research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of 3-chloro-2-(4-methyl­phenyl)-2H-pyrazolo­[3,4-b]quinoline

aPG Department of Chemistry, Jain University, 52 Bellary Road, Hebbal, Bangalore 560 024, India, bUniversity B.D.T. College of Engineering, (a Constituent College of VTU, Belgaum), Davanagere 577 004, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: jjasinski@keene.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 18 April 2015; accepted 24 April 2015; online 30 April 2015)

In the mol­ecule of 3-chloro-2-(4-methyl­phen­yl)-2H-pyrazolo­[3,4-b]quinoline, C17H12ClN3, (I), the dihedral angle between the planes of the pyrazole ring and the methyl­ated phenyl ring is 54.25 (9)°. The bond distances in the fused tricyclic system provide evidence for 10-π delocalization in the pyrazolo­pyridine portion of the mol­ecule, with diene character in the fused carbocyclic ring. In the crystal, mol­ecules of (I) are linked by two independent C—H⋯N hydrogen bonds, forming sheets containing centrosymmetric R22(16) and R64(28) rings, and these sheets are all linked together by ππ stacking inter­actions with a ring-centroid separation of 3.5891 (9) Å.

1. Chemical context

Quinoline exhibits anti­malarial, anti-bacterial, anti­fungal, anthelmintic, cardiotonic, anti­convulsant, anti-inflammatory and analgesic activity (Marella et al., 2013[Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1-12.]). Quinoline and its fused heterocyclic derivatives constitute an important class of compounds for new drug development (Kumar et al., 2009[Kumar, S., Bawa, S. & Gupta, H. (2009). Mini Rev. Med. Chem. 9, 1648-1654.]), and the medicinal applications of pyrazolo­[3,4-b]quinolines have been summarized, along with an efficient synthetic method (Afghan et al., 2009[Afghan, A., Baradarani, M. M. & Joule, J. A. (2009). Arkivoc, pp. 20-30.]). Recently, we have reported the synthesis of a number of novel pyrazolo­[3,4-b]quinoline derivatives, including that of the title compound (I)[link], and mol­ecular docking studies of their binding affinity to the active sites of human telomerase (Sowmya et al., 2014[Sowmya, H. B. V., Suresha Kumara, T. H., Nagendrappa, G., Jasinski, J. P., Millikan, S. P., Chandramohan, V., Jose, G., Rashmi, S. K., Chandrika, N. & Ashwini, A. M. (2014). J. Applicable Chem. 3, 2384-2392.]). In a continuation of that study, we now report the crystal and mol­ecular structure of one such example, the title compound 3-chloro-2-p-tolyl-2H-pyrazolo­[3,4-b]quinoline, (I)[link].

[Scheme 1]

2. Structural commentary

Within the mol­ecule of compound (I)[link] (Fig. 1[link]), the pendent phenyl group is twisted out of the plane of the fused heterocyclic ring system, as indicated by the relevant torsional angles (Table 1[link]): the dihedral angle between the mean planes of the pyrazole and the methyl­ated phenyl rings is 54.25 (9)°. The mol­ecules of (I)[link] exhibit no inter­nal symmetry and thus they are conformationally chiral: however, the centrosymmetric space group accommodates equal numbers of both of the conformational enanti­omers. The non-planar character of the mol­ecular skeleton may be plausibly ascribed to the combined effects of the intra­molecular non-bonded repulsion between the Cl substituent and the nearest H atom of the methyl­ated phenyl ring, and of the direction-specific inter­molecular inter­actions, in particular the hydrogen bonds.

Table 1
Selected geometric parameters (Å, °)

N1—N2 1.3644 (18) C7—C8 1.358 (2)
N2—C3 1.346 (2) C8—C8A 1.432 (2)
C3—C3A 1.398 (2) C8A—N9 1.342 (2)
C3A—C4 1.388 (2) N9—C9A 1.346 (2)
C4—C4A 1.394 (2) C9A—N1 1.349 (2)
C4A—C5 1.429 (2) C3A—C9A 1.430 (2)
C5—C6 1.357 (3) C4A—C8A 1.446 (2)
C6—C7 1.419 (3) C3—Cl3 1.6993 (16)
       
N1—N2—C21—C22 −53.7 (2) C3—N2—C21—C22 125.08 (17)
N1—N2—C21—C26 126.42 (16) C3—N2—C21—C26 −54.8 (2)
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

The bond distances in compound (I)[link] (Table 1[link]) show some inter­esting features. Within the pyrazole ring, the bond distances N1—C9A and N2—C3 (Fig. 1[link]) are identical within experimental uncertainty, although these two bonds are formally double and single bonds, respectively. In the fused carbocyclic ring, the bonds C5—C6 and C7—C8 are much shorted than any other C—C bonds in the mol­ecule. However, in the central pyridine ring, within each of the pairs of corresponding bonds C3A—C4 and C4—C4A, C8A—N9 and N9—C9A, and C3A—C9A and C4A—C8A, the two distances are very similar. These observations taken together are fully consistent with a 10-π delocalized system in the pyrazolo­pyridine portion of the mol­ecule, comparable to those found in naphthalene and azulene (Glidewell & Lloyd, 1984[Glidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455-4472.]), while the fused carbocyclic ring has more the character of an isolated diene (cf. Glidewell & Lloyd, 1986[Glidewell, C. & Lloyd, D. (1986). J. Chem. Educ. 63, 306-308.]).

3. Supra­molecular features

The supra­molecular assembly in compound (I)[link] is determined by two independent C—H⋯N hydrogen bonds (Table 2[link]) and a ππ stacking inter­action, which together link the mol­ecules into a three-dimensional framework structure. The formation of this framework is readily analysed in terms of three simpler sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). In the simplest sub-structure, the C—H⋯N hydrogen bond having atom C23 as the donor links an inversion-related pair of mol­ecules, forming a cyclic centrosymmetric dimer characterized by an R22(16) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) motif (Fig. 2[link]), and this dimeric unit can be regarded as the basic building block in the supra­molecular assembly. The second C—H⋯N hydrogen bond, having atom C26 as the donor, directly links the reference dimer, which is centred at (0, ½, ½) to four symmetry-related dimers centred at (0, 0, 0), (0 1, 0), (0, 0, 1) and (0, 1, 1), thereby leading to the formation of a hydrogen-bonded sheet lying parallel to (100), in which centrosymmetric R22(16) rings alternate with R64(28) rings (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 represents the centroid of the C21–C26 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯N9i 0.95 2.50 3.393 (2) 157
C26—H26⋯N9ii 0.95 2.50 3.449 (2) 174
C27—H27ACg1iii 0.98 2.84 3.653 (2) 140
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+2.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I)[link] showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, the unit-cell outline and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x, 1 − y, 1 − z).
[Figure 3]
Figure 3
A stereoview of part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded sheet lying parallel to (100) and containing alternating R22(16) and R64(28) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Only one hydrogen-bonded sheet passes through each unit cell, but the sheets are linked by the ππ stacking inter­action which is associated with the extensive overlap between the tricyclic ring systems of inversion-related pairs of mol­ecules in adjacent sheets (Fig. 4[link]). The pyridine rings of the mol­ecules at (x, y, z) and (1 − x, 1 − y, 1 − z), which lie in adjacent sheets, are strictly parallel with an inter­planar spacing of 3.3819 (6) Å. The ring-centroid separation is 3.5891 (9) Å, corresponding to a ring-centroid offset of ca 1.202 Å (Fig. 4[link]). The effect of this inter­action is to link all of the hydrogen-bonded sheets into a single three-dimensional array.

[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the overlap of an inversion-related pair of mol­ecules. For the sake of clarity, the unit-cell outline and all of the H atoms have been omitted. The mol­ecules are viewed normal to the planes of the fused heterocyclic ring system and atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

Despite the large number of aromatic C—H bonds in the mol­ecule of compound (I)[link], the only short C—H⋯π contact involves one of the C—H bonds of the methyl group. Not only are such bonds of low acidity but, perhaps more important, such a methyl group will be undergoing very rapid rotation about the adjacent C—C bond. When a group having local C3 symmetry, such as a methyl group, is directly bonded to another group having local C2 symmetry, such as a phenyl group, as in (I)[link], the rotational barrier about the bond between them is very low, generally of the order of J mol−1 rather than the usual kJ mol−1 (Naylor & Wilson, 1957[Naylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057-1060.]; Tannenbaum et al., 1956[Tannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42-47.]). Moreover, it has been shown that simple hydro­carbyl substituents undergo rapid rotation about C—C bonds in the solid state, even at reduced temperatures (Riddell & Rogerson, 1996[Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.], 1997[Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-256.]). Therefore, while such a C—H⋯π inter­molecular inter­action may not be regarded as structurally significant, we report it here for completeness (Table 2[link]).

4. Database survey

Structural information on un-reduced pyrazolo­[3,4-b]quinolines carrying a substituent at the N2 position but not at N1, is sparse. In a series of pyrazolo­[3,4-b]quinolin-5-ones, each carrying a substituent at N2, the central heterocyclic ring is in reduced form, carrying H atoms at positions 4 and 8 (Cannon et al., 2001a[Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001a). Acta Cryst. E57, o151-o153.],b[Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001b). Acta Cryst. E57, o154-o156.],c[Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001c). Acta Cryst. E57, o157-o159.],d[Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001d). Acta Cryst. E57, o160-o162.]). By contrast, in a series of less highly reduced pyrazolo­[3,4-b]quinolin-5-ones which each carry a substituent at N1 but not at N2, the central fused ring is fully aromatic (Mera et al., 2005[Mera, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o442-o444.]; Cruz et al., 2006[Cruz, S., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o525-o527.]; Portilla et al., 2007[Portilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o582-o584.]). Similarly, in a series of benzo[f]pyrazolo­[3,4-b]quinolines, in each of which there is a substituent at position 1, but not at position 2, the pyridine ring is fully aromatic (Portilla, Quiroga et al., 2005[Portilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o483-o489.]; Portilla, Serrano et al., 2005[Portilla, J., Serrano, H., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o490-o492.]; Portilla et al., 2008[Portilla, J., Quiroga, J., Nogueras, M., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 72-83.]).

5. Synthesis and crystallization

A sample of the title compound was prepared using the recently published procedure (Sowmya et al., 2014[Sowmya, H. B. V., Suresha Kumara, T. H., Nagendrappa, G., Jasinski, J. P., Millikan, S. P., Chandramohan, V., Jose, G., Rashmi, S. K., Chandrika, N. & Ashwini, A. M. (2014). J. Applicable Chem. 3, 2384-2392.]). Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of a solution in hexa­ne–ethyl acetate (19:1, v/v).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference maps, and then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å (aromatic) or 0.98 Å (meth­yl) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C17H12ClN3
Mr 293.75
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 10.2194 (4), 13.4661 (5), 10.4600 (4)
β (°) 102.780 (4)
V3) 1403.80 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.36
Crystal size (mm) 0.42 × 0.28 × 0.12
 
Data collection
Diffractometer Agilent Eos Gemini
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.554, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 8443, 2738, 2479
Rint 0.032
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.05
No. of reflections 2738
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.22
Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

3-Chloro-2-(4-methylphenyl)-2H-pyrazolo[3,4-b]quinoline top
Crystal data top
C17H12ClN3F(000) = 608
Mr = 293.75Dx = 1.390 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.2194 (4) ÅCell parameters from 2738 reflections
b = 13.4661 (5) Åθ = 4.4–72.6°
c = 10.4600 (4) ŵ = 2.36 mm1
β = 102.780 (4)°T = 173 K
V = 1403.80 (10) Å3Block, yellow
Z = 40.42 × 0.28 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
2479 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray SourceRint = 0.032
ω scansθmax = 72.6°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 1212
Tmin = 0.554, Tmax = 0.753k = 1216
8443 measured reflectionsl = 1211
2738 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.2814P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2738 reflectionsΔρmax = 0.36 e Å3
191 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18699 (13)0.38247 (10)0.54035 (13)0.0290 (3)
N20.21652 (13)0.38697 (10)0.67397 (13)0.0269 (3)
C30.34907 (16)0.38742 (11)0.72750 (16)0.0271 (3)
Cl30.41552 (4)0.39736 (3)0.89093 (3)0.03435 (15)
C3A0.41587 (16)0.38246 (11)0.62459 (15)0.0257 (3)
C40.54815 (16)0.37944 (11)0.61183 (15)0.0280 (3)
H40.62100.38250.68600.034*
C4A0.56909 (16)0.37163 (11)0.48495 (16)0.0287 (3)
C50.70051 (17)0.36552 (13)0.45927 (18)0.0356 (4)
H50.77670.36800.53020.043*
C60.71795 (19)0.35618 (14)0.33496 (19)0.0401 (4)
H60.80600.35160.31970.048*
C70.60533 (19)0.35325 (13)0.22768 (18)0.0390 (4)
H70.61910.34720.14110.047*
C80.47823 (19)0.35900 (12)0.24644 (16)0.0352 (4)
H80.40450.35690.17300.042*
C8A0.45426 (17)0.36816 (11)0.37577 (15)0.0282 (3)
N90.32609 (13)0.37210 (10)0.38697 (13)0.0283 (3)
C9A0.30883 (16)0.37944 (11)0.51055 (15)0.0264 (3)
C210.10959 (16)0.39242 (12)0.74232 (16)0.0283 (3)
C220.01295 (16)0.46631 (12)0.70896 (16)0.0318 (3)
H220.01470.51090.63900.038*
C230.08594 (16)0.47332 (13)0.78014 (17)0.0356 (4)
H230.15200.52390.75880.043*
C240.09102 (16)0.40803 (14)0.88226 (17)0.0353 (4)
C250.00467 (17)0.33313 (14)0.90984 (18)0.0393 (4)
H250.00160.28700.97790.047*
C260.10438 (17)0.32453 (13)0.83996 (17)0.0360 (4)
H260.16850.27250.85900.043*
C270.19679 (19)0.41851 (18)0.9614 (2)0.0476 (5)
H27A0.15450.43871.05100.071*
H27B0.24240.35470.96360.071*
H27C0.26230.46890.92120.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0265 (7)0.0343 (7)0.0250 (7)0.0008 (5)0.0028 (5)0.0009 (5)
N20.0244 (7)0.0303 (7)0.0251 (7)0.0004 (5)0.0035 (5)0.0002 (5)
C30.0251 (8)0.0298 (8)0.0251 (8)0.0001 (6)0.0026 (6)0.0006 (6)
Cl30.0305 (2)0.0482 (3)0.0228 (2)0.00019 (15)0.00256 (16)0.00138 (14)
C3A0.0272 (8)0.0244 (7)0.0243 (8)0.0007 (5)0.0034 (6)0.0001 (6)
C40.0261 (8)0.0288 (7)0.0278 (8)0.0013 (6)0.0033 (6)0.0009 (6)
C4A0.0298 (8)0.0243 (7)0.0322 (8)0.0025 (6)0.0074 (7)0.0008 (6)
C50.0304 (9)0.0361 (9)0.0411 (9)0.0026 (7)0.0093 (7)0.0028 (7)
C60.0366 (9)0.0391 (9)0.0503 (11)0.0026 (7)0.0220 (8)0.0036 (8)
C70.0500 (11)0.0363 (9)0.0359 (9)0.0041 (8)0.0204 (8)0.0028 (7)
C80.0445 (10)0.0335 (9)0.0288 (8)0.0032 (7)0.0109 (7)0.0009 (7)
C8A0.0336 (8)0.0226 (7)0.0287 (8)0.0014 (6)0.0078 (6)0.0003 (6)
N90.0306 (7)0.0293 (7)0.0243 (7)0.0020 (5)0.0042 (5)0.0003 (5)
C9A0.0270 (8)0.0246 (7)0.0267 (8)0.0008 (6)0.0038 (6)0.0002 (6)
C210.0230 (7)0.0330 (8)0.0283 (8)0.0005 (6)0.0045 (6)0.0020 (6)
C220.0266 (8)0.0352 (8)0.0305 (8)0.0015 (6)0.0003 (6)0.0016 (7)
C230.0230 (8)0.0413 (9)0.0397 (9)0.0047 (6)0.0005 (7)0.0042 (7)
C240.0236 (8)0.0463 (10)0.0355 (9)0.0018 (6)0.0053 (7)0.0075 (7)
C250.0320 (9)0.0486 (10)0.0388 (9)0.0009 (7)0.0111 (7)0.0095 (8)
C260.0300 (8)0.0378 (9)0.0418 (10)0.0067 (7)0.0114 (7)0.0084 (7)
C270.0302 (9)0.0671 (13)0.0483 (11)0.0017 (8)0.0145 (8)0.0121 (10)
Geometric parameters (Å, º) top
N1—N21.3644 (18)C7—H70.9500
N2—C31.346 (2)C8—H80.9500
C3—C3A1.398 (2)N2—C211.434 (2)
C3A—C41.388 (2)C3—Cl31.6993 (16)
C4—C4A1.394 (2)C21—C261.380 (2)
C4A—C51.429 (2)C21—C221.391 (2)
C5—C61.357 (3)C22—C231.385 (2)
C6—C71.419 (3)C22—H220.9500
C7—C81.358 (2)C23—C241.393 (3)
C8—C8A1.432 (2)C23—H230.9500
C8A—N91.342 (2)C24—C251.390 (3)
N9—C9A1.346 (2)C24—C271.507 (2)
C9A—N11.349 (2)C25—C261.384 (2)
C3A—C9A1.430 (2)C25—H250.9500
C4A—C8A1.446 (2)C26—H260.9500
C4—H40.9500C27—H27A0.9800
C5—H50.9500C27—H27B0.9800
C6—H60.9500C27—H27C0.9800
C9A—N1—N2103.40 (12)C8—C8A—C4A118.05 (15)
C3—N2—N1113.60 (13)C8A—N9—C9A115.12 (14)
C3—N2—C21126.87 (14)N9—C9A—N1123.20 (14)
N1—N2—C21119.52 (12)N9—C9A—C3A124.38 (14)
N2—C3—C3A107.30 (14)N1—C9A—C3A112.41 (14)
N2—C3—Cl3124.06 (12)C26—C21—C22121.19 (15)
C3A—C3—Cl3128.59 (13)C26—C21—N2119.56 (14)
C4—C3A—C3136.66 (15)C22—C21—N2119.25 (14)
C4—C3A—C9A120.04 (14)C23—C22—C21118.42 (16)
C3—C3A—C9A103.30 (14)C23—C22—H22120.8
C3A—C4—C4A116.84 (15)C21—C22—H22120.8
C3A—C4—H4121.6C22—C23—C24121.64 (15)
C4A—C4—H4121.6C22—C23—H23119.2
C4—C4A—C5122.13 (16)C24—C23—H23119.2
C4—C4A—C8A119.06 (15)C25—C24—C23118.24 (15)
C5—C4A—C8A118.81 (15)C25—C24—C27120.74 (17)
C6—C5—C4A120.91 (17)C23—C24—C27121.02 (17)
C6—C5—H5119.5C26—C25—C24121.16 (16)
C4A—C5—H5119.5C26—C25—H25119.4
C5—C6—C7120.32 (17)C24—C25—H25119.4
C5—C6—H6119.8C21—C26—C25119.26 (16)
C7—C6—H6119.8C21—C26—H26120.4
C8—C7—C6121.22 (16)C25—C26—H26120.4
C8—C7—H7119.4C24—C27—H27A109.5
C6—C7—H7119.4C24—C27—H27B109.5
C7—C8—C8A120.68 (17)H27A—C27—H27B109.5
C7—C8—H8119.7C24—C27—H27C109.5
C8A—C8—H8119.7H27A—C27—H27C109.5
N9—C8A—C8117.40 (15)H27B—C27—H27C109.5
N9—C8A—C4A124.55 (14)
C9A—N1—N2—C30.34 (16)C8—C8A—N9—C9A179.20 (14)
C9A—N1—N2—C21179.24 (13)C4A—C8A—N9—C9A0.2 (2)
N1—N2—C3—C3A0.29 (17)C8A—N9—C9A—N1178.78 (14)
C21—N2—C3—C3A179.08 (14)C8A—N9—C9A—C3A0.4 (2)
N1—N2—C3—Cl3177.38 (11)N2—N1—C9A—N9178.30 (14)
C21—N2—C3—Cl31.4 (2)N2—N1—C9A—C3A0.27 (16)
N2—C3—C3A—C4179.33 (17)C4—C3A—C9A—N91.1 (2)
Cl3—C3—C3A—C43.1 (3)C3—C3A—C9A—N9178.44 (14)
N2—C3—C3A—C9A0.10 (16)C4—C3A—C9A—N1179.66 (14)
Cl3—C3—C3A—C9A177.43 (12)C3—C3A—C9A—N10.11 (17)
C3—C3A—C4—C4A178.21 (17)N1—N2—C21—C2253.7 (2)
C9A—C3A—C4—C4A1.1 (2)N1—N2—C21—C26126.42 (16)
C3A—C4—C4A—C5178.51 (14)C3—N2—C21—C22125.08 (17)
C3A—C4—C4A—C8A0.6 (2)C3—N2—C21—C2654.8 (2)
C4—C4A—C5—C6178.81 (16)C26—C21—C22—C232.9 (2)
C8A—C4A—C5—C60.3 (2)N2—C21—C22—C23177.01 (14)
C4A—C5—C6—C70.6 (3)C21—C22—C23—C240.6 (3)
C5—C6—C7—C80.4 (3)C22—C23—C24—C251.5 (3)
C6—C7—C8—C8A0.0 (3)C22—C23—C24—C27178.15 (16)
C7—C8—C8A—N9179.12 (15)C23—C24—C25—C261.4 (3)
C7—C8—C8A—C4A0.3 (2)C27—C24—C25—C26178.25 (17)
C4—C4A—C8A—N90.1 (2)C22—C21—C26—C253.0 (3)
C5—C4A—C8A—N9179.25 (14)N2—C21—C26—C25176.89 (16)
C4—C4A—C8A—C8179.31 (14)C24—C25—C26—C210.8 (3)
C5—C4A—C8A—C80.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 represents the centroid of the C21–C26 ring.
D—H···AD—HH···AD···AD—H···A
C23—H23···N9i0.952.503.393 (2)157
C26—H26···N9ii0.952.503.449 (2)174
C27—H27A···Cg1iii0.982.843.653 (2)140
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z+2.
 

Acknowledgements

THSK thanks the authorities of Jain University for their support and encouragement. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

References

First citationAfghan, A., Baradarani, M. M. & Joule, J. A. (2009). Arkivoc, pp. 20–30.  Google Scholar
First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001a). Acta Cryst. E57, o151–o153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001b). Acta Cryst. E57, o154–o156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001c). Acta Cryst. E57, o157–o159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001d). Acta Cryst. E57, o160–o162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCruz, S., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o525–o527.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C. & Lloyd, D. (1984). Tetrahedron, 40, 4455–4472.  CrossRef CAS Web of Science Google Scholar
First citationGlidewell, C. & Lloyd, D. (1986). J. Chem. Educ. 63, 306–308.  CrossRef CAS Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumar, S., Bawa, S. & Gupta, H. (2009). Mini Rev. Med. Chem. 9, 1648–1654.  CrossRef CAS PubMed Google Scholar
First citationMarella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1–12.  Web of Science CrossRef PubMed Google Scholar
First citationMera, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o442–o444.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057–1060.  CrossRef CAS Web of Science Google Scholar
First citationPortilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o483–o489.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPortilla, J., Quiroga, J., Cobo, J., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o582–o584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortilla, J., Quiroga, J., Nogueras, M., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2008). Acta Cryst. B64, 72–83.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortilla, J., Serrano, H., Cobo, J., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o490–o492.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.  CrossRef Web of Science Google Scholar
First citationRiddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSowmya, H. B. V., Suresha Kumara, T. H., Nagendrappa, G., Jasinski, J. P., Millikan, S. P., Chandramohan, V., Jose, G., Rashmi, S. K., Chandrika, N. & Ashwini, A. M. (2014). J. Applicable Chem. 3, 2384–2392.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42–47.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds