research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of rac-(3a'R,9a'R)-3a'-(indol-3-yl)-1′,2′,3′,3a',4′,9a'-hexa­hydro­spiro­[cyclo­pentane-1,9′-penta­leno[1,2-b]indole] p-xylene hemisolvate

aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
*Correspondence e-mail: nolan001@umn.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 April 2015; accepted 15 April 2015; online 18 April 2015)

The title compound, C26H26N2·0.5C8H10, is the first reported characterized 2:2 product from acid-catalyzed condensation of indole with cyclo­penta­none and no other 2:2 products were observed. Recrystallization from p-xylene gave the title hemisolvate with the p-xylene mol­ecule located about an inversion center. The terminal penta­lene ring is envelope-flap disordered at the C atom farthest from the skeletal indole unit, with a refined occupancy ratio of 0.819 (4):0.181 (4). The major component has this C atom bent away from the spiro-fused cyclo­pentane ring. In the crystal, mol­ecules are connected by N—H⋯π inter­actions, forming chains along [100], and N—H⋯π and C—H⋯π inter­actions, forming chains along [001], which results in the formation of slabs parallel to (010).

1. Chemical context

Condensations of indole with ketones and aldehydes under mildly acidic conditions generally give 2:1 bis­indole products analogous to (2) (see Fig. 1[link]; Shiri et al., 2010[Shiri, M., Zolfigol, M. A., Kruger, H. G. & Tanbakouchian, Z. (2010). Chem. Rev. 110, 2250-2293.]). Several examples have shown anti­cancer activity (Maciejewska et al., 2006[Maciejewska, D., Szpakowska, I., Wolska, I., Niemyjska, M., Mascini, M. & Maj-Żurawska, M. (2006). Bioelectrochemistry, 69, 1-9.]; Lee et al., 2008[Lee, C.-H., Yao, C.-F., Huang, S.-M., Ko, S., Tan, Y.-H., Lee-Chen, G.-J. & Wang, Y.-C. (2008). Cancer, 113, 815-825.]), although biological activities are more commonly observed from bis­indoles that include additional heterocyclic moieties (Gu et al., 1999[Gu, X.-H., Wan, X.-Z. & Jiang, B. (1999). Bioorg. Med. Chem. Lett. 9, 569-572.]; Andreani et al., 2008[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Landi, L., Prata, C., Berridge, M. V., Grasso, C., Fiebig, H.-H., Kelter, G., Burger, A. M. & Kunkel, M. W. (2008). J. Med. Chem. 51, 4563-4570.]). Strong acid catalysts, such as BF3 etherate, give higher-order products, including (3) (Banerji et al., 1983[Banerji, J., Mustafi, R. & Shoolery, J. N. (1983). Heterocycles, 20, 1355-1362.]). Moderate conditions, such as dilute hydro­chloric acid, generally favor 2:2 products. When a good dienophile is present, the inter­mediate 3-vinyl­indole can be trapped by a Diels–Alder reaction, giving cyclo­adducts such as (4) (Noland et al., 1993[Noland, W. E., Walhstrom, M. J., Konkel, M. J., Brigham, M. E., Trowbridge, A. G., Konkel, L. M. C., Gourneau, R. P., Scholten, C. A., Lee, N. H., Condoluci, J. J., Gac, T. S., Pour, M. M. & Radford, P. M. (1993). J. Heterocycl. Chem. 30, 81-91.]).

[Figure 1]
Figure 1
Contextual compounds.

For most ketones and aldehydes, the major 2:2 product is of type (5) or (6) (Bergman et al., 1989[Bergman, J., Norrby, P.-O., Tilstam, U. & Venemalm, L. (1989). Tetrahedron, 45, 5549-5564.]). A noteworthy exception is the cyclo­hexa­none product (7), reported by Guzei et al. (2012[Guzei, I. A., Spencer, L. C., Codner, E. & Boehm, J. M. (2012). Acta Cryst. E68, o1-o2.]), which exhibits inter­esting physical and fluorescence properties. It was desirable to explore the use of cyclic ketones of other sizes to determine whether analogs of (7) might be obtained. To date, the only observed 2:2 products have been analogs of the title compound, (1) (Fig. 2[link]). These products lack the physical and fluorescence behaviors shown by (7) and have been obtained as powders or crystalline solvates.

[Scheme 1]
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing the atom labeling. For clarity, only the major component is shown. Displacement ellipsoids are drawn at the 50% probability level. Unlabeled xylene atoms are related by the symmetry code −x + 2, −y, −z + 2.

2. Structural commentary

The indole units are inclined to one another by 63.85 (4)° and are nearly planar, with r.m.s. deviations from their mean planes of 0.013 and 0.007 Å for C8–C13/C6/N7 and N20/C21–C28, respectively. The C1–C5 ring is C3/C3′ flap-disordered in two twist–envelope conformers, with a refined occupancy ratio of 0.819 (4):0.181 (4) (Fig. 3[link]). The C15–C19 ring adopts an envelope conformation bent away from atom H12, with atom C15 as the flap.

[Figure 3]
Figure 3
The (a) major and (b) minor components of compound (1) in the crystal, viewed roughly along [[\overline{5}]0[\overline{4}]]. The H atoms attached to the atoms that change position (viz. C2, C3, and C4) are labeled. Note the envelope conformation of the C15–C19 ring.

3. Supra­molecular features

For lack of classical hydrogen-bond acceptors, it was anti­cipated that one or both N—H hydrogens would form short contacts with a ring centroid of another indole unit. Two N—H⋯π contacts are present; however, the axes of both N—H donor bonds are oblique and exocyclic to the acceptor rings. These and several C—H⋯π contacts are summarized in Table 1[link]. The H7⋯Cg2 distance is ca 3.185 Å, too large to be considered a classical H⋯Cg contact. Therefore, atom H7 is depicted as forming a non-classical hydrogen bond with atom C26, the nearest C atom. Hence, the N7—H7⋯C26 contacts form chains along [100]. The distance of this contact, ca 2.66 Å, can be compared with the generic C⋯H van der Waals distance of 2.88 Å reported by Rowland & Taylor (1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). The various C—H⋯Cg contacts and the N20—H20⋯Cg3 contact form chains along [001]; see Table 1[link]. The combination of these various contact leads to the formation of slabs parallel to (001). Glide planes are surrounded by indole systems, whereas inversion centers border the aliphatic portions of (1) and p-xylene (Fig. 4[link]). Although crystals of (1) were only obtained as a solvate, there are no short contacts between (1) and p-xylene.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N20/C21–C23/C28, C23–C28, C6/N7/C8/C13/C14 and C8–C13, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯C26i 0.88 2.66 3.493 (2) 157
C11—H11⋯Cg1ii 0.95 2.82 3.5419 (16) 133
C12—H12⋯Cg2ii 0.95 2.70 3.4652 (16) 138
N20—H20⋯Cg3iii 0.88 2.82 3.5654 (14) 144
C21—H21⋯Cg4iii 0.95 2.92 3.4970 (17) 120
Symmetry codes: (i) x+1, y, z; (ii) x, y, z-1; (iii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
The crystal packing of compound (1), viewed along the c axis. Only the H atoms involved in the various inter­molecular contacts have been included (see Table 1[link] for details).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; update of November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) found several entries that are synthetically or structurally related to (1). Compound (8) formed via 2:3 condensation of indole with acetone, and autoxidation (Banerji et al., 1981[Banerji, J., Chatterjee, A., Manna, S., Pascard, C., Prange, T. & Shoolery, J. N. (1981). Heterocycles, 15, 325-336.]; Fig. 1[link]). Compound (9), prepared by ZnBr2-catalyzed cyclo­dimerization of trans-3-(β-styr­yl)indole, features a pendant indol-3-yl group in the same position as (1) and similar but stronger N—H⋯π contacts in the crystal (McNulty & McLeod, 2011[McNulty, J. & McLeod, D. (2011). Synlett, 5, 717-721.]; Fig. 5[link]). No entries were found that contain the penta­leno[1,2-b]indole functionality, although (10) has a skeleton similar to (1) (Zhang et al., 2012[Zhang, W., Liu, Z., Li, S., Yang, T., Zhang, Q., Ma, L., Tian, X., Zhang, H., Huang, C., Zhang, S., Ju, J., Shen, Y. & Zhang, C. (2012). Org. Lett. 14, 3364-3367.]).

[Figure 5]
Figure 5
Database survey entries.

5. Synthesis and crystallization

Indole (1.17 g) was dissolved in cyclo­penta­none (10 ml). After the system was flushed with nitro­gen, concentrated hydro­chloric acid (0.1 ml) was added. The resulting mixture was heated to 350 K for 5 d. After cooling to room temperature, di­chloro­methane (DCM, 20 ml), water (20 ml), sodium bicarbonate (500 mg), and sodium bis­ulfite solution (saturated, 30 ml) were added. The resulting mixture was stirred for 2 h. The organic portion was filtered through neutral alumina (H = 2 cm × D = 3 cm; DCM), and then concentrated at reduced pressure. The resulting residue was separated by column chromatography (SiO2, hexa­ne–ethyl acetate, gradient from 1:0 to 5:1). The desired fraction (Rf = 0.43 in 2:1) was concentrated at reduced pressure, giving the title compound as a white powder (yield: 877 mg, 48%; m.p. 466–468 K); 1H NMR (500 MHz, CD2Cl2): δ 8.005 (s, 1H, H20), 7.921 (s, 1H, H7), 7.518 (d, J = 7.0 Hz, 1H, H12), 7.480 (d, J = 7.9 Hz, 1H, H24), 7.354 (d, J = 7.9 Hz, 1H, H27), 7.320 (d, J = 7.1 Hz, 1H, H9), 7.146 (dd, J = 7.9, 7.7 Hz, 1H, H26), 7.081 (td, J = 7.1, 1.6, 1H, H10), 7.049 (td, J = 7.0, 1.6, 1H, H11), 7.018 (dd, J = 7.9, 7.7 Hz, 1H, H25), 6.806 (d, J = 2.6 Hz, 1H, H21), 3.090 (dd, J = 8.3, 5.6 Hz, 1H, H1), 2.500 (dt, J = 13.0, 7.3 Hz, 1H, H4B/D), 2.235 (dt, J = 13.0, 6.6 Hz, 1H, H4A/C), 2.165 (dt, J = 13.0, 8.7 Hz, 1H, H19A), 2.085–1.820 (m, 6H, H2B/D, H3B/D, H18A, H19B, H2A/C, H16A), 1.793–1.693 (m, 3H, H17A, H18B, H3A/C), 1.612–1.547 (m, 1H, H17B), 1.500 (ddd, J = 11.9, 7.3, 4.0 Hz, 1H, H16B); 13C NMR (126 MHz, CD2Cl2): δ 146.98 (C6), 141.67 (C8), 137.77 (C28), 126.29 (C23), 125.12 (C14), 124.36 (C13), 123.69 (C22), 122.26 (C26), 121.86 (C21), 120.99 (C10), 120.59 (C24), 119.75 (C11), 119.65 (C25), 118.99 (C12), 112.30 (C9), 111.18 (C27), 68.48 (C1), 54.26 (C5), 53.41 (C15), 42.34 (C16), 39.00 (C4), 33.72 (C19), 31.43 (C2), 28.08 (C3), 25.16 (C17, C18); IR (KBr, cm−1) 3413 (vs, N—H), 3044 (w), 2953 (s), 2868 (C—H), 1446 (s, C=C), 1250, 1101 (C—N), 1015, 749 (s, C—H); MS (EI, m/z) [M]+ calculated for C26H26N2 366.21, found 366.21. Analysis (Atlantic Microlab, Norcross, GA, USA) calculated for C26H26N2: C 85.21, H 7.15, N 7.64%; found C 85.30, H 7.18, N 7.62%.

Recrystallization was attempted from common solvents. The best crystals were obtained from p-xylene. Attempted sublimation (0.012 mm Hg, 460 K) of neat or hemisolvate samples resulted in slow decomposition with elimination of indole. The sublimate was a light yellow powder, roughly 93 mol% compound (1). No useful sublimed crystals were found.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and refined as riding atoms, with N—H = 0.88 Å and C—H = 0.95–1.00 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms. The C1–C5 ring is disordered over two components with a refined occupancy ratio of 0.819 (4):0.181 (4). The disordered components were refined such that the only atoms occupying different sites are C3/C3′ and H atoms riding on C2/C2′, C3/C3′, and C4/C4′.

Table 2
Experimental details

Crystal data
Chemical formula C26H26N2·0.5C8H10
Mr 419.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 8.7618 (7), 29.450 (2), 9.6569 (8)
β (°) 114.732 (1)
V3) 2263.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.35 × 0.21 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.700, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25883, 5184, 4102
Rint 0.032
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.06
No. of reflections 5184
No. of parameters 294
No. of restraints 321
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004), and publCIF (Westrip, 2010).

rac-(3a'R,9a'R)-3a'-(Indol-3-yl)-1',2',3',3a',4',9a'-ηexahydrospiro[cyclopentane-1,9'-pentaleno[1,2-b]indole] p-xylene hemisolvate top
Crystal data top
C26H26N2·0.5C8H10Dx = 1.231 Mg m3
Mr = 419.57Melting point: 459 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.7618 (7) ÅCell parameters from 2946 reflections
b = 29.450 (2) Åθ = 2.4–27.3°
c = 9.6569 (8) ŵ = 0.07 mm1
β = 114.732 (1)°T = 173 K
V = 2263.2 (3) Å3Block, colourless
Z = 40.35 × 0.21 × 0.13 mm
F(000) = 900
Data collection top
Bruker APEXII CCD
diffractometer
4102 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.032
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.700, Tmax = 0.746k = 3838
25883 measured reflectionsl = 1212
5184 independent reflections
Refinement top
Refinement on F2321 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.8656P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5184 reflectionsΔρmax = 0.51 e Å3
294 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.44662 (19)0.09927 (5)0.06623 (16)0.0282 (3)
H10.33830.10170.07710.034*
C20.5227 (3)0.05186 (5)0.1165 (2)0.0462 (4)0.819 (4)
H2A0.59870.04410.06780.055*0.819 (4)
H2B0.43280.02870.08760.055*0.819 (4)
C2'0.5227 (3)0.05186 (5)0.1165 (2)0.0462 (4)0.181 (4)
H2C0.52520.03530.02840.055*0.181 (4)
H2D0.45290.03430.15610.055*0.181 (4)
C30.6179 (3)0.05373 (7)0.2856 (2)0.0428 (5)0.819 (4)
H3A0.70560.02990.32170.051*0.819 (4)
H3B0.54170.04960.33670.051*0.819 (4)
C3'0.6949 (6)0.0567 (2)0.2367 (9)0.0428 (5)0.181 (4)
H3C0.77740.05760.19130.051*0.181 (4)
H3D0.72290.03090.30890.051*0.181 (4)
C40.6968 (2)0.10088 (5)0.31725 (17)0.0335 (3)0.819 (4)
H4A0.81170.09980.32150.040*0.819 (4)
H4B0.70390.11250.41600.040*0.819 (4)
C4'0.6968 (2)0.10088 (5)0.31725 (17)0.0335 (3)0.181 (4)
H4C0.81220.11330.36800.040*0.181 (4)
H4D0.65040.09680.39390.040*0.181 (4)
C50.58207 (17)0.13233 (5)0.18429 (15)0.0261 (3)
C60.66437 (17)0.14891 (5)0.08495 (16)0.0262 (3)
N70.80742 (15)0.17360 (4)0.11129 (13)0.0292 (3)
H70.88140.18310.20050.035*
C80.81381 (17)0.18073 (5)0.02801 (16)0.0260 (3)
C90.93197 (17)0.20408 (5)0.06175 (17)0.0292 (3)
H91.02850.21730.01650.035*
C100.90408 (18)0.20741 (5)0.21329 (17)0.0299 (3)
H100.98250.22340.23950.036*
C110.76282 (18)0.18777 (5)0.32891 (16)0.0284 (3)
H110.74670.19080.43210.034*
C120.64618 (17)0.16398 (5)0.29538 (16)0.0253 (3)
H120.55120.15050.37460.030*
C130.67016 (16)0.16009 (4)0.14320 (15)0.0230 (3)
C140.57911 (17)0.13989 (5)0.06520 (15)0.0240 (3)
C150.41925 (17)0.11434 (4)0.09859 (15)0.0241 (3)
C160.26029 (17)0.14373 (5)0.17142 (17)0.0297 (3)
H16A0.26740.16390.25060.036*
H16B0.24540.16270.09340.036*
C170.11381 (19)0.11002 (5)0.2425 (2)0.0371 (4)
H17A0.03270.12090.34350.044*
H17B0.05420.10620.17590.044*
C180.1935 (2)0.06478 (5)0.2582 (2)0.0382 (4)
H18A0.13890.05330.36420.046*
H18B0.18220.04160.18890.046*
C190.37848 (18)0.07557 (5)0.21480 (16)0.0282 (3)
H19A0.39590.08530.30530.034*
H19B0.44990.04870.16890.034*
N200.46954 (16)0.24080 (4)0.31417 (15)0.0329 (3)
H200.47940.27030.33030.039*
C210.55349 (19)0.21573 (5)0.24806 (17)0.0308 (3)
H210.63150.22780.21290.037*
C220.50921 (17)0.17099 (5)0.23994 (15)0.0250 (3)
C230.38834 (17)0.16807 (5)0.30492 (15)0.0245 (3)
C240.29604 (18)0.13280 (5)0.33118 (16)0.0281 (3)
H240.30620.10260.30150.034*
C250.19025 (18)0.14242 (5)0.40062 (17)0.0320 (3)
H250.12750.11860.41830.038*
C260.17390 (19)0.18680 (6)0.44541 (17)0.0335 (3)
H260.09990.19250.49250.040*
C270.26304 (18)0.22218 (5)0.42229 (17)0.0321 (3)
H270.25310.25220.45400.039*
C280.36823 (18)0.21257 (5)0.35091 (16)0.0277 (3)
C290.9782 (3)0.02919 (8)0.8839 (3)0.0599 (5)
H290.96430.04980.80390.072*
C300.8857 (3)0.01069 (8)0.8504 (3)0.0570 (5)
C310.9101 (3)0.03952 (7)0.9693 (3)0.0593 (6)
H310.84880.06720.95020.071*
C320.7658 (3)0.02275 (12)0.6900 (3)0.0962 (10)
H32A0.79300.05300.66470.144*
H32B0.65050.02260.68190.144*
H32C0.77600.00040.61900.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0335 (8)0.0263 (7)0.0256 (7)0.0062 (6)0.0131 (6)0.0011 (5)
C20.0684 (12)0.0257 (8)0.0365 (9)0.0030 (8)0.0141 (8)0.0047 (7)
C30.0532 (13)0.0311 (10)0.0395 (11)0.0073 (9)0.0150 (9)0.0062 (8)
C40.0364 (8)0.0354 (8)0.0275 (7)0.0046 (6)0.0121 (6)0.0042 (6)
C2'0.0684 (12)0.0257 (8)0.0365 (9)0.0030 (8)0.0141 (8)0.0047 (7)
C3'0.0532 (13)0.0311 (10)0.0395 (11)0.0073 (9)0.0150 (9)0.0062 (8)
C4'0.0364 (8)0.0354 (8)0.0275 (7)0.0046 (6)0.0121 (6)0.0042 (6)
C50.0276 (7)0.0277 (7)0.0219 (6)0.0033 (5)0.0092 (5)0.0003 (5)
C60.0244 (7)0.0276 (7)0.0253 (7)0.0020 (5)0.0090 (5)0.0002 (5)
N70.0248 (6)0.0383 (7)0.0209 (6)0.0074 (5)0.0061 (5)0.0033 (5)
C80.0235 (7)0.0280 (7)0.0244 (7)0.0007 (5)0.0081 (5)0.0002 (5)
C90.0217 (7)0.0335 (8)0.0307 (7)0.0033 (6)0.0091 (6)0.0021 (6)
C100.0257 (7)0.0316 (7)0.0353 (8)0.0004 (6)0.0157 (6)0.0027 (6)
C110.0299 (7)0.0309 (7)0.0257 (7)0.0032 (6)0.0128 (6)0.0024 (6)
C120.0239 (7)0.0261 (7)0.0241 (7)0.0009 (5)0.0083 (5)0.0008 (5)
C130.0208 (6)0.0216 (6)0.0255 (7)0.0018 (5)0.0086 (5)0.0001 (5)
C140.0243 (7)0.0229 (6)0.0238 (7)0.0006 (5)0.0089 (5)0.0003 (5)
C150.0254 (7)0.0220 (6)0.0242 (6)0.0022 (5)0.0097 (5)0.0013 (5)
C160.0270 (7)0.0252 (7)0.0352 (8)0.0001 (5)0.0114 (6)0.0004 (6)
C170.0257 (8)0.0368 (8)0.0448 (9)0.0045 (6)0.0110 (7)0.0022 (7)
C180.0337 (8)0.0326 (8)0.0446 (9)0.0087 (6)0.0127 (7)0.0072 (7)
C190.0308 (7)0.0252 (7)0.0276 (7)0.0037 (6)0.0111 (6)0.0037 (5)
N200.0377 (7)0.0210 (6)0.0374 (7)0.0013 (5)0.0132 (6)0.0010 (5)
C210.0318 (8)0.0288 (7)0.0303 (7)0.0030 (6)0.0115 (6)0.0036 (6)
C220.0263 (7)0.0263 (7)0.0200 (6)0.0027 (5)0.0073 (5)0.0017 (5)
C230.0245 (7)0.0257 (7)0.0192 (6)0.0004 (5)0.0050 (5)0.0011 (5)
C240.0282 (7)0.0281 (7)0.0259 (7)0.0031 (6)0.0092 (6)0.0014 (5)
C250.0270 (7)0.0387 (8)0.0289 (7)0.0028 (6)0.0104 (6)0.0026 (6)
C260.0261 (7)0.0452 (9)0.0266 (7)0.0063 (6)0.0086 (6)0.0002 (6)
C270.0298 (7)0.0322 (8)0.0280 (7)0.0076 (6)0.0058 (6)0.0014 (6)
C280.0269 (7)0.0259 (7)0.0243 (7)0.0014 (5)0.0046 (6)0.0018 (5)
C290.0650 (13)0.0548 (12)0.0731 (15)0.0183 (10)0.0420 (12)0.0085 (10)
C300.0449 (11)0.0646 (13)0.0655 (13)0.0117 (9)0.0270 (10)0.0147 (10)
C310.0563 (12)0.0447 (11)0.0901 (16)0.0027 (9)0.0436 (12)0.0157 (11)
C320.0633 (15)0.139 (3)0.0742 (17)0.0256 (16)0.0172 (13)0.0335 (17)
Geometric parameters (Å, º) top
C1—C2'1.536 (2)C14—C151.5013 (18)
C1—C21.536 (2)C15—C161.5376 (19)
C1—C51.5886 (19)C15—C191.5347 (19)
C1—C151.5711 (19)C16—C171.539 (2)
C1—H11.0000C16—H16A0.9900
C2—C31.492 (3)C16—H16B0.9900
C2—H2A0.9900C17—C181.541 (2)
C2—H2B0.9900C17—H17A0.9900
C2'—C3'1.476 (4)C17—H17B0.9900
C2'—H2C0.9900C18—C191.528 (2)
C2'—H2D0.9900C18—H18A0.9900
C3—C41.524 (2)C18—H18B0.9900
C3—H3A0.9900C19—H19A0.9900
C3—H3B0.9900C19—H19B0.9900
C3'—C4'1.513 (4)N20—C211.374 (2)
C3'—H3C0.9900N20—C281.3670 (19)
C3'—H3D0.9900N20—H200.8800
C4—C51.561 (2)C21—C221.366 (2)
C4—H4A0.9900C21—H210.9500
C4—H4B0.9900C22—C231.4418 (19)
C4'—C51.561 (2)C23—C241.4032 (19)
C4'—H4C0.9900C23—C281.4182 (19)
C4'—H4D0.9900C24—C251.382 (2)
C5—C61.5025 (19)C24—H240.9500
C5—C221.510 (2)C25—C261.403 (2)
C6—N71.3775 (18)C25—H250.9500
C6—C141.3509 (19)C26—C271.375 (2)
N7—C81.3856 (18)C26—H260.9500
N7—H70.8800C27—C281.392 (2)
C8—C91.390 (2)C27—H270.9500
C8—C131.4211 (19)C29—C301.386 (3)
C9—C101.383 (2)C29—C31i1.378 (3)
C9—H90.9500C29—H290.9500
C10—C111.399 (2)C30—C311.372 (3)
C10—H100.9500C30—C321.505 (3)
C11—C121.385 (2)C31—C29i1.378 (3)
C11—H110.9500C31—H310.9500
C12—C131.3995 (19)C32—H32A0.9800
C12—H120.9500C32—H32B0.9800
C13—C141.4356 (19)C32—H32C0.9800
C2—C1—C15116.07 (12)C12—C13—C14135.45 (13)
C2—C1—C5103.60 (12)C6—C14—C13107.61 (12)
C2'—C1—C5103.60 (12)C6—C14—C15112.11 (12)
C2'—C1—C15116.07 (12)C13—C14—C15140.21 (12)
C5—C1—C15107.79 (11)C1—C15—C14100.99 (11)
C2—C1—H1109.7C1—C15—C16110.34 (11)
C5—C1—H1109.7C1—C15—C19114.89 (11)
C15—C1—H1109.7C14—C15—C16113.66 (11)
C1—C2—C3106.41 (14)C14—C15—C19116.15 (11)
C1—C2—H2A110.4C16—C15—C19101.26 (11)
C1—C2—H2B110.4C15—C16—C17105.53 (11)
C3—C2—H2A110.4C15—C16—H16A110.6
C3—C2—H2B110.4C17—C16—H16A110.6
H2A—C2—H2B108.6C15—C16—H16B110.6
C1—C2'—C3'109.1 (3)C17—C16—H16B110.6
C1—C2'—H2C109.9H16A—C16—H16B108.8
C1—C2'—H2D109.9C16—C17—C18105.90 (12)
C3'—C2'—H2C109.9C16—C17—H17A110.6
C3'—C2'—H2D109.9C16—C17—H17B110.6
H2C—C2'—H2D108.3C18—C17—H17A110.6
C2—C3—C4104.62 (15)C18—C17—H17B110.6
C2—C3—H3A110.8H17A—C17—H17B108.7
C2—C3—H3B110.8C17—C18—C19105.40 (12)
C4—C3—H3A110.8C17—C18—H18A110.7
C4—C3—H3B110.8C17—C18—H18B110.7
H3A—C3—H3B108.9C19—C18—H18A110.7
C2'—C3'—C4'105.9 (2)C19—C18—H18B110.7
C2'—C3'—H3C110.5H18A—C18—H18B108.8
C2'—C3'—H3D110.5C15—C19—C18104.54 (12)
C4'—C3'—H3C110.5C15—C19—H19A110.8
C4'—C3'—H3D110.5C15—C19—H19B110.8
H3C—C3'—H3D108.7C18—C19—H19A110.8
C3—C4—C5107.06 (13)C18—C19—H19B110.8
C3—C4—H4A110.3H19A—C19—H19B108.9
C3—C4—H4B110.3C21—N20—C28109.01 (12)
C5—C4—H4A110.3C21—N20—H20125.5
C5—C4—H4B110.3C28—N20—H20125.5
H4A—C4—H4B108.6N20—C21—C22110.53 (13)
C3'—C4'—C5102.9 (3)N20—C21—H21124.7
C3'—C4'—H4C111.2C22—C21—H21124.7
C3'—C4'—H4D111.2C5—C22—C21126.53 (13)
C5—C4'—H4C111.2C5—C22—C23127.37 (12)
C5—C4'—H4D111.2C21—C22—C23105.97 (13)
H4C—C4'—H4D109.1C22—C23—C24134.96 (13)
C1—C5—C4104.92 (11)C22—C23—C28106.94 (12)
C1—C5—C4'104.92 (11)C24—C23—C28118.10 (13)
C1—C5—C698.91 (11)C23—C24—C25119.36 (14)
C1—C5—C22114.67 (11)C23—C24—H24120.3
C4—C5—C6113.69 (12)C25—C24—H24120.3
C4'—C5—C6113.69 (12)C24—C25—C26121.09 (14)
C4—C5—C22112.17 (11)C24—C25—H25119.5
C4'—C5—C22112.17 (11)C26—C25—H25119.5
C6—C5—C22111.68 (11)C25—C26—C27121.17 (14)
C5—C6—N7134.14 (12)C25—C26—H26119.4
C5—C6—C14115.07 (12)C27—C26—H26119.4
N7—C6—C14110.72 (12)C26—C27—C28117.73 (14)
C6—N7—C8107.70 (11)C26—C27—H27121.1
C6—N7—H7126.2C28—C27—H27121.1
C8—N7—H7126.2N20—C28—C23107.55 (12)
N7—C8—C9129.71 (13)N20—C28—C27129.90 (14)
N7—C8—C13108.23 (12)C23—C28—C27122.54 (13)
C9—C8—C13122.05 (13)C30i—C29—C31121.5 (2)
C8—C9—C10117.64 (13)C30—C29—H29119.3
C8—C9—H9121.2C31i—C29—H29119.3
C10—C9—H9121.2C29—C30—C31117.2 (2)
C9—C10—C11121.40 (13)C29—C30—C32121.9 (2)
C9—C10—H10119.3C31—C30—C32120.9 (2)
C11—C10—H10119.3C29—C31—C30i121.3 (2)
C10—C11—C12121.05 (13)C29i—C31—H31119.3
C10—C11—H11119.5C30—C31—H31119.3
C12—C11—H11119.5C30—C32—H32A109.5
C11—C12—C13119.06 (13)C30—C32—H32B109.5
C11—C12—H12120.5C30—C32—H32C109.5
C13—C12—H12120.5H32A—C32—H32B109.5
C8—C13—C12118.80 (12)H32A—C32—H32C109.5
C8—C13—C14105.74 (12)H32B—C32—H32C109.5
C5—C1—C2—C332.92 (18)C6—N7—C8—C130.36 (16)
C15—C1—C2—C3150.85 (15)N7—C8—C9—C10177.64 (14)
C5—C1—C2'—C3'7.4 (4)C13—C8—C9—C101.1 (2)
C15—C1—C2'—C3'110.5 (4)N7—C8—C13—C12178.11 (12)
C2—C1—C5—C415.51 (15)N7—C8—C13—C140.65 (15)
C2—C1—C5—C6102.06 (13)C9—C8—C13—C120.9 (2)
C2—C1—C5—C22139.03 (13)C9—C8—C13—C14179.63 (13)
C2'—C1—C5—C4'15.51 (15)C8—C9—C10—C110.5 (2)
C2'—C1—C5—C6102.06 (13)C9—C10—C11—C120.4 (2)
C2'—C1—C5—C22139.03 (13)C10—C11—C12—C130.6 (2)
C15—C1—C5—C4139.04 (12)C11—C12—C13—C80.0 (2)
C15—C1—C5—C4'139.04 (12)C11—C12—C13—C14178.27 (14)
C15—C1—C5—C621.48 (14)C8—C13—C14—C60.70 (15)
C15—C1—C5—C2297.44 (13)C8—C13—C14—C15177.17 (16)
C2—C1—C15—C1494.01 (15)C12—C13—C14—C6177.75 (15)
C2—C1—C15—C16145.46 (14)C12—C13—C14—C151.3 (3)
C2—C1—C15—C1931.79 (18)C6—C14—C15—C113.29 (15)
C2'—C1—C15—C1494.01 (15)C6—C14—C15—C16104.85 (14)
C2'—C1—C15—C16145.46 (14)C6—C14—C15—C19138.25 (13)
C2'—C1—C15—C1931.79 (18)C13—C14—C15—C1170.34 (16)
C5—C1—C15—C1421.58 (14)C13—C14—C15—C1671.5 (2)
C5—C1—C15—C1698.95 (13)C13—C14—C15—C1945.4 (2)
C5—C1—C15—C19147.39 (12)C1—C15—C16—C1785.04 (14)
C1—C2—C3—C437.5 (2)C14—C15—C16—C17162.36 (12)
C1—C2'—C3'—C4'28.4 (7)C19—C15—C16—C1737.06 (14)
C2—C3—C4—C526.9 (2)C1—C15—C19—C1877.39 (15)
C2'—C3'—C4'—C537.3 (6)C14—C15—C19—C18165.10 (12)
C3—C4—C5—C16.50 (17)C16—C15—C19—C1841.49 (14)
C3—C4—C5—C6113.49 (15)C15—C16—C17—C1818.99 (16)
C3—C4—C5—C22118.60 (15)C16—C17—C18—C196.91 (17)
C3'—C4'—C5—C132.1 (4)C17—C18—C19—C1530.33 (16)
C3'—C4'—C5—C674.9 (4)C28—N20—C21—C220.09 (17)
C3'—C4'—C5—C22157.2 (4)C21—N20—C28—C230.48 (16)
C1—C5—C6—N7169.36 (16)C21—N20—C28—C27178.45 (15)
C1—C5—C6—C1414.02 (15)N20—C21—C22—C5175.78 (13)
C4—C5—C6—N758.7 (2)N20—C21—C22—C230.33 (16)
C4—C5—C6—C14124.72 (14)C5—C22—C23—C243.6 (3)
C4'—C5—C6—N758.7 (2)C5—C22—C23—C28175.45 (13)
C4'—C5—C6—C14124.72 (14)C21—C22—C23—C24179.71 (15)
C22—C5—C6—N769.5 (2)C21—C22—C23—C280.61 (15)
C22—C5—C6—C14107.11 (14)C22—C23—C24—C25178.81 (15)
C1—C5—C22—C21132.41 (15)C28—C23—C24—C250.2 (2)
C1—C5—C22—C2352.30 (18)C22—C23—C28—N200.67 (15)
C4—C5—C22—C21108.04 (16)C22—C23—C28—C27178.36 (13)
C4—C5—C22—C2367.25 (18)C24—C23—C28—N20179.96 (12)
C4'—C5—C22—C21108.04 (16)C24—C23—C28—C270.9 (2)
C4'—C5—C22—C2367.25 (18)C23—C24—C25—C260.1 (2)
C6—C5—C22—C2120.9 (2)C24—C25—C26—C270.3 (2)
C6—C5—C22—C23163.78 (13)C25—C26—C27—C280.9 (2)
C5—C6—N7—C8176.63 (15)C26—C27—C28—N20179.94 (14)
C14—C6—N7—C80.10 (16)C26—C27—C28—C231.3 (2)
C5—C6—C14—C13176.90 (11)C31i—C29—C30—C310.1 (3)
C5—C6—C14—C150.66 (17)C31i—C29—C30—C32178.78 (19)
N7—C6—C14—C130.51 (16)C29—C30—C31—C29i0.1 (3)
N7—C6—C14—C15178.07 (12)C32—C30—C31—C29i178.80 (19)
C6—N7—C8—C9179.23 (15)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N20/C21–C23/C28, C23–C28, C6/N7/C8/C13/C14 and C8–C13, respectively.
D—H···AD—HH···AD···AD—H···A
N7—H7···C26ii0.882.663.493 (2)157
C11—H11···Cg1iii0.952.823.5419 (16)133
C12—H12···Cg2iii0.952.703.4652 (16)138
N20—H20···Cg3iv0.882.823.5654 (14)144
C21—H21···Cg4iv0.952.923.4970 (17)120
Symmetry codes: (ii) x+1, y, z; (iii) x, y, z1; (iv) x, y1/2, z1/2.
 

Acknowledgements

The authors thank Victor G. Young Jr (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystal structure analysis, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this work.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Landi, L., Prata, C., Berridge, M. V., Grasso, C., Fiebig, H.-H., Kelter, G., Burger, A. M. & Kunkel, M. W. (2008). J. Med. Chem. 51, 4563–4570.  CrossRef PubMed CAS Google Scholar
First citationBanerji, J., Chatterjee, A., Manna, S., Pascard, C., Prange, T. & Shoolery, J. N. (1981). Heterocycles, 15, 325–336.  CrossRef CAS Google Scholar
First citationBanerji, J., Mustafi, R. & Shoolery, J. N. (1983). Heterocycles, 20, 1355–1362.  CrossRef CAS Google Scholar
First citationBergman, J., Norrby, P.-O., Tilstam, U. & Venemalm, L. (1989). Tetrahedron, 45, 5549–5564.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, X.-H., Wan, X.-Z. & Jiang, B. (1999). Bioorg. Med. Chem. Lett. 9, 569–572.  CrossRef PubMed CAS Google Scholar
First citationGuzei, I. A., Spencer, L. C., Codner, E. & Boehm, J. M. (2012). Acta Cryst. E68, o1–o2.  CSD CrossRef IUCr Journals Google Scholar
First citationLee, C.-H., Yao, C.-F., Huang, S.-M., Ko, S., Tan, Y.-H., Lee-Chen, G.-J. & Wang, Y.-C. (2008). Cancer, 113, 815–825.  CrossRef PubMed CAS Google Scholar
First citationMaciejewska, D., Szpakowska, I., Wolska, I., Niemyjska, M., Mascini, M. & Maj-Żurawska, M. (2006). Bioelectrochemistry, 69, 1–9.  CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcNulty, J. & McLeod, D. (2011). Synlett, 5, 717–721.  CSD CrossRef Google Scholar
First citationNoland, W. E., Walhstrom, M. J., Konkel, M. J., Brigham, M. E., Trowbridge, A. G., Konkel, L. M. C., Gourneau, R. P., Scholten, C. A., Lee, N. H., Condoluci, J. J., Gac, T. S., Pour, M. M. & Radford, P. M. (1993). J. Heterocycl. Chem. 30, 81–91.  CrossRef CAS Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiri, M., Zolfigol, M. A., Kruger, H. G. & Tanbakouchian, Z. (2010). Chem. Rev. 110, 2250–2293.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Liu, Z., Li, S., Yang, T., Zhang, Q., Ma, L., Tian, X., Zhang, H., Huang, C., Zhang, S., Ju, J., Shen, Y. & Zhang, C. (2012). Org. Lett. 14, 3364–3367.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds