. 44, 4389–4391.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds