research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 1-(4-chloro­phen­yl)-2-(di­phenyl­phosphor­yl)ethan-1-one and 1-(di­phenyl­phosphor­yl)-3,3-di­methyl­butan-2-one

aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 April 2015; accepted 7 April 2015; online 22 April 2015)

The title compounds, C20H16ClO2P, (I), and C18H21O2P, (II), were synthesized via an Arbuzov reaction between an α-bromo­ketone and isopropoxydi­phenyl­phosphane. In the crystals of both compounds, mol­ecules are linked via bifurcated C—H⋯(O,O) hydrogen bonds, forming chains propagating along [100] for (I) and along [010] for (II). The chains are linked via C—H⋯π inter­actions, leading to the formation of sheets lying parallel to (010) for (I) and (001) for (II). The absolute structure of compound (II) was determined by resonant scattering [Flack parameter = 0.088 (14)].

1. Chemical context

The luminescent properties of lanthanide metals continue to gain attention from researchers inter­ested in the coordination chemistry of f-block elements. Direct excitation of lanthanides is difficult due to the parity forbidden ff transitions required and relatively low molar absorptivities, but fortunately this excitation can be sensitized with an appropriate organic ligand. The ligand acts as an antenna by harvesting the excitation energy and transferring this energy to the metal emitting state (Weissman, 1942[Weissman, S. I. (1942). J. Chem. Phys. 10, 214-217.]). The resulting emission bands have peak widths less than 10 nm, with a color characteristic of each lanthanide ion. As such, lanthanide metals have found uses in both material and biological applications (de Bettencourt-Dias, 2007[Bettencourt-Dias, A. de (2007). Curr. Org. Chem. 11, 1460-1480.]; Thibon & Pierre, 2009[Thibon, A. & Pierre, V. C. (2009). Anal. Bioanal. Chem. 394, 107-120.]; Eliseeva & Bünzli, 2010[Eliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189-227.]).

[Scheme 1]

Recently, the carbamoyl­methyl­phosphane oxide (CMPO) group has been shown to be an effective ligand for the sensitization of lanthanide luminescence (Sharova et al., 2012[Sharova, E. V., Artyushin, O. I., Turanov, A. N., Karandashev, V. K., Meshkova, S. B., Topilova, Z. M. & Odinets, I. L. (2012). Cent. Eur. J. Chem. 10, 146-156.]; Rosario-Amorin et al., 2013[Rosario-Amorin, D., Ouizem, S., Dickie, D. A., Wen, Y., Paine, R. T., Gao, J., Grey, J. K., de Bettencourt-Dias, A., Hay, B. P. & Delmau, L. H. (2013). Inorg. Chem. 52, 3063-3083.]; Sartain et al., 2015[Sartain, H. T., McGraw, S. N., Lawrence, C. L., Werner, E. J. & Biros, S. M. (2015). Inorg. Chim. Acta, 426, 126-135.]). We undertook this work to investigate the role of the aryl carbonyl group on the ability of the CMPO moiety to act as an antenna in this process. Tuning the structure of these organic ligands may be tantamount to potential improvements in the absorption, transfer, and emission of energy by the resultant lanthanide–ligand complex. We report herein on the synthesis and crystal structure of two new CMPO ligands.

2. Structural commentary

The mol­ecular structures of compounds (I)[link] and (II)[link] are shown in Figs. 1[link] and 2[link], respectively. While compound (I)[link] crystallized in the ortho­rhom­bic centrosymmetric space group Pbca, compound (II)[link] crystallized in the chiral monoclinic space group P21. In compound (I)[link], the two phenyl rings (C9–C14 and C15–C20) are inclined to one another by 75.53 (8)°, and to the chloro­benzene ring (C3–C8) by 47.98 (8) and 62.16 (8)°, respectively. Atom P1 has a distorted tetra­hedral geometry with the C—P=O bond angles varying from 112.02 (7) to 114.35 (7)°, while the C—P—C angles vary from 105.04 (7) to 106.60 (7)°. The carbonyl group (C1=O1) and the phosphoryl group (P1=O2) are anti to one another, most probably to minimize unfavourable dipole–dipole inter­actions. In compound (II)[link], the two phenyl rings (C7–C12 and C13–C18) are inclined to one another by 86.4 (2)°. Atom P1 also has a distorted tetra­hedral geometry with the C—P=O bond angles varying from 111.47 (16) to 115.06 (16)°, while the C—P—C bond angles vary from 101.84 (15) to 109.21 (16)°. Here the carbonyl group (C1=O1) and the phosphoryl group (P1=O2) are syn to one another.

[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal of (I)[link], the phosphoryl groups are aligned with the a axis, and as the individual mol­ecules stack in this direction they appear to rotate around the chlorine atom that lies close to the twofold screw axis, creating a pinwheel arrangement of mol­ecules (Fig. 3[link]). The mol­ecules are linked via bifurcated C—H⋯(O,O) hydrogen bonds, forming chains propagating along [100]; see Fig. 3[link] and Table 1[link]. The chains are linked via C—H⋯π inter­actions (Table 1[link]), forming sheets lying parallel to (010).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg3 are the centroids of rings C3–C8 and C15–C20, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.95 2.30 3.1899 (19) 156
C20—H20⋯O2i 0.95 2.50 3.4487 (19) 176
C5—H5⋯Cg3ii 0.95 3.00 3.8873 (17) 156
C13—H13⋯Cg1i 0.95 2.90 3.5373 (19) 126
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.
[Figure 3]
Figure 3
The crystal packing diagram of compound (I)[link] (drawn as blue and orange sticks) viewed along: (a) the a axis (the Cl atoms are shown as dark grey dots); (b) the c axis; (c) along the b axis, with the bifurcated hydrogen bonds shown as dashed lines (see Table 1[link] for details). H atoms have been omitted for clarity in parts (a) and (b) and only those involved in hydrogen bonding are shown in part (c).

Compound (II)[link] packs in a similar arrangement to (I)[link] in the solid state, although subtle differences result in the formation of a chiral crystal from an achiral compound (Fig. 4[link]). For compound (II)[link], the phosphoryl groups are again aligned in one direction (along the b axis), but in this case, the P1—C2 bond in the center of the mol­ecule lies about a twofold screw axis and acts as the pivot point for the pinwheel arrangement rather than the terminal chlorine atom as seen in the crystal of compound (I)[link]. The absence of an inversion center or mirror plane results in a chiral twist to the packing within this crystal. Here, mol­ecules are also linked via bifurcated C—H⋯(O,O) hydrogen bonds, forming chains propagating along [010] (see Table 2[link] and Fig. 4[link]) and the chains are linked via C—H⋯π inter­actions (Table 2[link]), forming sheets parallel to (001).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of ring C7–C12.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O2i 0.99 2.19 3.176 (5) 176
C12—H12⋯O2i 0.95 2.53 3.373 (5) 148
C17—H17⋯Cg1ii 0.95 2.80 3.721 (5) 164
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x-1, y, z.
[Figure 4]
Figure 4
The crystal packing diagram of compound (II)[link] (drawn as purple and pink sticks) viewed along: (a) the b axis (the center of the P1—C1 bond that coincides with the twofold screw axis is denoted with a grey dot); (b) the a axis; (c) along the b axis with the bifurcated hydrogen bonds shown as dashed lines (see Table 2[link] for details). H atoms have been omitted for clarity in parts (a) and (b) and only those involved in hydrogen bonding are shown in (c).

4. Database Survey

The Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) contains 11 structures with a β-ketodi­phenyl­phosphoryl moiety. Three of these structures are related to the title compounds, but have either an alkyl group bonded to the keto function or branching at the α-carbon, viz. E-(5SR,6SR)-3,6-dimethyl-5-di­phenyl­phos­phinoyl-7-tri­phenyl­meth­oxy­hept-2-en-4-one acetone solvate (SUGWOG; Doyle et al., 1993[Doyle, M. J., Hall, D., Raithby, P. R., Skelton, N. & Warren, S. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 517-523.]), anti-(2S,4S)-2-(N,N-dibenzyl­amino)-4-di­phenyl­phosphinoyl-1-phenyl­pentan-3-one monohydrate (RIZCEI; O'Brien et al., 1997[O'Brien, P., Powell, H. R., Raithby, P. R. & Warren, S. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1031-1040.]) and (4R,5R)-4,5-dihy­droxy-1,5-diphenyl-2-(di­phenyl­phosphino­yl)pentan-1-one) (FODBUW: Boesen et al., 2005[Boesen, T., Fox, D. J., Galloway, W., Pedersen, D. S., Tyzack, C. R. & Warren, S. (2005). Org. Biomol. Chem. 3, 630-637.]). The last compound (FODBUW) crystallizes in a chiral space group (P212121), as does compound (II)[link]. The phenyl rings of the di­phenyl­phosphinoyl group in each of these three compounds are inclined to one another by ca 67.97, 73.25 and 68.24°, respectively, similar to the arrangement in compound (I)[link].

5. Synthesis and crystallization

The title compounds, (I)[link] and (II)[link], were prepared following slightly modified literature procedures (Arnaud-Neu et al., 1996[Arnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grüttner, C., Jakobi, R. A., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M.-J., Simon, N. & Vogt, W. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1175-1182.]; Schuster et al., 2009[Schuster, E. M., Nisnevich, G., Botoshansky, M. & Gandelman, M. (2009). Organometallics, 28, 5025-5031.]) by the Arbuzov reaction of isopropoxydi­phenyl­phosphane (Shintou et al., 2003[Shintou, T., Kikuchi, W. & Mukaiyama, T. (2003). Bull. Chem. Soc. Jpn, 76, 1645-1667.]) with 2-bromo-4′-chloro­aceto­phenone for (I)[link] and 1-bromo­pinacolone for (II)[link]. For both compounds, crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a solution of the compound in CDCl3.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.95–0.99 Å with Uiso(H)= 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C20H16ClO2P C18H21O2P
Mr 354.75 300.32
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21
Temperature (K) 173 173
a, b, c (Å) 11.7380 (2), 14.4453 (3), 19.9515 (3) 8.3416 (2), 10.5161 (2), 10.2790 (2)
α, β, γ (°) 90, 90, 90 90, 112.212 (1), 90
V3) 3382.95 (10) 834.77 (3)
Z 8 2
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.97 1.47
Crystal size (mm) 0.36 × 0.17 × 0.13 0.43 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.599, 0.754 0.631, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 17900, 3297, 2880 7043, 3006, 2774
Rint 0.033 0.042
(sin θ/λ)max−1) 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.04 0.042, 0.118, 1.13
No. of reflections 3297 3006
No. of parameters 217 193
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.39 0.49, −0.38
Absolute structure Flack x determined using 1090 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.088 (14)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2013[Bruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 and SAINT (Bruker, 2013); data reduction: SAINT and XPREP (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).

(I) 1-(4-Chlorophenyl)-2-(diphenylphosphoryl)ethan-1-one top
Crystal data top
C20H16ClO2PDx = 1.393 Mg m3
Mr = 354.75Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9053 reflections
a = 11.7380 (2) Åθ = 4.4–72.0°
b = 14.4453 (3) ŵ = 2.97 mm1
c = 19.9515 (3) ÅT = 173 K
V = 3382.95 (10) Å3Needle, colourless
Z = 80.36 × 0.17 × 0.13 mm
F(000) = 1472
Data collection top
Bruker APEXII CCD
diffractometer
2880 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 72.2°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1414
Tmin = 0.599, Tmax = 0.754k = 1717
17900 measured reflectionsl = 2423
3297 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0502P)2 + 1.0258P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3297 reflectionsΔρmax = 0.32 e Å3
217 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80844 (4)0.25495 (3)0.98830 (2)0.04355 (14)
P10.47545 (3)0.53879 (3)0.75031 (2)0.02092 (11)
O10.33462 (10)0.47690 (9)0.89963 (6)0.0366 (3)
O20.60062 (9)0.52376 (8)0.75506 (6)0.0292 (3)
C10.40409 (13)0.43971 (11)0.86325 (8)0.0257 (3)
C20.38970 (12)0.44712 (10)0.78795 (7)0.0243 (3)
H2A0.30840.45870.77770.029*
H2B0.41090.38730.76730.029*
C30.50328 (13)0.38850 (10)0.89190 (7)0.0252 (3)
C40.51562 (14)0.38806 (11)0.96164 (8)0.0293 (3)
H40.45940.41700.98870.035*
C50.60803 (15)0.34632 (12)0.99183 (8)0.0328 (4)
H50.61630.34681.03920.039*
C60.68856 (14)0.30356 (11)0.95145 (9)0.0314 (4)
C70.67686 (14)0.30005 (12)0.88247 (9)0.0324 (4)
H70.73160.26850.85590.039*
C80.58415 (14)0.34315 (11)0.85264 (8)0.0289 (3)
H80.57580.34170.80530.035*
C90.42652 (13)0.54676 (10)0.66510 (7)0.0236 (3)
C100.50496 (14)0.57592 (12)0.61691 (8)0.0319 (4)
H100.58150.58860.62930.038*
C110.47052 (16)0.58623 (13)0.55074 (9)0.0391 (4)
H110.52340.60710.51800.047*
C120.35988 (17)0.56633 (13)0.53235 (8)0.0384 (4)
H120.33720.57260.48690.046*
C130.28230 (15)0.53745 (12)0.57968 (9)0.0347 (4)
H130.20630.52380.56670.042*
C140.31441 (13)0.52817 (11)0.64629 (8)0.0283 (3)
H140.26030.50920.67890.034*
C150.43163 (12)0.64440 (10)0.79158 (7)0.0230 (3)
C160.51476 (14)0.70315 (11)0.81674 (8)0.0290 (3)
H160.59270.68590.81430.035*
C170.48423 (15)0.78728 (12)0.84549 (8)0.0338 (4)
H170.54130.82760.86240.041*
C180.37069 (16)0.81216 (12)0.84948 (8)0.0345 (4)
H180.34980.87010.86830.041*
C190.28765 (15)0.75256 (12)0.82598 (9)0.0345 (4)
H190.20970.76920.82990.041*
C200.31663 (13)0.66892 (11)0.79674 (8)0.0286 (3)
H200.25910.62860.78030.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0357 (2)0.0428 (3)0.0521 (3)0.00128 (18)0.01410 (19)0.00816 (19)
P10.0163 (2)0.0199 (2)0.0265 (2)0.00157 (13)0.00033 (13)0.00008 (13)
O10.0337 (6)0.0397 (7)0.0364 (6)0.0080 (5)0.0075 (5)0.0014 (5)
O20.0181 (5)0.0310 (6)0.0386 (6)0.0002 (5)0.0015 (4)0.0010 (5)
C10.0251 (7)0.0207 (7)0.0311 (8)0.0041 (6)0.0033 (6)0.0002 (6)
C20.0215 (7)0.0207 (7)0.0307 (8)0.0029 (6)0.0001 (6)0.0011 (6)
C30.0264 (7)0.0203 (7)0.0289 (7)0.0046 (6)0.0017 (6)0.0012 (6)
C40.0330 (8)0.0259 (8)0.0292 (8)0.0031 (7)0.0059 (6)0.0006 (6)
C50.0416 (9)0.0299 (9)0.0269 (8)0.0052 (7)0.0015 (7)0.0036 (6)
C60.0291 (8)0.0255 (8)0.0395 (9)0.0037 (7)0.0057 (7)0.0052 (7)
C70.0303 (8)0.0305 (9)0.0365 (9)0.0029 (7)0.0014 (7)0.0023 (7)
C80.0314 (8)0.0279 (8)0.0275 (7)0.0008 (6)0.0002 (6)0.0012 (6)
C90.0231 (7)0.0207 (7)0.0269 (7)0.0003 (6)0.0003 (6)0.0011 (5)
C100.0281 (8)0.0333 (9)0.0342 (8)0.0055 (7)0.0053 (7)0.0028 (7)
C110.0454 (10)0.0409 (10)0.0310 (8)0.0048 (8)0.0106 (7)0.0015 (7)
C120.0508 (11)0.0371 (10)0.0273 (8)0.0020 (8)0.0037 (7)0.0012 (7)
C130.0328 (9)0.0356 (10)0.0357 (9)0.0013 (7)0.0088 (7)0.0015 (7)
C140.0241 (8)0.0299 (8)0.0308 (8)0.0027 (6)0.0008 (6)0.0011 (6)
C150.0242 (7)0.0207 (7)0.0240 (7)0.0016 (6)0.0001 (6)0.0007 (5)
C160.0277 (8)0.0277 (8)0.0315 (8)0.0037 (6)0.0027 (6)0.0001 (6)
C170.0440 (9)0.0269 (9)0.0307 (8)0.0075 (7)0.0060 (7)0.0030 (6)
C180.0511 (10)0.0234 (8)0.0291 (8)0.0056 (7)0.0006 (7)0.0021 (6)
C190.0341 (9)0.0302 (9)0.0393 (9)0.0088 (7)0.0007 (7)0.0002 (7)
C200.0258 (7)0.0256 (8)0.0345 (8)0.0008 (6)0.0026 (6)0.0008 (6)
Geometric parameters (Å, º) top
Cl1—C61.7360 (16)C9—C141.395 (2)
P1—O21.4882 (11)C10—H100.9500
P1—C21.8251 (15)C10—C111.389 (2)
P1—C91.7982 (15)C11—H110.9500
P1—C151.8083 (15)C11—C121.380 (3)
O1—C11.2168 (19)C12—H120.9500
C1—C21.515 (2)C12—C131.377 (3)
C1—C31.493 (2)C13—H130.9500
C2—H2A0.9900C13—C141.388 (2)
C2—H2B0.9900C14—H140.9500
C3—C41.399 (2)C15—C161.387 (2)
C3—C81.394 (2)C15—C201.399 (2)
C4—H40.9500C16—H160.9500
C4—C51.380 (2)C16—C171.391 (2)
C5—H50.9500C17—H170.9500
C5—C61.387 (2)C17—C181.383 (3)
C6—C71.384 (2)C18—H180.9500
C7—H70.9500C18—C191.382 (3)
C7—C81.388 (2)C19—H190.9500
C8—H80.9500C19—C201.384 (2)
C9—C101.396 (2)C20—H200.9500
O2—P1—C2114.35 (7)C14—C9—C10119.68 (14)
O2—P1—C9112.64 (7)C9—C10—H10120.2
O2—P1—C15112.02 (7)C11—C10—C9119.67 (16)
C9—P1—C2105.04 (7)C11—C10—H10120.2
C9—P1—C15106.60 (7)C10—C11—H11119.9
C15—P1—C2105.54 (7)C12—C11—C10120.30 (16)
O1—C1—C2119.05 (14)C12—C11—H11119.9
O1—C1—C3120.86 (14)C11—C12—H12119.9
C3—C1—C2120.09 (13)C13—C12—C11120.22 (16)
P1—C2—H2A108.9C13—C12—H12119.9
P1—C2—H2B108.9C12—C13—H13119.8
C1—C2—P1113.43 (10)C12—C13—C14120.44 (16)
C1—C2—H2A108.9C14—C13—H13119.8
C1—C2—H2B108.9C9—C14—H14120.2
H2A—C2—H2B107.7C13—C14—C9119.69 (15)
C4—C3—C1117.63 (14)C13—C14—H14120.2
C8—C3—C1123.27 (14)C16—C15—P1118.74 (12)
C8—C3—C4119.09 (15)C16—C15—C20119.81 (15)
C3—C4—H4119.4C20—C15—P1121.42 (12)
C5—C4—C3121.18 (15)C15—C16—H16119.9
C5—C4—H4119.4C15—C16—C17120.17 (15)
C4—C5—H5120.8C17—C16—H16119.9
C4—C5—C6118.47 (15)C16—C17—H17120.0
C6—C5—H5120.8C18—C17—C16119.95 (15)
C5—C6—Cl1119.11 (13)C18—C17—H17120.0
C7—C6—Cl1119.12 (13)C17—C18—H18120.1
C7—C6—C5121.75 (15)C19—C18—C17119.88 (16)
C6—C7—H7120.4C19—C18—H18120.1
C6—C7—C8119.20 (15)C18—C19—H19119.6
C8—C7—H7120.4C18—C19—C20120.89 (16)
C3—C8—H8119.9C20—C19—H19119.6
C7—C8—C3120.25 (15)C15—C20—H20120.4
C7—C8—H8119.9C19—C20—C15119.27 (15)
C10—C9—P1117.37 (12)C19—C20—H20120.4
C14—C9—P1122.92 (12)
Cl1—C6—C7—C8176.61 (13)C4—C5—C6—Cl1177.30 (13)
P1—C9—C10—C11177.86 (13)C4—C5—C6—C71.5 (3)
P1—C9—C14—C13178.80 (13)C5—C6—C7—C82.2 (3)
P1—C15—C16—C17176.49 (12)C6—C7—C8—C30.7 (3)
P1—C15—C20—C19176.96 (12)C8—C3—C4—C52.2 (2)
O1—C1—C2—P197.28 (15)C9—P1—C2—C1170.57 (11)
O1—C1—C3—C42.5 (2)C9—P1—C15—C16117.67 (13)
O1—C1—C3—C8178.73 (16)C9—P1—C15—C2060.42 (14)
O2—P1—C2—C165.44 (12)C9—C10—C11—C121.1 (3)
O2—P1—C9—C1025.46 (15)C10—C9—C14—C131.0 (2)
O2—P1—C9—C14156.68 (13)C10—C11—C12—C131.0 (3)
O2—P1—C15—C165.96 (14)C11—C12—C13—C140.1 (3)
O2—P1—C15—C20175.96 (12)C12—C13—C14—C91.1 (3)
C1—C3—C4—C5176.70 (15)C14—C9—C10—C110.1 (2)
C1—C3—C8—C7177.34 (15)C15—P1—C2—C158.14 (12)
C2—P1—C9—C10150.53 (13)C15—P1—C9—C1097.79 (13)
C2—P1—C9—C1431.61 (15)C15—P1—C9—C1480.08 (14)
C2—P1—C15—C16130.99 (12)C15—C16—C17—C180.5 (2)
C2—P1—C15—C2050.92 (14)C16—C15—C20—C191.1 (2)
C2—C1—C3—C4176.67 (14)C16—C17—C18—C191.2 (3)
C2—C1—C3—C82.1 (2)C17—C18—C19—C201.7 (3)
C3—C1—C2—P181.86 (15)C18—C19—C20—C150.6 (3)
C3—C4—C5—C60.7 (2)C20—C15—C16—C171.6 (2)
C4—C3—C8—C71.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of rings C3–C8 and C15–C20, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.303.1899 (19)156
C20—H20···O2i0.952.503.4487 (19)176
C5—H5···Cg3ii0.953.003.8873 (17)156
C13—H13···Cg1i0.952.903.5373 (19)126
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1, y+1, z+2.
(II) 1-(Diphenylphosphoryl)-3,3-dimethylbutan-2-one top
Crystal data top
C18H21O2PF(000) = 320
Mr = 300.32Dx = 1.195 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 8.3416 (2) ÅCell parameters from 5567 reflections
b = 10.5161 (2) Åθ = 4.7–72.0°
c = 10.2790 (2) ŵ = 1.47 mm1
β = 112.212 (1)°T = 173 K
V = 834.77 (3) Å3Needle, colourless
Z = 20.43 × 0.14 × 0.08 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3006 independent reflections
Radiation source: sealed tube2774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8 pixels mm-1θmax = 72.0°, θmin = 4.7°
ω and φ scansh = 910
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1212
Tmin = 0.631, Tmax = 0.754l = 1212
7043 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0722P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.49 e Å3
3006 reflectionsΔρmin = 0.38 e Å3
193 parametersAbsolute structure: Flack x determined using 1090 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.088 (14)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.46337 (9)0.13395 (7)0.54974 (7)0.0247 (2)
O10.2783 (3)0.1230 (4)0.2325 (3)0.0450 (7)
O20.4313 (3)0.2739 (3)0.5441 (3)0.0352 (6)
C10.4309 (5)0.1015 (3)0.2672 (3)0.0328 (8)
C20.5430 (4)0.0741 (4)0.4198 (3)0.0286 (7)
H2A0.65920.11080.43990.034*
H2B0.55720.01920.43170.034*
C30.5199 (5)0.0970 (4)0.1613 (4)0.0403 (9)
C40.3850 (8)0.0965 (11)0.0140 (5)0.105 (4)
H4A0.31180.02100.00060.157*
H4B0.44220.09520.05360.157*
H4C0.31330.17310.00080.157*
C50.6294 (11)0.2154 (7)0.1830 (7)0.090 (3)
H5A0.55960.29000.18420.135*
H5B0.67120.22370.10620.135*
H5C0.72840.20940.27260.135*
C60.6318 (9)0.0220 (7)0.1848 (6)0.0713 (17)
H6A0.72880.01590.27570.107*
H6B0.67650.02950.10960.107*
H6C0.56190.09700.18420.107*
C70.6358 (4)0.0881 (4)0.7129 (3)0.0280 (7)
C80.7278 (5)0.1814 (4)0.8067 (4)0.0400 (9)
H80.69820.26840.78650.048*
C90.8634 (5)0.1477 (6)0.9304 (4)0.0518 (12)
H90.92640.21170.99460.062*
C100.9069 (5)0.0207 (5)0.9603 (4)0.0485 (11)
H100.99940.00231.04490.058*
C110.8157 (5)0.0721 (5)0.8669 (4)0.0459 (10)
H110.84550.15900.88730.055*
C120.6802 (4)0.0389 (4)0.7431 (4)0.0341 (8)
H120.61780.10310.67900.041*
C130.2784 (4)0.0408 (4)0.5431 (3)0.0270 (6)
C140.2209 (5)0.0666 (4)0.4600 (4)0.0399 (9)
H140.27860.09450.40120.048*
C150.0789 (6)0.1332 (5)0.4632 (5)0.0486 (11)
H150.03870.20590.40510.058*
C160.0046 (5)0.0952 (5)0.5495 (5)0.0462 (10)
H160.10140.14160.55130.055*
C170.0532 (5)0.0105 (4)0.6328 (4)0.0422 (9)
H170.00350.03660.69300.051*
C180.1936 (5)0.0793 (4)0.6298 (4)0.0337 (7)
H180.23200.15280.68700.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0238 (4)0.0270 (4)0.0251 (3)0.0011 (3)0.0113 (3)0.0003 (3)
O10.0312 (12)0.068 (2)0.0324 (11)0.0044 (14)0.0085 (10)0.0033 (14)
O20.0398 (13)0.0270 (14)0.0428 (14)0.0012 (10)0.0200 (11)0.0020 (10)
C10.0345 (17)0.037 (2)0.0268 (15)0.0019 (13)0.0119 (13)0.0008 (13)
C20.0276 (15)0.0364 (18)0.0257 (15)0.0004 (13)0.0143 (12)0.0003 (13)
C30.043 (2)0.054 (3)0.0278 (16)0.0021 (17)0.0182 (16)0.0016 (15)
C40.068 (3)0.218 (12)0.027 (2)0.022 (5)0.018 (2)0.004 (4)
C50.138 (6)0.084 (5)0.094 (5)0.045 (5)0.096 (5)0.025 (4)
C60.092 (4)0.080 (4)0.067 (3)0.029 (3)0.059 (3)0.011 (3)
C70.0222 (13)0.0427 (18)0.0212 (14)0.0043 (13)0.0106 (12)0.0009 (12)
C80.0411 (19)0.047 (2)0.0348 (19)0.0138 (17)0.0173 (16)0.0079 (15)
C90.0411 (19)0.079 (3)0.0333 (17)0.027 (2)0.0120 (15)0.016 (2)
C100.0291 (17)0.083 (3)0.0281 (17)0.006 (2)0.0045 (14)0.0044 (19)
C110.0315 (18)0.063 (3)0.038 (2)0.0070 (18)0.0082 (16)0.0108 (19)
C120.0267 (16)0.043 (2)0.0292 (17)0.0013 (14)0.0066 (14)0.0005 (14)
C130.0200 (13)0.0328 (16)0.0276 (15)0.0006 (12)0.0083 (12)0.0047 (13)
C140.0336 (18)0.042 (2)0.047 (2)0.0061 (16)0.0181 (17)0.0107 (16)
C150.0392 (19)0.041 (3)0.065 (3)0.012 (2)0.019 (2)0.0121 (19)
C160.0262 (16)0.052 (2)0.062 (3)0.0053 (18)0.0184 (18)0.011 (2)
C170.0314 (17)0.057 (3)0.044 (2)0.0000 (17)0.0216 (16)0.0036 (18)
C180.0292 (16)0.0431 (19)0.0306 (16)0.0007 (15)0.0133 (14)0.0011 (14)
Geometric parameters (Å, º) top
P1—O21.493 (3)C7—C121.389 (6)
P1—C21.814 (3)C8—H80.9500
P1—C71.814 (3)C8—C91.391 (6)
P1—C131.807 (3)C9—H90.9500
O1—C11.207 (5)C9—C101.387 (8)
C1—C21.520 (5)C10—H100.9500
C1—C31.533 (5)C10—C111.378 (7)
C2—H2A0.9900C11—H110.9500
C2—H2B0.9900C11—C121.390 (5)
C3—C41.507 (6)C12—H120.9500
C3—C51.509 (7)C13—C141.388 (6)
C3—C61.525 (7)C13—C181.391 (5)
C4—H4A0.9800C14—H140.9500
C4—H4B0.9800C14—C151.387 (6)
C4—H4C0.9800C15—H150.9500
C5—H5A0.9800C15—C161.378 (7)
C5—H5B0.9800C16—H160.9500
C5—H5C0.9800C16—C171.375 (7)
C6—H6A0.9800C17—H170.9500
C6—H6B0.9800C17—C181.387 (5)
C6—H6C0.9800C18—H180.9500
C7—C81.387 (5)
O2—P1—C2115.06 (16)H6B—C6—H6C109.5
O2—P1—C7111.47 (16)C8—C7—P1119.5 (3)
O2—P1—C13113.25 (15)C8—C7—C12119.6 (3)
C7—P1—C2101.84 (15)C12—C7—P1120.9 (3)
C13—P1—C2109.21 (16)C7—C8—H8120.0
C13—P1—C7104.98 (16)C7—C8—C9120.0 (4)
O1—C1—C2120.6 (3)C9—C8—H8120.0
O1—C1—C3122.4 (3)C8—C9—H9119.9
C2—C1—C3117.0 (3)C10—C9—C8120.1 (4)
P1—C2—H2A108.3C10—C9—H9119.9
P1—C2—H2B108.3C9—C10—H10120.1
C1—C2—P1116.1 (2)C11—C10—C9119.9 (4)
C1—C2—H2A108.3C11—C10—H10120.1
C1—C2—H2B108.3C10—C11—H11119.9
H2A—C2—H2B107.4C10—C11—C12120.2 (4)
C4—C3—C1109.6 (4)C12—C11—H11119.9
C4—C3—C5109.4 (6)C7—C12—C11120.1 (4)
C4—C3—C6109.7 (5)C7—C12—H12119.9
C5—C3—C1107.3 (3)C11—C12—H12119.9
C5—C3—C6110.7 (5)C14—C13—P1123.8 (3)
C6—C3—C1110.1 (4)C14—C13—C18119.4 (3)
C3—C4—H4A109.5C18—C13—P1116.8 (3)
C3—C4—H4B109.5C13—C14—H14120.1
C3—C4—H4C109.5C15—C14—C13119.7 (4)
H4A—C4—H4B109.5C15—C14—H14120.1
H4A—C4—H4C109.5C14—C15—H15119.6
H4B—C4—H4C109.5C16—C15—C14120.8 (4)
C3—C5—H5A109.5C16—C15—H15119.6
C3—C5—H5B109.5C15—C16—H16120.3
C3—C5—H5C109.5C17—C16—C15119.5 (4)
H5A—C5—H5B109.5C17—C16—H16120.3
H5A—C5—H5C109.5C16—C17—H17119.7
H5B—C5—H5C109.5C16—C17—C18120.6 (4)
C3—C6—H6A109.5C18—C17—H17119.7
C3—C6—H6B109.5C13—C18—H18120.0
C3—C6—H6C109.5C17—C18—C13120.0 (4)
H6A—C6—H6B109.5C17—C18—H18120.0
H6A—C6—H6C109.5
P1—C7—C8—C9178.3 (3)C3—C1—C2—P1158.4 (3)
P1—C7—C12—C11178.3 (3)C7—P1—C2—C1177.5 (3)
P1—C13—C14—C15179.1 (3)C7—P1—C13—C14102.8 (3)
P1—C13—C18—C17178.4 (3)C7—P1—C13—C1875.6 (3)
O1—C1—C2—P123.1 (5)C7—C8—C9—C100.0 (6)
O1—C1—C3—C411.3 (7)C8—C7—C12—C110.3 (5)
O1—C1—C3—C5107.4 (6)C8—C9—C10—C110.1 (6)
O1—C1—C3—C6132.0 (5)C9—C10—C11—C120.1 (6)
O2—P1—C2—C156.8 (3)C10—C11—C12—C70.1 (6)
O2—P1—C7—C85.5 (3)C12—C7—C8—C90.2 (5)
O2—P1—C7—C12176.4 (3)C13—P1—C2—C171.8 (3)
O2—P1—C13—C14135.4 (3)C13—P1—C7—C8128.5 (3)
O2—P1—C13—C1846.2 (3)C13—P1—C7—C1253.5 (3)
C2—P1—C7—C8117.7 (3)C13—C14—C15—C161.0 (7)
C2—P1—C7—C1260.4 (3)C14—C13—C18—C170.0 (6)
C2—P1—C13—C145.8 (4)C14—C15—C16—C170.3 (7)
C2—P1—C13—C18175.8 (3)C15—C16—C17—C180.5 (7)
C2—C1—C3—C4167.2 (5)C16—C17—C18—C130.7 (6)
C2—C1—C3—C574.1 (5)C18—C13—C14—C150.8 (6)
C2—C1—C3—C646.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of ring C7–C12.
D—H···AD—HH···AD···AD—H···A
C2—H2B···O2i0.992.193.176 (5)176
C12—H12···O2i0.952.533.373 (5)148
C17—H17···Cg1ii0.952.803.721 (5)164
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x1, y, z.
 

Acknowledgements

We thank Grand Valley State University (Weldon Fund, OURS, CSCE) for financial support of this work. We are grateful to the NSF for financial support (REU-1062944) and NMR instrumentation (300 MHz Jeol, CCLI-0087655), as well as Pfizer, Inc. for the generous donation of a Varian Inova 400 FT NMR. The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds. We also thank Professor James Krikke and Professor William Winchester (GVSU) for help with instrumentation.

References

First citationArnaud-Neu, F., Böhmer, V., Dozol, J.-F., Grüttner, C., Jakobi, R. A., Kraft, D., Mauprivez, O., Rouquette, H., Schwing-Weill, M.-J., Simon, N. & Vogt, W. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 1175–1182.  Google Scholar
First citationBettencourt-Dias, A. de (2007). Curr. Org. Chem. 11, 1460–1480.  Google Scholar
First citationBoesen, T., Fox, D. J., Galloway, W., Pedersen, D. S., Tyzack, C. R. & Warren, S. (2005). Org. Biomol. Chem. 3, 630–637.  CSD CrossRef PubMed CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoyle, M. J., Hall, D., Raithby, P. R., Skelton, N. & Warren, S. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 517–523.  CSD CrossRef Google Scholar
First citationEliseeva, S. V. & Bünzli, J. G. (2010). Chem. Soc. Rev. 39, 189–227.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationO'Brien, P., Powell, H. R., Raithby, P. R. & Warren, S. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1031–1040.  Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRosario-Amorin, D., Ouizem, S., Dickie, D. A., Wen, Y., Paine, R. T., Gao, J., Grey, J. K., de Bettencourt-Dias, A., Hay, B. P. & Delmau, L. H. (2013). Inorg. Chem. 52, 3063–3083.  CAS PubMed Google Scholar
First citationSartain, H. T., McGraw, S. N., Lawrence, C. L., Werner, E. J. & Biros, S. M. (2015). Inorg. Chim. Acta, 426, 126–135.  CrossRef CAS Google Scholar
First citationSchuster, E. M., Nisnevich, G., Botoshansky, M. & Gandelman, M. (2009). Organometallics, 28, 5025–5031.  CSD CrossRef CAS Google Scholar
First citationSharova, E. V., Artyushin, O. I., Turanov, A. N., Karandashev, V. K., Meshkova, S. B., Topilova, Z. M. & Odinets, I. L. (2012). Cent. Eur. J. Chem. 10, 146–156.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShintou, T., Kikuchi, W. & Mukaiyama, T. (2003). Bull. Chem. Soc. Jpn, 76, 1645–1667.  CrossRef CAS Google Scholar
First citationThibon, A. & Pierre, V. C. (2009). Anal. Bioanal. Chem. 394, 107–120.  CrossRef PubMed CAS Google Scholar
First citationWeissman, S. I. (1942). J. Chem. Phys. 10, 214–217.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds