research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-bromo-2-hy­dr­oxy­benzoic acid

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria, and cSandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria
*Correspondence e-mail: thomas.gelbrich@uibk.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 March 2015; accepted 13 April 2015; online 22 April 2015)

Mutual carbox­yl–carboxyl O—H⋯O hydrogen bonds link the mol­ecules of the title compound, C7H5BrO3, into centrosymmetric dimers which display a central R22(8) ring motif. In addition, there is an intra­molecular hydrox­yl–carboxyl O—H⋯O inter­action present. A comparison with the crystal structures of 59 other substituted derivatives of salicylic acid shows that both the centrosymmetric carbox­yl–carboxyl O—H⋯O dimer and the stacking mode of mol­ecules along the short a axis observed in the title structure are frequent packing motifs in this set.

1. Chemical context

Substituted derivatives of salicylic acid are widely used in organic synthesis and can be biologically active. Members of this class have served as model compounds for studies of crystal polymorphism (Sarma et al., 2010[Sarma, B., Sanphui, P. & Nangia, A. (2010). Cryst. Growth Des. 10, 2388-2399.]; Braun et al., 2011[Braun, D. E., Karamertzanis, P. G., Arlin, J.-B., Florence, A. J., Kahlenberg, V., Tocher, D. A., Griesser, U. J. & Price, S. L. (2011). Cryst. Growth Des. 11, 210-220.]), the stability of hydrogen bonds (Bawa et al., 2004[Bawa, S., Coté, M. L., Dubois, P., Lalancette, R. A. & Thompson, H. W. (2004). Acta Cryst. B60, 438-446.]; Adam et al., 2010[Adam, M. S., Gutmann, M. J., Leech, C. K., Middlemiss, D. S., Parkin, A., Thomas, L. H. & Wilson, C. C. (2010). New J. Chem. 34, 85-91.]) or for systematic investigations of crystal-packing relationships (Montis & Hursthouse, 2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.]). The title compound is used in the synthesis of 7-bromo­benzoxazolin-2-one (Laus et al., 2011[Laus, G., Kahlenberg, V., Wurst, K., Nerdinger, S. & Schottenberger, H. (2011). Z. Naturforsch. Teil B, 66, 479-486.]), which is an inter­mediate in the synthesis of bifeprunox, an experimental drug for the treatment of psychiatric disorders such as schizophrenia (Zwier et al., 2005[Zwier, K., Klein, G., Eijgendaal, I. & Ter Horst-Van Amstel, M. J. L. (2005). Int. Patent WO 016898 A2.]; Eijgendaal et al., 2006[Eijgendaal, I., Klein, G., Ter Horst-Van Amstel, M. J. L., Zwier, K., Bruins, N., Rigter, H. T. & Gout, E. (2006). US Patent 0040932 A1.]).

[Scheme 1]

2. Structural commentary

The mol­ecule is almost planar (Fig. 1[link]). The plane defined by the non-H atoms of the carboxyl group is slightly twisted by 4.7 (4)° to the mean plane of the phenyl ring. An intra­molecular hydrogen bond, O1—H1⋯O3 (Table 1[link]), connects the hydroxyl group bonded to C2 with the carboxyl group at C1.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.85 (2) 1.88 (4) 2.604 (4) 142 (5)
O2—H2⋯O3i 0.87 (2) 1.80 (2) 2.664 (4) 172 (6)
Symmetry code: (i) -x+2, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, drawn with displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary size.

3. Supra­molecular features

Neighbouring mol­ecules are linked to one another by a two-point O2—H2⋯O3(−x + 2, −y, −z + 1) connection involving a pair of anti­parallel inter­actions between their carboxyl groups (Fig. 2[link], Table 1[link]). The resulting centrosymmetric dimer is described by the graph set [R_{2}^{2}](8) (Etter et al. 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). In the crystal structure, the dimers, which are essentially planar units, assemble into slightly corrugated sheets which lie parallel to the (10[\overline{3}]) plane. A sheet of this kind contains a short C4—H4⋯O1(−x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]) contact (H⋯O = 2.57 Å, C—H⋯O = 145.7°) (Fig. 3[link]a) which involves the hydroxyl group at C2. The sheets are stacked in a parallel fashion in the a-axis direction with an inter­sheet separation of 3.798 (4) Å which corresponds to the length of this axis.

[Figure 2]
Figure 2
Centrosymmetric dimer with a central [R_{2}^{2}](8) ring motif. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) −x + 2, −y, −z + 1.]
[Figure 3]
Figure 3
(a) Mol­ecular packing in the (10[\overline{3}]) plane. Dashed lines indicate O—H⋯O hydrogen bonds; C4—H4⋯O1(−x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]) contacts are indicated by thin dotted lines. Similar arrangements are present in the crystal structures of 3,5-Br and 3,5-Cl (supra­molecular construct S2). (b) Three corrugated sheets stacked in the a-axis direction.

4. Database survey

A systematic study of packing motifs present in 24 crystal structures of monosubstituted derivatives of salicylic acid has previously been published by Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.]), who also proposed a nomenclature where a substituent Rn at a ring position n (n = 3, 4, 5 or 6) is encoded n-Rn (Fig. 4[link]; Rn ≠ H). The title compound of the present study is denoted 3-Br in this system. Our own survey of the Cambridge Structural Database (version 5.25; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed 59 unique crystal structures of salicylic acid derivatives, listed in Table S1 of the Supporting information, which are close structural analogues of 3-Br. This set includes several polysubstituted derivatives as well as multiple-component crystals and crystal structures containing potential hydrogen bond donor and acceptor sites in addition to those of the 1-hydroxyl and 2-carboxyl groups.

[Figure 4]
Figure 4
Scheme showing the general composition of substituted derivatives of salicylic acid, the crystal structures of which were compared in this study.

In order to establish the possible existence of geometrically similar substructure units, pairwise XPac comparisons (Gelbrich & Hursthouse, 2005[Gelbrich, T. & Hursthouse, M. B. (2005). CrystEngComm, 7, 324-336.]) were carried out between the crystal structure of 3-Br on one hand and each of the other 59 salicylic acid derivatives on the other. Analogous to the study by Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.]), the underlying calculations were based on the comparison of inter­molecular geometrical parameters generated from the ten non-H atomic positions of the salicylic acid mol­ecular core (C7O3) which is present in all compounds of the set. A qu­anti­tative descriptor, the dissimilarity index x10 (Gelbrich et al., 2012[Gelbrich, T., Threlfall, T. L. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5454-5464.]), was calculated for each common supra­molecular construct (SC) identified. In general, a larger x10 value indicates a lower degree of similarity and an x10 value significantly higher than 10 is consistent with a situation where the fundamental features of a 3-Br substructure unit are also present in a second crystal, albeit with considerable geometrical modifications.

41 structures of the investigated set, including 3-Br, contain (carbox­yl)O—H⋯O(carbox­yl) hydrogen-bonded dimers with a central [R_{2}^{2}](8) ring motif (Fig. 2[link]). All of the dimers are centrosymmetric, except for that of 3-COOH (Mereiter et al., 2001[Mereiter, K., Mikenda, W. & Reichl, G. (2001). Private communication (refcode: IBUMAT). CCDC, Cambridge, England.]). In the latter structure, the [R_{2}^{2}](8) ring motif is inter­sected by a glide plane and connects the 2-carboxyl group of one mol­ecule with the 3-carboxyl group of the other so that an hydrogen-bonded chain structure is formed. Owing to the rigidity of the aromatic ring and the limited rotational flexibility about the C1—C7 bond, all 40 centrosymmetric dimers adopt approximately the same geometry, and the corres­ponding x10 values are smaller than 12 (Table S1 of the Supporting information). In keeping with the nomenclature introduced by Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.]), we denote this dimer SC A0.

A one-periodic SC, denoted X11 by Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.]), describes the stacking of 3-Br mol­ecules along the shortest crystallographic axis [a axis; Fig. 5[link](right)]. We have identified another 21 examples of the same stacking mode (Table S1 of the Supporting Information) and the 13 best matches with x10 > 12 are listed in Table 2[link]. In this latter subset, the length of the stacking vector varies from 3.67 to 3.98 Å. Moreover, the eleven structures listed in the top section of Table 2[link] also contain a centrosymmetric dimer so that their common SC is actually a stack of dimers [denoted A11; Fig. 5[link](right)].

Table 2
One-dimensional packing relationships between 3-Br and other derivatives of salicylic acid, based on the stacking of either individual mol­ecules (X11) or dimers (A11) along the short crystallographic axis and identified with XPac

Compound SCa x10b d (Å)c CSD code reference
3-Br A11 - 3.80 - This work
5-F A11 4.2 3.82 ABENEB Choudhury & Guru Row (2004[Choudhury, A. R. & Guru Row, T. N. (2004). Acta Cryst. E60, o1595-o1597.])
5-COOH A11 4.8 3.68 OJICEP Cox & Murphy (2003[Cox, P. J. & Murphy, M. T. (2003). Acta Cryst. E59, o1108-o1110.])
3,4-OH·0.25H2O A11 5.6 3.73 LAPZUZ Li et al. (2012[Li, J.-H., Dong, F.-Y., Cai, F., Yuan, X.-F. & Jiang, R.-W. (2012). Acta Cryst. E68, o825-o826.])
5-OMe A11 5.6 3.98 VAXZUR Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.])
5-Cl A11 7.1 3.71 VABVAX01 Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.])
4-Cl A11 9.2 3.72 VAXYAW Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.])
5-NO A11 9.5 3.67 NTSALA Talberg (1977[Talberg, H. J. (1977). Acta Chem. Scand. Ser. A, 31, 485-491.])
4-NH2 A11 10.3 3.73 AMSALA02 Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.])
4-OH A11 10.7 3.69 ZZZEEU04 Parkin et al. (2007[Parkin, A., Adam, M., Cooper, R. I., Middlemiss, D. S. & Wilson, C. C. (2007). Acta Cryst. B63, 303-308.])
4-Me A11 11.5 3.87 VAXYIE Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.])
5-ACM·H2O X11 2.2 3.75 VAXYOK Montis & Hursthouse (2012[Montis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242-5254.])
5-CHO X11 5.6 3.78 UJOFEF Lu et al. (2010[Lu, Y.-B., Yang, P., Huang, W.-N., Yang, Y.-N. & Wu, J.-Z. (2010). Acta Cryst. C66, o596-o599.])
3-CHO·H2O X11 11.1 3.72 JOHXEJ Claude et al. (1991[Claude, R., Zarembowitch, J., Philoche-Levisalles, M. & D'Yvoire, F. (1991). New J. Chem. 15, 635-641.])
Notes: (a) the largest supra­molecular construct which a crystal has in common with that of 3-Br; (b) XPac dissimilarity index computed from inter­molecular geometrical parameters which were calculated using the ten non-H atomic positions of the common salicylic acid mol­ecular fragment; (c) the length of the X11 stacking vector.
[Figure 5]
Figure 5
(Left) Tree diagram illustrating the packing relationships between 3-Br and other substituted derivatives of salicylic acid. A number in a box indicates the number of crystal structures for which a given SC (A0, X11, A11 and S2) is the largest common SC with 3-Br. (Right) Instances of the SCs A0, X11, A11 in 3-Br.

Other noteworthy packing relationships exist between 3-Br and the structures of 3,5-Br (XISGEM; Liu et al., 2008[Liu, C.-B., Chen, D.-D. & Wen, H.-L. (2008). Acta Cryst. E64, o3.]) and 3,5-Cl (WECXAE; Gao et al., 2005[Gao, Z.-W., Zhang, C.-Y., Gao, L.-X., Wang, G.-F., Wu, D.-H. & Liu, Z.-T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 553-554.]). These are based on the sheet structure which lies parallel to (10[\overline{3}]) in the 3-Br crystal and is depicted in Fig. 3[link]a. The corresponding x10 values of 11.8 and 12.4 for this 2-periodic SC [denoted S2 in Fig. 5[link](left)] indicate a relaxed form of geometrical similarity, which is consistent with the accommodation of additional halogen substituents in the planes of 3,5-Cl and 3,5-Br. Moreover, the short C4—H4⋯O1 contact found in 3-Br (see above) is replaced by other close contacts in the S2 instances of 3,5-Br and 3,5-Cl. Table S2 of the Supporting information contains the corresponding crystallographic parameters associated with SC S2. A graphical overview of the packing relationships involving 3-Br and their inter­dependencies is given in Fig. 5[link](left).

5. Synthesis and crystallization

The title compound was prepared from 5-sulfosalicylic acid by bromination, followed by desulfonation in hot phospho­ric acid and, finally, purification by steam distillation, as described by Meldrum & Shah (1923[Meldrum, A. N. & Shah, M. S. (1923). J. Chem. Soc. Trans. 123, 1986-1993.]). Single crystals were obtained by recrystallisation from hot water.

1H NMR (DMSO-d6, 300 MHz): 6.87 (t, J = 7.9 Hz, 1H), 5.3 (br, 1H), 7.80 (d, J = 7.9 Hz, 2H), 11.5 (br, 1H) p.p.m. 13C NMR (DMSO-d6, 75 MHz): 110.1, 114.3, 120.2 (CH), 129.7 (CH), 138.5 (CH), 157.6, 171.6 p.p.m. 1H NMR (CDCl3, 300 MHz): 6.85 (t, J = 7.9 Hz, 1H), 7.79 (dd, J = 7.9 and 1.6 Hz, 1H), 7.92 (dd, J = 7.9 and 1.6 Hz, 1H), 11.07 (s, 1H) p.p.m. 13C NMR (CDCl3, 75 MHz): 111.8, 112.8, 120.7 (CH), 130.6 (CH), 140.5 (CH), 159.0, 174.1 p.p.m. IR (neat): 2855, 2526, 1653, 1603, 1428, 1298, 1243, 1153, 851, 744, 677, 469 cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Positions of hydrogen atoms bonded to carbon atoms were generated in idealized geometries using a riding model and their displacement parameters were set to Uiso(H) = 1.2 Ueq(C). The H atoms attached to O were identified from difference Fourier maps and their positions refined with restrained distances [O—H 0.86 (2) Å] and their isotropic thermal displacement parameters were refined freely.

Table 3
Experimental details

Crystal data
Chemical formula C7H5BrO3
Mr 217.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 3.7978 (4), 10.5567 (6), 18.0366 (10)
β (°) 90.208 (7)
V3) 723.12 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.63
Crystal size (mm) 0.32 × 0.16 × 0.08
 
Data collection
Diffractometer Agilent Xcalibur (Ruby, Gemini ultra)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.094, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 4627, 1594, 1309
Rint 0.040
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.08
No. of reflections 1594
No. of parameters 108
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.19, −0.79
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006) and XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

3-Bromo-2-hydroxybenzoic acid top
Crystal data top
C7H5BrO3F(000) = 424
Mr = 217.02Dx = 1.993 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.7978 (4) ÅCell parameters from 1701 reflections
b = 10.5567 (6) Åθ = 3.0–28.1°
c = 18.0366 (10) ŵ = 5.63 mm1
β = 90.208 (7)°T = 173 K
V = 723.12 (10) Å3Plate, colourless
Z = 40.32 × 0.16 × 0.08 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini ultra)
diffractometer
1594 independent reflections
Radiation source: Enhance (Mo) X-ray Source1309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.3575 pixels mm-1θmax = 29.1°, θmin = 3.0°
ω scansh = 43
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1210
Tmin = 0.094, Tmax = 1l = 2119
4627 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.2934P]
where P = (Fo2 + 2Fc2)/3
1594 reflections(Δ/σ)max < 0.001
108 parametersΔρmax = 1.19 e Å3
2 restraintsΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28846 (10)0.31635 (3)0.19518 (2)0.02717 (17)
O20.9783 (9)0.1747 (2)0.51138 (16)0.0323 (7)
H21.055 (16)0.109 (4)0.535 (3)0.08 (2)*
O10.5137 (8)0.1225 (2)0.30358 (15)0.0304 (7)
H10.574 (15)0.064 (4)0.334 (3)0.060 (16)*
O30.7802 (8)0.0380 (2)0.42729 (15)0.0330 (7)
C30.4674 (10)0.3437 (3)0.2917 (2)0.0214 (8)
C20.5652 (10)0.2381 (3)0.3340 (2)0.0216 (8)
C10.7081 (10)0.2576 (3)0.4042 (2)0.0214 (8)
C70.8233 (10)0.1476 (4)0.4484 (2)0.0241 (8)
C40.5058 (10)0.4649 (3)0.3191 (2)0.0251 (8)
H40.43690.53560.28990.030*
C60.7467 (10)0.3806 (3)0.4318 (2)0.0242 (8)
H60.84320.39350.47990.029*
C50.6454 (11)0.4832 (4)0.3896 (2)0.0284 (9)
H50.67110.56660.40870.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0292 (3)0.0333 (3)0.0190 (3)0.00063 (15)0.00907 (17)0.00363 (14)
O20.049 (2)0.0296 (16)0.0187 (16)0.0017 (12)0.0129 (14)0.0054 (11)
O10.0443 (19)0.0232 (15)0.0234 (16)0.0006 (12)0.0131 (13)0.0003 (11)
O30.049 (2)0.0252 (15)0.0250 (16)0.0053 (12)0.0134 (13)0.0000 (11)
C30.019 (2)0.034 (2)0.0118 (19)0.0021 (15)0.0018 (15)0.0026 (14)
C20.0177 (19)0.027 (2)0.020 (2)0.0001 (14)0.0004 (15)0.0025 (14)
C10.0155 (19)0.030 (2)0.018 (2)0.0012 (14)0.0004 (15)0.0031 (14)
C70.022 (2)0.035 (2)0.015 (2)0.0033 (15)0.0009 (16)0.0018 (15)
C40.023 (2)0.027 (2)0.026 (2)0.0009 (15)0.0025 (17)0.0022 (15)
C60.026 (2)0.028 (2)0.018 (2)0.0012 (15)0.0051 (16)0.0004 (14)
C50.033 (2)0.020 (2)0.031 (2)0.0008 (15)0.0031 (18)0.0001 (14)
Geometric parameters (Å, º) top
Br1—C31.889 (4)C2—C11.391 (5)
O2—C71.309 (5)C1—C61.398 (6)
O2—H20.87 (2)C1—C71.474 (5)
O1—C21.352 (5)C4—C51.388 (6)
O1—H10.85 (2)C4—H40.9500
O3—C71.229 (5)C6—C51.379 (5)
C3—C41.379 (5)C6—H60.9500
C3—C21.400 (5)C5—H50.9500
C7—O2—H2114 (4)O3—C7—C1122.4 (3)
C2—O1—H1111 (4)O2—C7—C1115.4 (3)
C4—C3—C2121.0 (4)C3—C4—C5119.8 (3)
C4—C3—Br1120.7 (3)C3—C4—H4120.1
C2—C3—Br1118.3 (3)C5—C4—H4120.1
O1—C2—C1123.9 (3)C5—C6—C1120.3 (4)
O1—C2—C3117.4 (3)C5—C6—H6119.9
C1—C2—C3118.7 (3)C1—C6—H6119.9
C2—C1—C6120.1 (3)C6—C5—C4120.1 (3)
C2—C1—C7119.3 (3)C6—C5—H5120.0
C6—C1—C7120.6 (3)C4—C5—H5120.0
O3—C7—O2122.2 (3)
C4—C3—C2—O1178.9 (4)C6—C1—C7—O3176.9 (4)
Br1—C3—C2—O12.2 (5)C2—C1—C7—O2175.1 (3)
C4—C3—C2—C11.0 (6)C6—C1—C7—O23.8 (5)
Br1—C3—C2—C1177.9 (3)C2—C3—C4—C50.4 (6)
O1—C2—C1—C6178.9 (3)Br1—C3—C4—C5178.5 (3)
C3—C2—C1—C61.0 (5)C2—C1—C6—C50.3 (6)
O1—C2—C1—C72.1 (6)C7—C1—C6—C5178.6 (4)
C3—C2—C1—C7178.0 (3)C1—C6—C5—C40.3 (6)
C2—C1—C7—O34.2 (6)C3—C4—C5—C60.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.85 (2)1.88 (4)2.604 (4)142 (5)
O2—H2···O3i0.87 (2)1.80 (2)2.664 (4)172 (6)
Symmetry code: (i) x+2, y, z+1.
One-dimensional packing relationships between 3-Br and other derivatives of salicylic acid, based on the stacking of either individual molecules (X11) or dimers (A11) along the short crystallographic axis and identified with XPac top
CompoundSCax10bd (Å)cCSD codereference
3-BrA11-3.80-This work
5-FA114.23.82ABENEBChoudhury & Guru Row (2004)
5-COOHA114.83.68OJICEPCox & Murphy (2003)
3,4-OH·0.25 H2OA115.63.73LAPZUZLi et al. (2012)
5-OMeA115.63.98VAXZURMontis & Hursthouse (2012)
5-ClA117.13.71VABVAX01Montis & Hursthouse (2012)
4-ClA119.23.72VAXYAWMontis & Hursthouse (2012)
5-NOA119.53.67NTSALATalberg (1977)
4-NH2A1110.33.73AMSALA02Montis & Hursthouse (2012)
4-OHA1110.73.69ZZZEEU04Parkin et al. (2007)
4-MeA1111.53.87VAXYIEMontis & Hursthouse (2012)
5-ACM·H2OX112.23.75VAXYOKMontis & Hursthouse (2012)
5-CHOX115.63.78UJOFEFLu et al. (2010)
3-CHO·H2OX1111.13.72JOHXEJClaude et al. (1991)
Notes: (a) the largest supramolecular construct which a crystal has in common with that of 3-Br; (b) XPac dissimilarity index computed from intermolecular geometrical parameters which were calculated using the ten non-H atomic positions of the common salicylic acid molecular fragment; (c) the length of the X11 stacking vector.
 

References

First citationAdam, M. S., Gutmann, M. J., Leech, C. K., Middlemiss, D. S., Parkin, A., Thomas, L. H. & Wilson, C. C. (2010). New J. Chem. 34, 85–91.  CSD CrossRef CAS Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBawa, S., Coté, M. L., Dubois, P., Lalancette, R. A. & Thompson, H. W. (2004). Acta Cryst. B60, 438–446.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBraun, D. E., Karamertzanis, P. G., Arlin, J.-B., Florence, A. J., Kahlenberg, V., Tocher, D. A., Griesser, U. J. & Price, S. L. (2011). Cryst. Growth Des. 11, 210–220.  CSD CrossRef CAS PubMed Google Scholar
First citationChoudhury, A. R. & Guru Row, T. N. (2004). Acta Cryst. E60, o1595–o1597.  CSD CrossRef IUCr Journals Google Scholar
First citationClaude, R., Zarembowitch, J., Philoche-Levisalles, M. & D'Yvoire, F. (1991). New J. Chem. 15, 635–641.  CAS Google Scholar
First citationCox, P. J. & Murphy, M. T. (2003). Acta Cryst. E59, o1108–o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEijgendaal, I., Klein, G., Ter Horst-Van Amstel, M. J. L., Zwier, K., Bruins, N., Rigter, H. T. & Gout, E. (2006). US Patent 0040932 A1.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, Z.-W., Zhang, C.-Y., Gao, L.-X., Wang, G.-F., Wu, D.-H. & Liu, Z.-T. (2005). Z. Kristallogr. New Cryst. Struct. 220, 553–554.  CAS Google Scholar
First citationGelbrich, T. & Hursthouse, M. B. (2005). CrystEngComm, 7, 324–336.  Web of Science CrossRef CAS Google Scholar
First citationGelbrich, T., Threlfall, T. L. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5454–5464.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationLaus, G., Kahlenberg, V., Wurst, K., Nerdinger, S. & Schottenberger, H. (2011). Z. Naturforsch. Teil B, 66, 479–486.  CrossRef CAS Google Scholar
First citationLi, J.-H., Dong, F.-Y., Cai, F., Yuan, X.-F. & Jiang, R.-W. (2012). Acta Cryst. E68, o825–o826.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, C.-B., Chen, D.-D. & Wen, H.-L. (2008). Acta Cryst. E64, o3.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, Y.-B., Yang, P., Huang, W.-N., Yang, Y.-N. & Wu, J.-Z. (2010). Acta Cryst. C66, o596–o599.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeldrum, A. N. & Shah, M. S. (1923). J. Chem. Soc. Trans. 123, 1986–1993.  CrossRef CAS Google Scholar
First citationMereiter, K., Mikenda, W. & Reichl, G. (2001). Private communication (refcode: IBUMAT). CCDC, Cambridge, England.  Google Scholar
First citationMontis, R. & Hursthouse, M. B. (2012). CrystEngComm, 14, 5242–5254.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, A., Adam, M., Cooper, R. I., Middlemiss, D. S. & Wilson, C. C. (2007). Acta Cryst. B63, 303–308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarma, B., Sanphui, P. & Nangia, A. (2010). Cryst. Growth Des. 10, 2388–2399.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTalberg, H. J. (1977). Acta Chem. Scand. Ser. A, 31, 485–491.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZwier, K., Klein, G., Eijgendaal, I. & Ter Horst-Van Amstel, M. J. L. (2005). Int. Patent WO 016898 A2.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds