research communications
rac-(3a'R,9a'R)-3a'-(indol-3-yl)-1′,2′,3′,3a',4′,9a'-hexahydrospiro[cyclopentane-1,9′-pentaleno[1,2-b]indole] p-xylene hemisolvate
ofaDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
*Correspondence e-mail: nolan001@umn.edu
The title compound, C26H26N2·0.5C8H10, is the first reported characterized 2:2 product from acid-catalyzed condensation of indole with cyclopentanone and no other 2:2 products were observed. Recrystallization from p-xylene gave the title hemisolvate with the p-xylene molecule located about an inversion center. The terminal pentalene ring is envelope-flap disordered at the C atom farthest from the skeletal indole unit, with a refined occupancy ratio of 0.819 (4):0.181 (4). The major component has this C atom bent away from the spiro-fused cyclopentane ring. In the crystal, molecules are connected by N—H⋯π interactions, forming chains along [100], and N—H⋯π and C—H⋯π interactions, forming chains along [001], which results in the formation of slabs parallel to (010).
Keywords: crystal structure; annulation; indole; cyclic ketone; disorder; X—H⋯π interactions.
CCDC reference: 1059822
1. Chemical context
Condensations of indole with ; Shiri et al., 2010). Several examples have shown anticancer activity (Maciejewska et al., 2006; Lee et al., 2008), although biological activities are more commonly observed from bisindoles that include additional heterocyclic moieties (Gu et al., 1999; Andreani et al., 2008). Strong acid catalysts, such as BF3 etherate, give higher-order products, including (3) (Banerji et al., 1983). Moderate conditions, such as dilute hydrochloric acid, generally favor 2:2 products. When a good is present, the intermediate 3-vinylindole can be trapped by a Diels–Alder reaction, giving cycloadducts such as (4) (Noland et al., 1993).
and under mildly acidic conditions generally give 2:1 bisindole products analogous to (2) (see Fig. 1For most et al., 1989). A noteworthy exception is the cyclohexanone product (7), reported by Guzei et al. (2012), which exhibits interesting physical and fluorescence properties. It was desirable to explore the use of cyclic of other sizes to determine whether analogs of (7) might be obtained. To date, the only observed 2:2 products have been analogs of the title compound, (1) (Fig. 2). These products lack the physical and fluorescence behaviors shown by (7) and have been obtained as powders or crystalline solvates.
and the major 2:2 product is of type (5) or (6) (Bergman2. Structural commentary
The indole units are inclined to one another by 63.85 (4)° and are nearly planar, with r.m.s. deviations from their mean planes of 0.013 and 0.007 Å for C8–C13/C6/N7 and N20/C21–C28, respectively. The C1–C5 ring is C3/C3′ flap-disordered in two twist–envelope conformers, with a refined occupancy ratio of 0.819 (4):0.181 (4) (Fig. 3). The C15–C19 ring adopts an bent away from atom H12, with atom C15 as the flap.
3. Supramolecular features
For lack of classical hydrogen-bond acceptors, it was anticipated that one or both N—H hydrogens would form short contacts with a ring centroid of another indole unit. Two N—H⋯π contacts are present; however, the axes of both N—H donor bonds are oblique and exocyclic to the acceptor rings. These and several C—H⋯π contacts are summarized in Table 1. The H7⋯Cg2 distance is ca 3.185 Å, too large to be considered a classical H⋯Cg contact. Therefore, atom H7 is depicted as forming a non-classical hydrogen bond with atom C26, the nearest C atom. Hence, the N7—H7⋯C26 contacts form chains along [100]. The distance of this contact, ca 2.66 Å, can be compared with the generic C⋯H van der Waals distance of 2.88 Å reported by Rowland & Taylor (1996). The various C—H⋯Cg contacts and the N20—H20⋯Cg3 contact form chains along [001]; see Table 1. The combination of these various contact leads to the formation of slabs parallel to (001). Glide planes are surrounded by indole systems, whereas inversion centers border the aliphatic portions of (1) and p-xylene (Fig. 4). Although crystals of (1) were only obtained as a solvate, there are no short contacts between (1) and p-xylene.
4. Database survey
A search of the Cambridge Structural Database (Version 5.36; update of November 2014; Groom & Allen, 2014) found several entries that are synthetically or structurally related to (1). Compound (8) formed via 2:3 condensation of indole with acetone, and autoxidation (Banerji et al., 1981; Fig. 1). Compound (9), prepared by ZnBr2-catalyzed cyclodimerization of trans-3-(β-styryl)indole, features a pendant indol-3-yl group in the same position as (1) and similar but stronger N—H⋯π contacts in the crystal (McNulty & McLeod, 2011; Fig. 5). No entries were found that contain the pentaleno[1,2-b]indole functionality, although (10) has a skeleton similar to (1) (Zhang et al., 2012).
5. Synthesis and crystallization
Indole (1.17 g) was dissolved in cyclopentanone (10 ml). After the system was flushed with nitrogen, concentrated hydrochloric acid (0.1 ml) was added. The resulting mixture was heated to 350 K for 5 d. After cooling to room temperature, dichloromethane (DCM, 20 ml), water (20 ml), sodium bicarbonate (500 mg), and sodium bisulfite solution (saturated, 30 ml) were added. The resulting mixture was stirred for 2 h. The organic portion was filtered through neutral alumina (H = 2 cm × D = 3 cm; DCM), and then concentrated at reduced pressure. The resulting residue was separated by 2, hexane–ethyl acetate, gradient from 1:0 to 5:1). The desired fraction (Rf = 0.43 in 2:1) was concentrated at reduced pressure, giving the title compound as a white powder (yield: 877 mg, 48%; m.p. 466–468 K); 1H NMR (500 MHz, CD2Cl2): δ 8.005 (s, 1H, H20), 7.921 (s, 1H, H7), 7.518 (d, J = 7.0 Hz, 1H, H12), 7.480 (d, J = 7.9 Hz, 1H, H24), 7.354 (d, J = 7.9 Hz, 1H, H27), 7.320 (d, J = 7.1 Hz, 1H, H9), 7.146 (dd, J = 7.9, 7.7 Hz, 1H, H26), 7.081 (td, J = 7.1, 1.6, 1H, H10), 7.049 (td, J = 7.0, 1.6, 1H, H11), 7.018 (dd, J = 7.9, 7.7 Hz, 1H, H25), 6.806 (d, J = 2.6 Hz, 1H, H21), 3.090 (dd, J = 8.3, 5.6 Hz, 1H, H1), 2.500 (dt, J = 13.0, 7.3 Hz, 1H, H4B/D), 2.235 (dt, J = 13.0, 6.6 Hz, 1H, H4A/C), 2.165 (dt, J = 13.0, 8.7 Hz, 1H, H19A), 2.085–1.820 (m, 6H, H2B/D, H3B/D, H18A, H19B, H2A/C, H16A), 1.793–1.693 (m, 3H, H17A, H18B, H3A/C), 1.612–1.547 (m, 1H, H17B), 1.500 (ddd, J = 11.9, 7.3, 4.0 Hz, 1H, H16B); 13C NMR (126 MHz, CD2Cl2): δ 146.98 (C6), 141.67 (C8), 137.77 (C28), 126.29 (C23), 125.12 (C14), 124.36 (C13), 123.69 (C22), 122.26 (C26), 121.86 (C21), 120.99 (C10), 120.59 (C24), 119.75 (C11), 119.65 (C25), 118.99 (C12), 112.30 (C9), 111.18 (C27), 68.48 (C1), 54.26 (C5), 53.41 (C15), 42.34 (C16), 39.00 (C4), 33.72 (C19), 31.43 (C2), 28.08 (C3), 25.16 (C17, C18); IR (KBr, cm−1) 3413 (vs, N—H), 3044 (w), 2953 (s), 2868 (C—H), 1446 (s, C=C), 1250, 1101 (C—N), 1015, 749 (s, C—H); MS (EI, m/z) [M]+ calculated for C26H26N2 366.21, found 366.21. Analysis (Atlantic Microlab, Norcross, GA, USA) calculated for C26H26N2: C 85.21, H 7.15, N 7.64%; found C 85.30, H 7.18, N 7.62%.
(SiORecrystallization was attempted from common solvents. The best crystals were obtained from p-xylene. Attempted (0.012 mm Hg, 460 K) of neat or hemisolvate samples resulted in slow decomposition with elimination of indole. The sublimate was a light yellow powder, roughly 93 mol% compound (1). No useful sublimed crystals were found.
6. Refinement
Crystal data, data collection, and structure . H atoms were placed in calculated positions and refined as riding atoms, with N—H = 0.88 Å and C—H = 0.95–1.00 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms. The C1–C5 ring is disordered over two components with a refined occupancy ratio of 0.819 (4):0.181 (4). The disordered components were refined such that the only atoms occupying different sites are C3/C3′ and H atoms riding on C2/C2′, C3/C3′, and C4/C4′.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1059822
https://doi.org/10.1107/S2056989015007422/su5116sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015007422/su5116Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015007422/su5116Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004), and publCIF (Westrip, 2010).C26H26N2·0.5C8H10 | Dx = 1.231 Mg m−3 |
Mr = 419.57 | Melting point: 459 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7618 (7) Å | Cell parameters from 2946 reflections |
b = 29.450 (2) Å | θ = 2.4–27.3° |
c = 9.6569 (8) Å | µ = 0.07 mm−1 |
β = 114.732 (1)° | T = 173 K |
V = 2263.2 (3) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.21 × 0.13 mm |
F(000) = 900 |
Bruker APEXII CCD diffractometer | 4102 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.032 |
φ and ω scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.700, Tmax = 0.746 | k = −38→38 |
25883 measured reflections | l = −12→12 |
5184 independent reflections |
Refinement on F2 | 321 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0542P)2 + 0.8656P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
5184 reflections | Δρmax = 0.51 e Å−3 |
294 parameters | Δρmin = −0.37 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.44662 (19) | 0.09927 (5) | 0.06623 (16) | 0.0282 (3) | |
H1 | 0.3383 | 0.1017 | 0.0771 | 0.034* | |
C2 | 0.5227 (3) | 0.05186 (5) | 0.1165 (2) | 0.0462 (4) | 0.819 (4) |
H2A | 0.5987 | 0.0441 | 0.0678 | 0.055* | 0.819 (4) |
H2B | 0.4328 | 0.0287 | 0.0876 | 0.055* | 0.819 (4) |
C2' | 0.5227 (3) | 0.05186 (5) | 0.1165 (2) | 0.0462 (4) | 0.181 (4) |
H2C | 0.5252 | 0.0353 | 0.0284 | 0.055* | 0.181 (4) |
H2D | 0.4529 | 0.0343 | 0.1561 | 0.055* | 0.181 (4) |
C3 | 0.6179 (3) | 0.05373 (7) | 0.2856 (2) | 0.0428 (5) | 0.819 (4) |
H3A | 0.7056 | 0.0299 | 0.3217 | 0.051* | 0.819 (4) |
H3B | 0.5417 | 0.0496 | 0.3367 | 0.051* | 0.819 (4) |
C3' | 0.6949 (6) | 0.0567 (2) | 0.2367 (9) | 0.0428 (5) | 0.181 (4) |
H3C | 0.7774 | 0.0576 | 0.1913 | 0.051* | 0.181 (4) |
H3D | 0.7229 | 0.0309 | 0.3089 | 0.051* | 0.181 (4) |
C4 | 0.6968 (2) | 0.10088 (5) | 0.31725 (17) | 0.0335 (3) | 0.819 (4) |
H4A | 0.8117 | 0.0998 | 0.3215 | 0.040* | 0.819 (4) |
H4B | 0.7039 | 0.1125 | 0.4160 | 0.040* | 0.819 (4) |
C4' | 0.6968 (2) | 0.10088 (5) | 0.31725 (17) | 0.0335 (3) | 0.181 (4) |
H4C | 0.8122 | 0.1133 | 0.3680 | 0.040* | 0.181 (4) |
H4D | 0.6504 | 0.0968 | 0.3939 | 0.040* | 0.181 (4) |
C5 | 0.58207 (17) | 0.13233 (5) | 0.18429 (15) | 0.0261 (3) | |
C6 | 0.66437 (17) | 0.14891 (5) | 0.08495 (16) | 0.0262 (3) | |
N7 | 0.80742 (15) | 0.17360 (4) | 0.11129 (13) | 0.0292 (3) | |
H7 | 0.8814 | 0.1831 | 0.2005 | 0.035* | |
C8 | 0.81381 (17) | 0.18073 (5) | −0.02801 (16) | 0.0260 (3) | |
C9 | 0.93197 (17) | 0.20408 (5) | −0.06175 (17) | 0.0292 (3) | |
H9 | 1.0285 | 0.2173 | 0.0165 | 0.035* | |
C10 | 0.90408 (18) | 0.20741 (5) | −0.21329 (17) | 0.0299 (3) | |
H10 | 0.9825 | 0.2234 | −0.2395 | 0.036* | |
C11 | 0.76282 (18) | 0.18777 (5) | −0.32891 (16) | 0.0284 (3) | |
H11 | 0.7467 | 0.1908 | −0.4321 | 0.034* | |
C12 | 0.64618 (17) | 0.16398 (5) | −0.29538 (16) | 0.0253 (3) | |
H12 | 0.5512 | 0.1505 | −0.3746 | 0.030* | |
C13 | 0.67016 (16) | 0.16009 (4) | −0.14320 (15) | 0.0230 (3) | |
C14 | 0.57911 (17) | 0.13989 (5) | −0.06520 (15) | 0.0240 (3) | |
C15 | 0.41925 (17) | 0.11434 (4) | −0.09859 (15) | 0.0241 (3) | |
C16 | 0.26029 (17) | 0.14373 (5) | −0.17142 (17) | 0.0297 (3) | |
H16A | 0.2674 | 0.1639 | −0.2506 | 0.036* | |
H16B | 0.2454 | 0.1627 | −0.0934 | 0.036* | |
C17 | 0.11381 (19) | 0.11002 (5) | −0.2425 (2) | 0.0371 (4) | |
H17A | 0.0327 | 0.1209 | −0.3435 | 0.044* | |
H17B | 0.0542 | 0.1062 | −0.1759 | 0.044* | |
C18 | 0.1935 (2) | 0.06478 (5) | −0.2582 (2) | 0.0382 (4) | |
H18A | 0.1389 | 0.0533 | −0.3642 | 0.046* | |
H18B | 0.1822 | 0.0416 | −0.1889 | 0.046* | |
C19 | 0.37848 (18) | 0.07557 (5) | −0.21480 (16) | 0.0282 (3) | |
H19A | 0.3959 | 0.0853 | −0.3053 | 0.034* | |
H19B | 0.4499 | 0.0487 | −0.1689 | 0.034* | |
N20 | 0.46954 (16) | 0.24080 (4) | 0.31417 (15) | 0.0329 (3) | |
H20 | 0.4794 | 0.2703 | 0.3303 | 0.039* | |
C21 | 0.55349 (19) | 0.21573 (5) | 0.24806 (17) | 0.0308 (3) | |
H21 | 0.6315 | 0.2278 | 0.2129 | 0.037* | |
C22 | 0.50921 (17) | 0.17099 (5) | 0.23994 (15) | 0.0250 (3) | |
C23 | 0.38834 (17) | 0.16807 (5) | 0.30492 (15) | 0.0245 (3) | |
C24 | 0.29604 (18) | 0.13280 (5) | 0.33118 (16) | 0.0281 (3) | |
H24 | 0.3062 | 0.1026 | 0.3015 | 0.034* | |
C25 | 0.19025 (18) | 0.14242 (5) | 0.40062 (17) | 0.0320 (3) | |
H25 | 0.1275 | 0.1186 | 0.4183 | 0.038* | |
C26 | 0.17390 (19) | 0.18680 (6) | 0.44541 (17) | 0.0335 (3) | |
H26 | 0.0999 | 0.1925 | 0.4925 | 0.040* | |
C27 | 0.26304 (18) | 0.22218 (5) | 0.42229 (17) | 0.0321 (3) | |
H27 | 0.2531 | 0.2522 | 0.4540 | 0.039* | |
C28 | 0.36823 (18) | 0.21257 (5) | 0.35091 (16) | 0.0277 (3) | |
C29 | 0.9782 (3) | −0.02919 (8) | 0.8839 (3) | 0.0599 (5) | |
H29 | 0.9643 | −0.0498 | 0.8039 | 0.072* | |
C30 | 0.8857 (3) | 0.01069 (8) | 0.8504 (3) | 0.0570 (5) | |
C31 | 0.9101 (3) | 0.03952 (7) | 0.9693 (3) | 0.0593 (6) | |
H31 | 0.8488 | 0.0672 | 0.9502 | 0.071* | |
C32 | 0.7658 (3) | 0.02275 (12) | 0.6900 (3) | 0.0962 (10) | |
H32A | 0.7930 | 0.0530 | 0.6647 | 0.144* | |
H32B | 0.6505 | 0.0226 | 0.6819 | 0.144* | |
H32C | 0.7760 | 0.0004 | 0.6190 | 0.144* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0335 (8) | 0.0263 (7) | 0.0256 (7) | −0.0062 (6) | 0.0131 (6) | −0.0011 (5) |
C2 | 0.0684 (12) | 0.0257 (8) | 0.0365 (9) | −0.0030 (8) | 0.0141 (8) | 0.0047 (7) |
C3 | 0.0532 (13) | 0.0311 (10) | 0.0395 (11) | 0.0073 (9) | 0.0150 (9) | 0.0062 (8) |
C4 | 0.0364 (8) | 0.0354 (8) | 0.0275 (7) | 0.0046 (6) | 0.0121 (6) | 0.0042 (6) |
C2' | 0.0684 (12) | 0.0257 (8) | 0.0365 (9) | −0.0030 (8) | 0.0141 (8) | 0.0047 (7) |
C3' | 0.0532 (13) | 0.0311 (10) | 0.0395 (11) | 0.0073 (9) | 0.0150 (9) | 0.0062 (8) |
C4' | 0.0364 (8) | 0.0354 (8) | 0.0275 (7) | 0.0046 (6) | 0.0121 (6) | 0.0042 (6) |
C5 | 0.0276 (7) | 0.0277 (7) | 0.0219 (6) | −0.0033 (5) | 0.0092 (5) | 0.0003 (5) |
C6 | 0.0244 (7) | 0.0276 (7) | 0.0253 (7) | −0.0020 (5) | 0.0090 (5) | −0.0002 (5) |
N7 | 0.0248 (6) | 0.0383 (7) | 0.0209 (6) | −0.0074 (5) | 0.0061 (5) | −0.0033 (5) |
C8 | 0.0235 (7) | 0.0280 (7) | 0.0244 (7) | 0.0007 (5) | 0.0081 (5) | 0.0002 (5) |
C9 | 0.0217 (7) | 0.0335 (8) | 0.0307 (7) | −0.0033 (6) | 0.0091 (6) | −0.0021 (6) |
C10 | 0.0257 (7) | 0.0316 (7) | 0.0353 (8) | 0.0004 (6) | 0.0157 (6) | 0.0027 (6) |
C11 | 0.0299 (7) | 0.0309 (7) | 0.0257 (7) | 0.0032 (6) | 0.0128 (6) | 0.0024 (6) |
C12 | 0.0239 (7) | 0.0261 (7) | 0.0241 (7) | 0.0009 (5) | 0.0083 (5) | −0.0008 (5) |
C13 | 0.0208 (6) | 0.0216 (6) | 0.0255 (7) | 0.0018 (5) | 0.0086 (5) | 0.0001 (5) |
C14 | 0.0243 (7) | 0.0229 (6) | 0.0238 (7) | 0.0006 (5) | 0.0089 (5) | 0.0003 (5) |
C15 | 0.0254 (7) | 0.0220 (6) | 0.0242 (6) | −0.0022 (5) | 0.0097 (5) | −0.0013 (5) |
C16 | 0.0270 (7) | 0.0252 (7) | 0.0352 (8) | −0.0001 (5) | 0.0114 (6) | 0.0004 (6) |
C17 | 0.0257 (8) | 0.0368 (8) | 0.0448 (9) | −0.0045 (6) | 0.0110 (7) | −0.0022 (7) |
C18 | 0.0337 (8) | 0.0326 (8) | 0.0446 (9) | −0.0087 (6) | 0.0127 (7) | −0.0072 (7) |
C19 | 0.0308 (7) | 0.0252 (7) | 0.0276 (7) | −0.0037 (6) | 0.0111 (6) | −0.0037 (5) |
N20 | 0.0377 (7) | 0.0210 (6) | 0.0374 (7) | −0.0013 (5) | 0.0132 (6) | 0.0010 (5) |
C21 | 0.0318 (8) | 0.0288 (7) | 0.0303 (7) | −0.0030 (6) | 0.0115 (6) | 0.0036 (6) |
C22 | 0.0263 (7) | 0.0263 (7) | 0.0200 (6) | −0.0027 (5) | 0.0073 (5) | 0.0017 (5) |
C23 | 0.0245 (7) | 0.0257 (7) | 0.0192 (6) | −0.0004 (5) | 0.0050 (5) | 0.0011 (5) |
C24 | 0.0282 (7) | 0.0281 (7) | 0.0259 (7) | −0.0031 (6) | 0.0092 (6) | −0.0014 (5) |
C25 | 0.0270 (7) | 0.0387 (8) | 0.0289 (7) | −0.0028 (6) | 0.0104 (6) | 0.0026 (6) |
C26 | 0.0261 (7) | 0.0452 (9) | 0.0266 (7) | 0.0063 (6) | 0.0086 (6) | 0.0002 (6) |
C27 | 0.0298 (7) | 0.0322 (8) | 0.0280 (7) | 0.0076 (6) | 0.0058 (6) | −0.0014 (6) |
C28 | 0.0269 (7) | 0.0259 (7) | 0.0243 (7) | 0.0014 (5) | 0.0046 (6) | 0.0018 (5) |
C29 | 0.0650 (13) | 0.0548 (12) | 0.0731 (15) | −0.0183 (10) | 0.0420 (12) | −0.0085 (10) |
C30 | 0.0449 (11) | 0.0646 (13) | 0.0655 (13) | −0.0117 (9) | 0.0270 (10) | 0.0147 (10) |
C31 | 0.0563 (12) | 0.0447 (11) | 0.0901 (16) | 0.0027 (9) | 0.0436 (12) | 0.0157 (11) |
C32 | 0.0633 (15) | 0.139 (3) | 0.0742 (17) | −0.0256 (16) | 0.0172 (13) | 0.0335 (17) |
C1—C2' | 1.536 (2) | C14—C15 | 1.5013 (18) |
C1—C2 | 1.536 (2) | C15—C16 | 1.5376 (19) |
C1—C5 | 1.5886 (19) | C15—C19 | 1.5347 (19) |
C1—C15 | 1.5711 (19) | C16—C17 | 1.539 (2) |
C1—H1 | 1.0000 | C16—H16A | 0.9900 |
C2—C3 | 1.492 (3) | C16—H16B | 0.9900 |
C2—H2A | 0.9900 | C17—C18 | 1.541 (2) |
C2—H2B | 0.9900 | C17—H17A | 0.9900 |
C2'—C3' | 1.476 (4) | C17—H17B | 0.9900 |
C2'—H2C | 0.9900 | C18—C19 | 1.528 (2) |
C2'—H2D | 0.9900 | C18—H18A | 0.9900 |
C3—C4 | 1.524 (2) | C18—H18B | 0.9900 |
C3—H3A | 0.9900 | C19—H19A | 0.9900 |
C3—H3B | 0.9900 | C19—H19B | 0.9900 |
C3'—C4' | 1.513 (4) | N20—C21 | 1.374 (2) |
C3'—H3C | 0.9900 | N20—C28 | 1.3670 (19) |
C3'—H3D | 0.9900 | N20—H20 | 0.8800 |
C4—C5 | 1.561 (2) | C21—C22 | 1.366 (2) |
C4—H4A | 0.9900 | C21—H21 | 0.9500 |
C4—H4B | 0.9900 | C22—C23 | 1.4418 (19) |
C4'—C5 | 1.561 (2) | C23—C24 | 1.4032 (19) |
C4'—H4C | 0.9900 | C23—C28 | 1.4182 (19) |
C4'—H4D | 0.9900 | C24—C25 | 1.382 (2) |
C5—C6 | 1.5025 (19) | C24—H24 | 0.9500 |
C5—C22 | 1.510 (2) | C25—C26 | 1.403 (2) |
C6—N7 | 1.3775 (18) | C25—H25 | 0.9500 |
C6—C14 | 1.3509 (19) | C26—C27 | 1.375 (2) |
N7—C8 | 1.3856 (18) | C26—H26 | 0.9500 |
N7—H7 | 0.8800 | C27—C28 | 1.392 (2) |
C8—C9 | 1.390 (2) | C27—H27 | 0.9500 |
C8—C13 | 1.4211 (19) | C29—C30 | 1.386 (3) |
C9—C10 | 1.383 (2) | C29—C31i | 1.378 (3) |
C9—H9 | 0.9500 | C29—H29 | 0.9500 |
C10—C11 | 1.399 (2) | C30—C31 | 1.372 (3) |
C10—H10 | 0.9500 | C30—C32 | 1.505 (3) |
C11—C12 | 1.385 (2) | C31—C29i | 1.378 (3) |
C11—H11 | 0.9500 | C31—H31 | 0.9500 |
C12—C13 | 1.3995 (19) | C32—H32A | 0.9800 |
C12—H12 | 0.9500 | C32—H32B | 0.9800 |
C13—C14 | 1.4356 (19) | C32—H32C | 0.9800 |
C2—C1—C15 | 116.07 (12) | C12—C13—C14 | 135.45 (13) |
C2—C1—C5 | 103.60 (12) | C6—C14—C13 | 107.61 (12) |
C2'—C1—C5 | 103.60 (12) | C6—C14—C15 | 112.11 (12) |
C2'—C1—C15 | 116.07 (12) | C13—C14—C15 | 140.21 (12) |
C5—C1—C15 | 107.79 (11) | C1—C15—C14 | 100.99 (11) |
C2—C1—H1 | 109.7 | C1—C15—C16 | 110.34 (11) |
C5—C1—H1 | 109.7 | C1—C15—C19 | 114.89 (11) |
C15—C1—H1 | 109.7 | C14—C15—C16 | 113.66 (11) |
C1—C2—C3 | 106.41 (14) | C14—C15—C19 | 116.15 (11) |
C1—C2—H2A | 110.4 | C16—C15—C19 | 101.26 (11) |
C1—C2—H2B | 110.4 | C15—C16—C17 | 105.53 (11) |
C3—C2—H2A | 110.4 | C15—C16—H16A | 110.6 |
C3—C2—H2B | 110.4 | C17—C16—H16A | 110.6 |
H2A—C2—H2B | 108.6 | C15—C16—H16B | 110.6 |
C1—C2'—C3' | 109.1 (3) | C17—C16—H16B | 110.6 |
C1—C2'—H2C | 109.9 | H16A—C16—H16B | 108.8 |
C1—C2'—H2D | 109.9 | C16—C17—C18 | 105.90 (12) |
C3'—C2'—H2C | 109.9 | C16—C17—H17A | 110.6 |
C3'—C2'—H2D | 109.9 | C16—C17—H17B | 110.6 |
H2C—C2'—H2D | 108.3 | C18—C17—H17A | 110.6 |
C2—C3—C4 | 104.62 (15) | C18—C17—H17B | 110.6 |
C2—C3—H3A | 110.8 | H17A—C17—H17B | 108.7 |
C2—C3—H3B | 110.8 | C17—C18—C19 | 105.40 (12) |
C4—C3—H3A | 110.8 | C17—C18—H18A | 110.7 |
C4—C3—H3B | 110.8 | C17—C18—H18B | 110.7 |
H3A—C3—H3B | 108.9 | C19—C18—H18A | 110.7 |
C2'—C3'—C4' | 105.9 (2) | C19—C18—H18B | 110.7 |
C2'—C3'—H3C | 110.5 | H18A—C18—H18B | 108.8 |
C2'—C3'—H3D | 110.5 | C15—C19—C18 | 104.54 (12) |
C4'—C3'—H3C | 110.5 | C15—C19—H19A | 110.8 |
C4'—C3'—H3D | 110.5 | C15—C19—H19B | 110.8 |
H3C—C3'—H3D | 108.7 | C18—C19—H19A | 110.8 |
C3—C4—C5 | 107.06 (13) | C18—C19—H19B | 110.8 |
C3—C4—H4A | 110.3 | H19A—C19—H19B | 108.9 |
C3—C4—H4B | 110.3 | C21—N20—C28 | 109.01 (12) |
C5—C4—H4A | 110.3 | C21—N20—H20 | 125.5 |
C5—C4—H4B | 110.3 | C28—N20—H20 | 125.5 |
H4A—C4—H4B | 108.6 | N20—C21—C22 | 110.53 (13) |
C3'—C4'—C5 | 102.9 (3) | N20—C21—H21 | 124.7 |
C3'—C4'—H4C | 111.2 | C22—C21—H21 | 124.7 |
C3'—C4'—H4D | 111.2 | C5—C22—C21 | 126.53 (13) |
C5—C4'—H4C | 111.2 | C5—C22—C23 | 127.37 (12) |
C5—C4'—H4D | 111.2 | C21—C22—C23 | 105.97 (13) |
H4C—C4'—H4D | 109.1 | C22—C23—C24 | 134.96 (13) |
C1—C5—C4 | 104.92 (11) | C22—C23—C28 | 106.94 (12) |
C1—C5—C4' | 104.92 (11) | C24—C23—C28 | 118.10 (13) |
C1—C5—C6 | 98.91 (11) | C23—C24—C25 | 119.36 (14) |
C1—C5—C22 | 114.67 (11) | C23—C24—H24 | 120.3 |
C4—C5—C6 | 113.69 (12) | C25—C24—H24 | 120.3 |
C4'—C5—C6 | 113.69 (12) | C24—C25—C26 | 121.09 (14) |
C4—C5—C22 | 112.17 (11) | C24—C25—H25 | 119.5 |
C4'—C5—C22 | 112.17 (11) | C26—C25—H25 | 119.5 |
C6—C5—C22 | 111.68 (11) | C25—C26—C27 | 121.17 (14) |
C5—C6—N7 | 134.14 (12) | C25—C26—H26 | 119.4 |
C5—C6—C14 | 115.07 (12) | C27—C26—H26 | 119.4 |
N7—C6—C14 | 110.72 (12) | C26—C27—C28 | 117.73 (14) |
C6—N7—C8 | 107.70 (11) | C26—C27—H27 | 121.1 |
C6—N7—H7 | 126.2 | C28—C27—H27 | 121.1 |
C8—N7—H7 | 126.2 | N20—C28—C23 | 107.55 (12) |
N7—C8—C9 | 129.71 (13) | N20—C28—C27 | 129.90 (14) |
N7—C8—C13 | 108.23 (12) | C23—C28—C27 | 122.54 (13) |
C9—C8—C13 | 122.05 (13) | C30i—C29—C31 | 121.5 (2) |
C8—C9—C10 | 117.64 (13) | C30—C29—H29 | 119.3 |
C8—C9—H9 | 121.2 | C31i—C29—H29 | 119.3 |
C10—C9—H9 | 121.2 | C29—C30—C31 | 117.2 (2) |
C9—C10—C11 | 121.40 (13) | C29—C30—C32 | 121.9 (2) |
C9—C10—H10 | 119.3 | C31—C30—C32 | 120.9 (2) |
C11—C10—H10 | 119.3 | C29—C31—C30i | 121.3 (2) |
C10—C11—C12 | 121.05 (13) | C29i—C31—H31 | 119.3 |
C10—C11—H11 | 119.5 | C30—C31—H31 | 119.3 |
C12—C11—H11 | 119.5 | C30—C32—H32A | 109.5 |
C11—C12—C13 | 119.06 (13) | C30—C32—H32B | 109.5 |
C11—C12—H12 | 120.5 | C30—C32—H32C | 109.5 |
C13—C12—H12 | 120.5 | H32A—C32—H32B | 109.5 |
C8—C13—C12 | 118.80 (12) | H32A—C32—H32C | 109.5 |
C8—C13—C14 | 105.74 (12) | H32B—C32—H32C | 109.5 |
C5—C1—C2—C3 | 32.92 (18) | C6—N7—C8—C13 | 0.36 (16) |
C15—C1—C2—C3 | 150.85 (15) | N7—C8—C9—C10 | −177.64 (14) |
C5—C1—C2'—C3' | −7.4 (4) | C13—C8—C9—C10 | 1.1 (2) |
C15—C1—C2'—C3' | 110.5 (4) | N7—C8—C13—C12 | 178.11 (12) |
C2—C1—C5—C4 | −15.51 (15) | N7—C8—C13—C14 | −0.65 (15) |
C2—C1—C5—C6 | 102.06 (13) | C9—C8—C13—C12 | −0.9 (2) |
C2—C1—C5—C22 | −139.03 (13) | C9—C8—C13—C14 | −179.63 (13) |
C2'—C1—C5—C4' | −15.51 (15) | C8—C9—C10—C11 | −0.5 (2) |
C2'—C1—C5—C6 | 102.06 (13) | C9—C10—C11—C12 | −0.4 (2) |
C2'—C1—C5—C22 | −139.03 (13) | C10—C11—C12—C13 | 0.6 (2) |
C15—C1—C5—C4 | −139.04 (12) | C11—C12—C13—C8 | 0.0 (2) |
C15—C1—C5—C4' | −139.04 (12) | C11—C12—C13—C14 | 178.27 (14) |
C15—C1—C5—C6 | −21.48 (14) | C8—C13—C14—C6 | 0.70 (15) |
C15—C1—C5—C22 | 97.44 (13) | C8—C13—C14—C15 | 177.17 (16) |
C2—C1—C15—C14 | −94.01 (15) | C12—C13—C14—C6 | −177.75 (15) |
C2—C1—C15—C16 | 145.46 (14) | C12—C13—C14—C15 | −1.3 (3) |
C2—C1—C15—C19 | 31.79 (18) | C6—C14—C15—C1 | −13.29 (15) |
C2'—C1—C15—C14 | −94.01 (15) | C6—C14—C15—C16 | 104.85 (14) |
C2'—C1—C15—C16 | 145.46 (14) | C6—C14—C15—C19 | −138.25 (13) |
C2'—C1—C15—C19 | 31.79 (18) | C13—C14—C15—C1 | 170.34 (16) |
C5—C1—C15—C14 | 21.58 (14) | C13—C14—C15—C16 | −71.5 (2) |
C5—C1—C15—C16 | −98.95 (13) | C13—C14—C15—C19 | 45.4 (2) |
C5—C1—C15—C19 | 147.39 (12) | C1—C15—C16—C17 | −85.04 (14) |
C1—C2—C3—C4 | −37.5 (2) | C14—C15—C16—C17 | 162.36 (12) |
C1—C2'—C3'—C4' | 28.4 (7) | C19—C15—C16—C17 | 37.06 (14) |
C2—C3—C4—C5 | 26.9 (2) | C1—C15—C19—C18 | 77.39 (15) |
C2'—C3'—C4'—C5 | −37.3 (6) | C14—C15—C19—C18 | −165.10 (12) |
C3—C4—C5—C1 | −6.50 (17) | C16—C15—C19—C18 | −41.49 (14) |
C3—C4—C5—C6 | −113.49 (15) | C15—C16—C17—C18 | −18.99 (16) |
C3—C4—C5—C22 | 118.60 (15) | C16—C17—C18—C19 | −6.91 (17) |
C3'—C4'—C5—C1 | 32.1 (4) | C17—C18—C19—C15 | 30.33 (16) |
C3'—C4'—C5—C6 | −74.9 (4) | C28—N20—C21—C22 | 0.09 (17) |
C3'—C4'—C5—C22 | 157.2 (4) | C21—N20—C28—C23 | −0.48 (16) |
C1—C5—C6—N7 | −169.36 (16) | C21—N20—C28—C27 | 178.45 (15) |
C1—C5—C6—C14 | 14.02 (15) | N20—C21—C22—C5 | −175.78 (13) |
C4—C5—C6—N7 | −58.7 (2) | N20—C21—C22—C23 | 0.33 (16) |
C4—C5—C6—C14 | 124.72 (14) | C5—C22—C23—C24 | −3.6 (3) |
C4'—C5—C6—N7 | −58.7 (2) | C5—C22—C23—C28 | 175.45 (13) |
C4'—C5—C6—C14 | 124.72 (14) | C21—C22—C23—C24 | −179.71 (15) |
C22—C5—C6—N7 | 69.5 (2) | C21—C22—C23—C28 | −0.61 (15) |
C22—C5—C6—C14 | −107.11 (14) | C22—C23—C24—C25 | 178.81 (15) |
C1—C5—C22—C21 | −132.41 (15) | C28—C23—C24—C25 | −0.2 (2) |
C1—C5—C22—C23 | 52.30 (18) | C22—C23—C28—N20 | 0.67 (15) |
C4—C5—C22—C21 | 108.04 (16) | C22—C23—C28—C27 | −178.36 (13) |
C4—C5—C22—C23 | −67.25 (18) | C24—C23—C28—N20 | 179.96 (12) |
C4'—C5—C22—C21 | 108.04 (16) | C24—C23—C28—C27 | 0.9 (2) |
C4'—C5—C22—C23 | −67.25 (18) | C23—C24—C25—C26 | −0.1 (2) |
C6—C5—C22—C21 | −20.9 (2) | C24—C25—C26—C27 | −0.3 (2) |
C6—C5—C22—C23 | 163.78 (13) | C25—C26—C27—C28 | 0.9 (2) |
C5—C6—N7—C8 | −176.63 (15) | C26—C27—C28—N20 | 179.94 (14) |
C14—C6—N7—C8 | 0.10 (16) | C26—C27—C28—C23 | −1.3 (2) |
C5—C6—C14—C13 | 176.90 (11) | C31i—C29—C30—C31 | 0.1 (3) |
C5—C6—C14—C15 | −0.66 (17) | C31i—C29—C30—C32 | 178.78 (19) |
N7—C6—C14—C13 | −0.51 (16) | C29—C30—C31—C29i | −0.1 (3) |
N7—C6—C14—C15 | −178.07 (12) | C32—C30—C31—C29i | −178.80 (19) |
C6—N7—C8—C9 | 179.23 (15) |
Symmetry code: (i) −x+2, −y, −z+2. |
Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N20/C21–C23/C28, C23–C28, C6/N7/C8/C13/C14 and C8–C13, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···C26ii | 0.88 | 2.66 | 3.493 (2) | 157 |
C11—H11···Cg1iii | 0.95 | 2.82 | 3.5419 (16) | 133 |
C12—H12···Cg2iii | 0.95 | 2.70 | 3.4652 (16) | 138 |
N20—H20···Cg3iv | 0.88 | 2.82 | 3.5654 (14) | 144 |
C21—H21···Cg4iv | 0.95 | 2.92 | 3.4970 (17) | 120 |
Symmetry codes: (ii) x+1, y, z; (iii) x, y, z−1; (iv) x, −y−1/2, z−1/2. |
Acknowledgements
The authors thank Victor G. Young Jr (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the
analysis, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this work.References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Landi, L., Prata, C., Berridge, M. V., Grasso, C., Fiebig, H.-H., Kelter, G., Burger, A. M. & Kunkel, M. W. (2008). J. Med. Chem. 51, 4563–4570. CrossRef PubMed CAS Google Scholar
Banerji, J., Chatterjee, A., Manna, S., Pascard, C., Prange, T. & Shoolery, J. N. (1981). Heterocycles, 15, 325–336. CrossRef CAS Google Scholar
Banerji, J., Mustafi, R. & Shoolery, J. N. (1983). Heterocycles, 20, 1355–1362. CrossRef CAS Google Scholar
Bergman, J., Norrby, P.-O., Tilstam, U. & Venemalm, L. (1989). Tetrahedron, 45, 5549–5564. CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Gu, X.-H., Wan, X.-Z. & Jiang, B. (1999). Bioorg. Med. Chem. Lett. 9, 569–572. CrossRef PubMed CAS Google Scholar
Guzei, I. A., Spencer, L. C., Codner, E. & Boehm, J. M. (2012). Acta Cryst. E68, o1–o2. CSD CrossRef IUCr Journals Google Scholar
Lee, C.-H., Yao, C.-F., Huang, S.-M., Ko, S., Tan, Y.-H., Lee-Chen, G.-J. & Wang, Y.-C. (2008). Cancer, 113, 815–825. CrossRef PubMed CAS Google Scholar
Maciejewska, D., Szpakowska, I., Wolska, I., Niemyjska, M., Mascini, M. & Maj-Żurawska, M. (2006). Bioelectrochemistry, 69, 1–9. CSD CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McNulty, J. & McLeod, D. (2011). Synlett, 5, 717–721. CSD CrossRef Google Scholar
Noland, W. E., Walhstrom, M. J., Konkel, M. J., Brigham, M. E., Trowbridge, A. G., Konkel, L. M. C., Gourneau, R. P., Scholten, C. A., Lee, N. H., Condoluci, J. J., Gac, T. S., Pour, M. M. & Radford, P. M. (1993). J. Heterocycl. Chem. 30, 81–91. CrossRef CAS Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shiri, M., Zolfigol, M. A., Kruger, H. G. & Tanbakouchian, Z. (2010). Chem. Rev. 110, 2250–2293. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, W., Liu, Z., Li, S., Yang, T., Zhang, Q., Ma, L., Tian, X., Zhang, H., Huang, C., Zhang, S., Ju, J., Shen, Y. & Zhang, C. (2012). Org. Lett. 14, 3364–3367. CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.